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Abstract

Modular fixtures are distinguished for their high flexibility. Previous researches focused on 2-D objects or 3-D objects with regular

geometry. This paper introduces our systematic study of 3-D modular fixtures, particularly for complex objects. For the sake of both

function and simplicity, three baseplates are arranged equilaterally. One baseplate is fixed horizontally, on which three fixels are installed

to support the object. The other baseplates are moveable and at least one fixel is set on either of them. Totally, seven fixels are adopted.

Efficient algorithms are presented for computing optimal fixel locations for the given object pose regarding localization accuracy and

immobilization capability. On account of the manufacturing errors, measuring and adjusting techniques are developed to improve the

localization accuracy. Case studies are investigated to illustrate applications. Experiments are performed for verifying the principles,

including the well-known theoretical proposition that seven fixels are necessary and sufficient for fixturing a 3-D object of

nonrevolutionary surface.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Fixtures are used to hold objects in many manufacturing
processes, such as machining, assembly, and inspection.
They must satisfy two requirements [1]:
(1)
 Localization: Once touching the locators, the object has a
unique position and orientation. This means that the
object cannot move without separating from the locators.
(2)
 Immobilization: Once being located and clamped, the
object is completely restrained and cannot separate
from the fixturing elements (fixels) including locators
and clamps. This property is also termed form-closure.
By the duality between motions and wrenches, this
implies that any external wrenches on the object can be
equilibrated.
As the objects in modern manufacturing are increa-

singly diverse, fixtures are desired to be reconfigurable,
e front matter r 2007 Elsevier Ltd. All rights reserved.
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immediate, simple, and cheap (RISC). To date, the most
popular RISC fixturing system is the modular fixture
[1–13], which typically comprises a set of standard ele-
ments, including baseplates, locators, and clamps. On the
baseplate, there is a lattice of precisely spaced holes. The
locators are precisely manufactured, which may be inserted
in the holes to locate an object. For fixturing different
objects, one needs only to alter the choice of holes for the
locators and adjust the clamp(s). In reconfiguration, most
elements can be utilized repeatedly.
To facilitate the use of modular fixtures, a series of

automated algorithms for computing fixel locations were
advanced. Brost and Goldberg [2] gave a complete
algorithm for synthesizing modular fixtures for polygonal
parts with three round locators and one translating clamp.
Wallack and Canny [3] put forward an algorithm for
planning modular and hybrid fixtures for generalized
polygons with two jaws, each having two round locators.
Wallack [4] also discussed other types of modular fixtures
and proposed a generic fixture design algorithm. Wu et al.
[5,6] expanded Brost–Goldberg algorithm to 3-D objects
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with horizontal or vertical planar or cylindrical sur-
faces. They also considered the locators having various
shapes and other quality criteria, such as accuracy,
clamping, and accessibility. Pham and Lazaro [7], Dai
et al. [8], Kumar et al. [9,10], and Hou and Trappey [11]
brought forth the CAD-based methods for automated
fixture design. Qian and Qiao [12] offered an efficient
algorithm for computing the object poses matching the
given fixel locations. Mervyn et al. [13] brought forward an
evolutionary search algorithm for exploring the possible
fixture designs and suggesting an appropriate one.
Some work [14,15], although not directly related, may
also contribute to the research on modular fixtures. In
addition, since modular fixtures and modular grippers have
many similarities, their researches could benefit from each
other [16,17].

Some previous work on modular fixtures considers
just 2-D objects [2,3,12]. They can only be applied to
cylindrical objects with small height. Many efforts have
been made for fixturing 3-D objects, but the object sur-
faces are piecewise planar or cylindrical [5–11,16].
Wang and Pelinescu [14] and Wang et al. [15] presented
two new methods of optimizing fixture layout for complex
objects, which are not specifically dedicated to modular
fixtures.

In this paper, we first elaborate a prototype of 3-D
modular fixture. Different from Wallack’s tetrahedral
arrangement of four baseplates [4], we arrange three
baseplates equilaterally, on which seven fixels are allocated.
An algorithm is developed for finding all feasible fixel
locations on each baseplate. Then by the criteria of
localization [14] and immobilization [18], we provide
algorithms for picking out the fixel locations such that
both localization accuracy and immobilization capability
of the configured fixture are optimal. Since the manufac-
turing errors of the fixture are inevitable, we try to
compensate for them by measuring the gripped object
and adjusting the lengths of fixels. Proved to be very
effective by experiments, this technique can be used readily
in production.
Fig. 1. Comparison of different baseplate placements: (a) Two antipodal basep

fixels is limited. (b) Four tetrahedral baseplates. A wider object surface can be

baseplates embody a rational compromise. Three fixels on the bottom plates c
2. A rational 3-D modular fixture

2.1. Setup

Noting that six points are sufficient for locating 3-D
objects without rotational symmetry and seven for
immobilizing, we use totally seven fixels for fixturing an
object. The fixels are cylindrical and each makes a point
contact with the object by its spherical end. We require the
fixels to contact the object in different directions so that
form-closure can be achieved easier. On two antipodal
baseplates (Fig. 1(a)), the fixels approach an object in
opposite directions. Thus, some areas of the object surface
become very bad for fixels to contact: the fixel is too long
and its inclination angle w.r.t. the surface normal is too
large. On four tetrahedral baseplates (Fig. 1(b)), the fixels
can reach wider object surface, but the open space for tools
to access is narrower and the structure is complicated. For
a tradeoff, we place three baseplates equilaterally around
an axis of symmetry. The seven fixels are allocated on the
baseplates. Each baseplate has at least one.
If the baseplates together with their axis of symmetry are

placed vertically, their functions in fixturing are identical.
However, how to load the object firmly before clamping is
problematic. Hence, we let the axis be horizontal and put a
horizontal baseplate below, just as shown in Fig. 1(c). To
simplify the structure but retain the flexibility of the fixture,
the bottom baseplate is fixed, while the upper two can
move towards the aforementioned axis (Fig. 2). Three fixels
are settled on the bottom baseplate so that the object can
rest stably on them at the beginning of fixturing process.
The other four fixels have two arrangements on the upper
two baseplates, i.e., two on each or three on the left and
one on the right, which are analogous to the {2+2} and
{3+1} arrangements of four fixels on the 2-D modular
fixtures [2,3]. Thus, seven fixels have two normal arrange-
ments on the baseplates, denoted by {3+2+2} and
{3+3+1}, where the three numbers in turn represent the
numbers of fixels located on the bottom, left, and right
baseplates. The former two refer to locators, while the last
lates. The fixturing structure is simple but the object surface within touch of

touched but the fixturing structure is more complex. (c) Three equilateral

an stably support the object before clamping.
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Fig. 2. Prototype of the modular fixture.
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number has clamping function or is a clamp indeed.
Accordingly, the right baseplate is flexible.

To carry out this idea, we first set up a Y-shaped vertical
plate as the frame for assembling the baseplates, as shown
in Fig. 2. Using one Y-shaped plate rather than two
parallel is to open larger space for the access of tools.
The horizontal baseplate is attached to the bottom of the
frame. On either arm we install a guide, and a baseplate is
connected to the slider on the guide through a channel,
which covers the slider. We do not use a strip of steel but a
channel as the connector between the slider and the
baseplate in order to strengthen the joints and position
the baseplate w.r.t. the slider better. Such guides and sliders
in pairs are commercially available, e.g., THK and NSK
brands. Since the left and right fixels have different
functions in locating and clamping, the configurations of
the driving mechanisms are somewhat different, although
either slider is driven by a handwheel, whose rotation
is transformed by a screw transmission into the trans-
lation of a nut along the guide. On the left, the nut is
fixed rigidly on the slider. On the right, the nut is made of
bronze and enlarged as an additional slider A behind the
slider B on the same guide fastened with the baseplate.
Two compression springs are installed between sliders
A and B and precompressed by two hooks linking A and B

(Fig. 2). Driven by the right handwheel, the sub-
assembly comprising the nut annexed to slider A, the
springs, slider B, the channel, the hooks, the baseplate
and the fixels can move along the guide to and fro
as a whole. Once the fixel(s) contact(s) the object,
further turning the handwheel causes an additional
compression of the springs and exerts a clamping force
on the object. The setup is reinforced by two triangular
stiffeners connecting the bottom baseplate with the vertical
frame.

There are 9� 7 holes on the bottom baseplate and 6� 7
on the others. The fixels are screwed into the lattice holes so
that their lengths can be adjusted slightly to compensate for
the location error. Also, ready-made fixels of different
lengths can be selected (Fig. 2).

2.2. Mathematical model

We first establish a framework for the later computation
of fixtures. Let FB, FL, and FR denote the coordinate
frames attached to the bottom, left, and right baseplates,
respectively, called the plate frames. Frame FB is also used
as the fixture frame. The origin of each frame is located at
the plate center. Then the positions and orientations of FL

and FR w.r.t. FB are

pB;L ¼

0

�sL cos j

H þ sL sin j

2
664

3
775; RB;L ¼

1 0 0

0 � sin j cos j

0 � cos j � sin j

2
664

3
775,

pB;R ¼

0

sR cos j

H þ sR sin j

2
664

3
775; RB;R ¼

1 0 0

0 � sin j � cos j

0 cos j � sin j

2
664

3
775,

where sL and sR are the translational distances of the left and
right baseplates along their sliders, H ¼ 85mm is the height
of the foregoing axis, and j ¼ p/6 is the inclination angle of
the sliders. The x and y coordinates of fixel i in the plate
frame are li1

a1 and li2
a2, where a1 and a2 are the spaces of

the hole center lattice and both equal to 20mm; li1
can take

any integer in [�3, 3] for any fixel, and li2
can take any

integer in [�4,4] for the fixels on the bottom baseplate and
any number in {�2.5, �1.5, �0.5, 0.5, 1.5, 2.5} for the
others. Let li3

be a positive real designating the z coordinate

of the spherical end. Then the location of fixel i is denoted by
ðli1

; li2
; li3
Þ, and its end is expressed in the plate frame as the

sphere of radius ri centered at ei ¼ ½li1
a1 li2

a2 li3
�T,

denoted by Fi. Fixel i in the fixture frame is given by

FB;i ¼ RBðF iÞ þ pB,
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where RB ¼ I, RB,L, RB,R and pB ¼ 0, pB,L, pB,R for fixels
on the bottom, left, and right baseplates, respectively.

Denote the object by a compact set O of R3. Let FO

denote the object coordinate frame, and pB;O 2 R3 and
RB,OASO(3) the origin and orientation of FO w.r.t. FB.
Then O in FB is given by

OB ¼ RB;OðOÞ þ pB;O.

The geometrical relationship between a fixel and the
object is measured by the distance function d(FB,i, OB) of
FB,i and OB. The distance function is introduced in the
Appendix. For the cases of separation, contact, and
penetration, the value of d(FB,i, OB) is positive, zero, and
negative, respectively. If the object O is convex, then from
the Appendix d(FB,i, OB) can be computed by

dðFB;i;OBÞ ¼ � min
uk k¼1

uTðRBei þ pBÞ þ ri

�

�min
x2O

uTRB;Ox� uTpB;O

�
. ð1Þ

When d(FB,i, OB) ¼ 0, the unit vector û for which the
above minimum value is attained indicates the normal at
contact outward to FB,i and inward to OB, and then the
contact point on the object surface in FB can be written as

rB;i ¼ RBei þ pB þ riû. (2)
3. Computing optimal fixel locations

In what follows, we try to compute the fixel locations
w.r.t. the given pB,O and RB,O. First, we figure out all
feasible locations where a fixel can contact the object. Then
optimal fixel locations are selected according to the criteria
of localization accuracy and immobility.

3.1. Computing feasible candidate fixel locations
Problem 1. Given a formulation of the object O in FO,
and the position pB,O and orientation RB,O of FO w.r.t.
FB. Find ðli1

; li2
; li3
Þ such that d(FB,i, OB) ¼ 0, and

compute the vector û and the contact point rB,i.

As li1
and li2

are discrete and limited, we compute li3
for every possible ðli1

; li2
Þ for which d(FB,i, OB) ¼ 0.

Step 1: Select an uninvestigated couple ðli1
; li2
Þ. Set li3

to be its lower bound. Compute d(FB,i, OB). If d(FB,i,
OB)p0, then this location is not feasible and go to Step 4;
otherwise set li3

¼ li3
þ 2ri, where 2ri is the step of search.

d(FB,i, OB) ¼ 0 is also abandoned herein for lack of
tolerance for manufacturing errors and adjustment.

Step 2: Compute d(FB,i, OB) ¼ 0. If d(FB,i, OB)p0, then
go to Step 3; otherwise set li3

¼ li3
þ 2ri. If li3

is over its
upper bound, then go to Step 4; otherwise, repeat this step.

Step 3: Now there exists li3
between li3

� 2ri and li3
for

which d(FB,i, OB) ¼ 0. The solution of li3
to this equation
can be found by bisection. Store ðli1
; li2

; li3
Þ, û, and rB,i in

the feasible candidate list.
Step 4: If there exist any unchecked ðli1

; li2
Þ, then return

to Step 1; otherwise the procedure ends.
This procedure should be executed for the fixels of

different radii and lengths on different plates, respectively.

3.2. Localization accuracy and immobilization capability

Suppose that an infinitesimal motion dq 2 R6 arises on
the object, which consists of an infinitesimal translation
dp 2 R3 and an infinitesimal rotation d/ 2 R3. dp, ex-
pressed in FB, leads to the change in pB,O, while du,
denoting a rotation of the object about an axis through the
point pB,O, results in the change in RB,O given by

dR ¼ expðd/�Þ,

where d/� 2 R3�3 is the skew-symmetry matrix represent-
ing the cross product by du. dq causes the movement of the
object relative to the fixel at the contact point, which can be
characterized by

dri ¼ dpþ d/� ðrB;i � pB;OÞ.

Let ni 2 R3 denote the unit inward normal at contact i. If

nT
i driX0, the object separates from fixel i. If nT

i dri ¼ 0, the

object keeps contact with fixel i. In the two cases, dq is said

to be consistent with fixel i. If nT
i drio0, then the object

collides with fixel i, and dq is inconsistent. Note that

nT
i dri ¼ wT

i dq where wi ¼ nT
i ðrTB;i � pT

B;OÞ � nT
i

h iT
. Let

G ¼ w1 w2 � � � wm

� �
.

If GTdqX0, then dq is said to be consistent.
From the definition of localization in the beginning of

this paper, the object is located if and only if there does not
exist nonzero dq 2 R6 satisfying GTdq ¼ 0. This is equiva-
lent to that the matrix G has full row rank. Following [14],
we use the determinant of the matrix M ¼ GGT as the
criterion of localization accuracy, denoted by detM. A
greater detM means higher localization accuracy.
Even if an object is located, it may be still mobile.

Indeed, localization only requires that six elements of w1,
w2,y,wm are linearly independent. However, w1,
w2,y,wm may be in the same half space, and then there
exists a nonzero dq 2 R6 satisfying GTdq40, which implies
a consistent infinitesimal motion. All consistent infinitesi-
mal motions constitute a cone, known as the dual cone of
the cone generated by w1, w2,y,wm. An object is
immobilized if and only if the dual cone contains only
the origin 0 of R6 [18]. This is equivalent to that the cone
generated by w1, w2,y,wm equals R6 or 0 lies in the
interior of the convex hull of w1, w2,y,wm. From convex
analysis, the convex hull of just seven points can contain
the origin 0 of R6 in its interior. On any 3-D object without
rotational symmetry there always exist w1, w2,y,w7 such
that their convex hull contains 0 in the interior. Owing to
this, we use seven fixels.
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Proposition 1. A fixture is form-closure or the object is

immobilized if and only if both conditions are satisfied:
(a)
 w1, w2,y,w6 are linearly independent,

(b)
 w7 can be written as a strictly negative combination of

w1, w2,y,w6.
Furthermore, if the conditions are satisfied, then any six of

w1, w2,y,w7 are linearly independent and the other can be

uniquely written as a strictly negative combination of them.

Referring to [18], we evaluate the capability of a fixture
to immobilize an object by

d ¼ �max
uk k¼1

min
i¼1;2;...;7

uTwi

� �
. (3)

In this paper, isolated d and d(S1, S2) have different
meanings. A fixture is form-closure if and only if
mini¼1;2;...;7u

Twio0 for any nonzero u 2 R6, or equivalently
d40. A greater d implies superior immobilization cap-
ability. For a form-closure fixture, the convex hull of w1,
w2,y,w7 is a 6-D simplex containing 0 in its interior, and d

is the minimum distance from 0 to its facets. A facet of the
simplex is the convex hull of six of w1, w2,y,w7. Let facet i

be the convex hull of wi1
;wi2

; . . . ; wi6
where i1, i2,y, i6 are

the integers between 1 and 7 other than i. The unit normal
to facet i is a unit vector orthogonal to wi1

� wi6
;wi2
�

wi6
; . . . ;wi5

� wi6
. Let

G i ¼ wi1
wi2

� � � wi6

h i
2 R6�6,

a ¼ 1 1 � � � 1
� �T

2 R6.

It can be proved that the solution of the linear
system GT

i u ¼ a is orthogonal to wi1
� wi6

;wi2
� wi6

; . . . ;
wi5
� wi6

. Since Gi is nonsingular, the unit normal can be
calculated by

ui ¼
G�Ti a

G�Ti a
�� �� , (4)

where G�Ti is the inverse of GT
i . Moreover, ui is outward to

the simplex. Hence, the distance from 0 to the facet
determined by wi1

;wi2
; . . . ;wi6

is

di ¼ uT
i wi1
¼ G�Ti a
�� ���1. (5)

Combining these arguments, we obtain

d ¼ min
i¼1;2;...;7

di ¼ min
i¼1;2;...;7

uT
i wi1

. (6)

3.3. Algorithms for computing optimal fixel locations

Based on the above indices two algorithms are given below.

Algorithm 1. This algorithm consists of two phases. To
improve the localization accuracy, the first phase (Steps 1
and 2) is looking for the locations of 6 fixels such that
detM is maximal. To achieve form-closure, the second
phase (Step 3) is seeking the location of the 7th fixel such
that the value of d is maximal.

Step 1: Select the initial locations at random by the
computer such that w1, w2,y,w6 are linearly independent.
Let G ¼ ½w1 w2 � � � w6 � and M ¼ GGT. Calculate
detM and M�1.

Step 2: Change the current location of a fixel to a
remaining candidate to make a maximum ascent of detM.
If no such candidates exist for all the six fixels, then the
current locations are optimal, and go to Step 3, otherwise
repeat this step.
Changing the location of a fixel can be regarded as

adding a fixel followed by deleting a fixel. Let M and M(7j)

be the current information matrix and the one after adding
or deleting the jth location, respectively. Then from [14] we
have

M ð�jÞ ¼M � wjw
T
j , (7)

M�1
ð�jÞ ¼M�1 �

ðM�1wjÞðM
�1wjÞ

T

1� wT
j M�1wj

, (8)

det M ð�jÞ ¼ ð1� wT
j M�1wjÞ det M . (9)

Let M(+j, �i) denote the information matrix resulting
from adding the jth location followed by deleting the ith
location. From (7)–(9), it follows that

M ðþj;�iÞ ¼M ðþjÞ � wiw
T
i , (10)

M�1
ðþj;�iÞ ¼M�1

ðþjÞ þ
ðM�1
ðþjÞwiÞðM

�1
ðþjÞwiÞ

T

1� wT
i M�1

ðþjÞwi

, (11)

det M ðþj;�iÞ ¼ ð1� wT
i M�1

ðþjÞwiÞ det M ðþjÞ

¼ ½ð1� wT
i M�1wiÞð1þ wT

j M�1wjÞ

þ ðwT
i M�1wjÞ

2
� det M . ð12Þ

The effect of a location change on the localization
accuracy is assessed by the ratio hij of detM(+j, �i) to
detM. From (12) we have

hij ¼ ð1� wT
i M�1wiÞð1þ wT

j M�1wjÞ þ ðw
T
i M�1wjÞ

2. (13)

Since G is a nonsingular matrix, we have wT
i M�1wi ¼ 1.

Then (12) and (13) can be further simplified as

det M ðþj;�iÞ ¼ ðw
T
i M�1wjÞ

2 det M ; (14)

hij ¼ ðw
T
i M�1wjÞ

2. (15)

If wT
i M�1wj ¼ 0, then the location change leads to the

matrix G being singular. Such changes must be avoided.
Therefore, we substitute the jth candidate location for

which wT
i M�1wj

�� �� is maximal for the current location of the
ith fixel. This process is circularly repeated for every fixel
until wT

i M�1wj

�� ��p1 for all i and j.



ARTICLE IN PRESS

Fig. 3. Three-coordinate measuring machine.
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Step 3: Find the location of the 7th fixel among the
candidates satisfying ½w1 w2 � � � w6�

�1w7o0 as well as
maximizing d.

The primary advantage of Algorithm 1 is the high
efficiency. The recursive formulas (8), (11), (14), and (15)
greatly speed up the computations of M�1 and detM and
the assessment of candidate locations. However, the 7th
fixel is regarded only as a clamp, and its effect on
localization is not considered. Also, the effect of the other
fixels on immobilization is not counted. Hence we give
another algorithm.

Algorithm 2. This algorithm simultaneously improves the
localization accuracy and the immobilization capability.

Step 1: Select the locations of seven fixels, which achieve
the form-closure property. Let G ¼ ½w1 w2 � � � w7 �

and M=GGT. Calculate detM, M�1, di, and d.
Step 2: Change a current fixel location to a remaining

candidate to increase both detM and d as much as possible.
Often the maximum increases in detM and d cannot be
obtained simultaneously. Depending upon the task, one
may give priority to either one. In general, we just find a
candidate location to replace the current location of a fixel
such that detM and d are both increased.

First of all, the change must ensure that the fixture is still
form-closure. This can be checked by determining if the
conditions in Proposition 1 are satisfied. Since the initial
fixture is form-closure, from Proposition 1 we see that any
six columns of G are linearly independent, which implies
that Gi is nonsingular for all i ¼ 1,2,y, 7. Then the change
of the ith fixel location to the jth candidate keeps the fixture
in form-closure if and only if G�1i wjo0.

Besides, we do not intend to compute detM and d for
every change. Instead, we utilize an index to predict which
changes might probably increase both detM and d.

Let M i ¼ G iG
T
i . The function of the ith fixel on locating

the object can be assessed by the loss ratio of detM caused
by deleting the ith fixel. From (12), it can be expressed by

li ¼ ðdet M � det M iÞ= det M ¼ wT
i M�1wi. (16)

Clearly, li40 for i ¼ 1,2,y, 7. Since Gi is nonsingular,
we have detMi40; thus lio1 for i ¼ 1,2,y, 7. From (13)
and (16), we first see that a smaller li may possible results in
a greater hij. Moreover, li will be used in computing hij; thus
calculating li does not cause any extra computation.

The function of the ith fixel on restraining the object can
be evaluated by the minimum distance from 0 to the facets
containing wi, which is formulated by

gi ¼ min
k¼1;2;...;7 and kai

dk. (17)

Clearly, gi ¼ d for six of i ¼ 1,2,y, 7, for which wi lies in
the facet closest to 0, and gi4d for the other, for which wi is
not in the closest facet. Note that di is the smallest for the i

for which wi is not in the closest facet; thus computing gi

for i ¼ 1,2,y, 7 just needs to calculate gi for the i for which
di is the smallest, and gi for the others is equal to d.
Changing the position of the ith fixel for which gi4d

cannot increase d.
Therefore, we start computing hij from i for which gi is

equal to d and li is relatively smaller, and continue the
computation until detM and d are both increased. Also,
disregarding gi, we may compute hij first for the i for which
li is the smallest. By this means, a desired change can be
found more quickly.

4. Measuring and adjusting

Fixtured in light of the computed fixel locations, the
object may deviate a little from the desired pose in practice.
Hence, in this section we discuss how to measure the
location error and how to adjust the lengths of fixels to
reduce it.

4.1. Measuring

We measure the actual position pB,O and orientation
RB,O of FO w.r.t. FB on a three-coordinate measuring
machine (Fig. 3). To begin with, at least three marks are
accurately put on the setup in order that FB can be
determined from these marks. Similarly, at least three
marks are attached to the object to specify FO. Then by
detecting the coordinates of these marks, pB,O and RB,O can
be determined.
However, the marks denoting FO may be hidden after the

object is clamped, so that their coordinates are not obtainable.
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Fig. 4. Fixturing process. The solid lines indicate the principal flows, while

the dashed lines indicate the auxiliary data flows. ðp�B;O;R
�
B;OÞ and (pB,O,

RB,O) give the desired and actual poses of the object, respectively.
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In this case, we attach other marks to the object surface to
ensure that three noncollinear marks can be detected so as to
create a local coordinate frame FC on the object. Denote the
three marks by c1, c2 c3. By determining the coordinates of c1,
c2, c3 together with those marks specifying FO before the
object is loaded, the coordinates of c1, c2, c3 in FO can be
calculated, denoted by cO,1, cO,2, cO,3. Then the position and
orientation of FC w.r.t. FO can be selected as

pO;C ¼ cO;1; RO;C ¼ x1 y1 x1 � y1

h i
, (18)

where

x1 ¼
cO;2 � cO;1

cO;2 � cO;1

�� �� ; y1 ¼
ðI � x1xT

1 ÞðcO;3 � cO;1Þ

ðI � x1xT
1 ÞðcO;3 � cO;1Þ

�� �� . (19)

After the object is fixtured, we detect the coordinates of c1,
c2, c3 together with the marks denoting FB to determine cB,1,
cB,2, cB,3. Then the position pB,C and orientation RB,C of FC

w.r.t. FB can be readily calculated from (18) and (19) by
replacing the subscript O by B. Consequently, we have

pB;O ¼ cB;1 � RB;CRT
O;CcO;1; RB;O ¼ RB;CRT

O;C. (20)

4.2. Adjusting

Let p�B;O and R�B;O be the desired position and orientation
of the object. Then the location error is given by

dp ¼ p�B;O � pB;O; dR ¼ R�B;ORT
B;O. (21)

The matrix dR 2 SOð3Þ represents a rotation about an
axis x 2 R3 through an angle y 2 ½0; 2pÞ:

y ¼ cos�1
r11 þ r22 þ r33 � 1

2

� �
, (22)

x ¼
1

2 sin y

r32 � r23

r13 � r31

r21 � r12

2
64

3
75, (23)

where rij are the entries of dR. The values of dp
�� �� and y

evaluate the magnitude of the location error. If they are not
small enough, we need to adjust li3

to reduce both of them.
The required adjustment can be regarded as an infinitesi-

mal motion of the object, which consists of dp and yx. It will
cause the movement at the contact point specified by

dri ¼ dpþ yx� ðrB;i � pB;OÞ,

where rB,i is the ith contact position in FB. However, the
actual value of rB,i may be unobtainable. Instead we
compute it w.r.t. pB,O, RB,O, and ðli1

; li2
Þ using the method

introduced in Section 3.1. Then the offense of the object
against fixel i caused by the adjustment is drTi dB;i, where dB,i
denotes the direction of fixel i. Therefore, the value of
drTi dB;i can be used as a reference adjustment value of li3

.
The procedures of measuring and adjusting probably

need to be executed repeatedly for reducing the location
error to an acceptable extent. Thus, the whole process of
fixturing an object is summarized in Fig. 4.
5. Case studies

We implement the proposed algorithms using MATLAB
on a Pentium-M notebook.

Example 1. The first object to be fixtured is a bottle,
whose body is used for fixturing and characterized by a
point cloud comprising x1, x2,y, xN, where N ¼ 17,060.
Since the body is convex, we may compute d(FB,i, OB) by
(1) and

minx2O uTRB;Ox ¼ min uTRB;O½ x1 x2 � � � xN �.

The desired object pose is selected as the following form:

p�B;O ¼

0

0

a1

2
664

3
775,

R�B;O ¼

cos a3 � sin a2 sin a3 � cos a2 sin a3

0 cos a2 � sin a2

sin a3 sin a2 cos a3 cos a2 cos a3

2
664

3
775. ð24Þ
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First, we take a1 ¼ 70mm, a2 ¼ p/2, and a3 ¼
7p/12. The candidate locations for fixels are figured
out by the procedure given in Section 3.1. The fixel
locations are first computed by Algorithm 1 and
further optimized by Algorithm 2. Then the com-
puted fixtures are depicted in Fig. 5, where (a) shows
type {3+2+2} and (b) shows type {3+3+1}. The
CPU times for computing the two fixtures are 92.18 and
98.12 s.

Second, let a1 ¼ 70mm, a2 ¼ 5p/12, and a3 ¼ 11p/12.
Then the optimal fixtures are shown in Fig. 5(c) and (d).
The CPU times are 116.57 and 121.26 s.

Example 2. It is required to fixture a mouse, whose sur-
face is described by 16,281 points. Its pose is also given
by (24). First, set a1 ¼ 60mm, a2 ¼ �p/3, and a3 ¼ p/12.
Fig. 6(a) and (b) exhibit the computed fixtures of types
{3+2+2} and {3+3+1}, respectively, with the CPU
times of 110.30 and 102.45 s. Second, put a1 ¼ 70mm,
a2 ¼ p/2, and a3 ¼ p/2. The computed fixtures are
shown in Fig. 6(c) and (d). The CPU times are 76.84 and
68.80 s.

Apparently, neither the bottle nor the mouse is complex
in geometry. Nevertheless, in both cases, their required
poses are arbitrarily given. It is equivalent to complicating
the objects. Generalizing the method herein to complex
objects is straightforward.
Fig. 5. Optimal locations of fixels on a bottle in two po
6. Experiments

Experiment 1. First we demonstrate the repeatability of the
modular fixture. It is required to show that the pose of the
reloaded object is invariant as long as the fixel locations
keep unchanged. Let pB,O and RB,O be the original position
and orientation of the fixtured object and p0B;O and R0B;O the
ones after reloading it without adjusting the fixels. Then the
repeatability can be evaluated also using (21) and (22) by
substituting p0B;O, R0B;O for p�B;O, R�B;O. The smaller dp and y
mean the higher repeatability.
First, we load the bottle following Example 1, case (d). The

marks are shown in Fig. 7. From their detected coordinates,
the obtained coordinates of c1, c2, c3 in FO and FB are

cO;1 ¼

7:0616

�30:9493

�14:9117

2
664

3
775; cO;2 ¼

�43:9270

�30:0398

�15:4176

2
664

3
775,

cO;3 ¼

9:2149

�31:4037

6:9338

2
664

3
775; cB;1 ¼

4:2441

3:6325

103:7941

2
664

3
775,

cB;2 ¼

53:1198

4:6830

89:9193

2
664

3
775; cB;3 ¼

0:5755

�17:1700

98:1994

2
664

3
775.
ses: (a, c) Type {3+2+2}. (b, d) Type {3+3+1}.
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Fig. 6. Optimal locations of fixels on a mouse in two poses: (a, c) Type {3+2+2}. (b, d) Type {3+3+1}.

Fig. 7. A bottle fixtured on the setup.
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Then computed by (18)–(20) the pose of the bottle is

pB;O ¼

2:2417

�0:8306

69:0643

2
664

3
775,

RB;O ¼

�0:9657 �0:2485 �0:0759

�0:0057 0:3122 �0:9500

0:2597 �0:9169 �0:3029

2
664

3
775.

After reloading the bottle, we have

c0B;1 ¼

4:2043

3:6435

103:7741

2
664

3
775; c0B;2 ¼

53:0900

4:6938

89:8894

2
664

3
775,

c0B;3 ¼

0:5257

�17:1587

98:1694

2
664

3
775.

p0B;O ¼

2:1961

�0:8006

69:0423

2
664

3
775; p0B;O ¼

2:1961

�0:8006

69:0423

2
664

3
775,
R0B;O ¼

�0:9656 �0:2486 �0:0761

�0:0057 0:3127 �0:9498

0:2599 �0:9167 �0:3034

2
664

3
775.

Then by (21) and (22), dp
�� �� ¼ 0:0458 and y ¼ 0.0006.
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Fig. 8. A mouse fixtured on the setup.

Table 1

Adjusting the lengths of fixels for reducing the location error on the bottle

i 1 2 3 4 5 6 7 dp
�� �� y

li3
26.00 35.21 45.35 50.53 33.39 66.50 49.40 2.5672 0.0560

D1 �0.06 0.80 1.52 0.70 0.25 �1.25 0 1.5349 0.0402

D2 0.40 �0.50 �0.30 1.05 0.50 0.20 0 0.8250 0.0280

D3 0.70 �0.50 �0.45 1.20 0.35 0.85 0 0.2895 0.0148

Table 2

Adjusting the lengths of fixels for reducing the location error on the mouse

i 1 2 3 4 5 6 7 dp
�� �� y

li3
30.49 42.36 31.76 43.89 59.06 53.27 53.66 2.4712 0.0731

D1 1.50 0.85 1.25 �0.20 0.60 �3.80 0.20 1.1131 0.0598

D2 1.00 0.15 0.40 0 0.85 �3.50 0.70 0.8278 0.0352

D3 0.50 0.30 �0.15 0.60 �0.75 �0.05 0 0.2251 0.0168
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Next, we fixture the mouse following Example 2, case
(a). Fig. 8 shows the marks. The coordinates of c1, c2, c3 in
FO and FB are

cO;1 ¼

32:2508

�1:0287

19:0724

2
664

3
775; cO;2 ¼

54:9862

20:2141

�4:4450

2
664

3
775,

cO;3 ¼

54:7611

�20:9877

�3:7798

2
664

3
775,

cB;1 ¼

27:6888

14:6764

77:3240

2
664

3
775; cB;2 ¼

58:1268

7:3946

53:4178

2
664

3
775,

cB;3 ¼

49:1306

�15:0364

86:6763

2
664

3
775.

Then computed by (18)–(20) the pose of the bottle is

pB;O ¼

�0:1514

�1:0575

57:7716

2
664

3
775,

RB;O ¼

0:9646 0:2093 �0:1602

0:0160 0:5603 0:8282

0:2631 �0:8014 0:5371

2
664

3
775.

After reloading the bottle, we have

c0B;1 ¼

27:6379

14:6381

77:3039

2
664

3
775; c0B;2 ¼

58:1056

7:3551

53:4677

2
664

3
775,
c0B;3 ¼

49:1693

�15:0778

86:7061

2
664

3
775.

p0B;O ¼

�0:2024

�1:0858

57:7516

2
664

3
775,

R0B;O ¼

0:9642 0:2101 �0:1617

0:0172 0:5591 0:8289

0:2645 �0:8020 0:5355

2
664

3
775.

Then by (21) and (22), dp
�� �� ¼ 0:0616 and y ¼ 0.0024.

In addition, we try to decrease the number of fixels to
{3+2+1} or {3+1+2}. Then both bottle and mouse fall
from the fixels while being clamped. This means that six
fixels are insufficient for holding a 3-D object.
When we increase the fixel number to {3+4+1} or

{3+3+2}, only seven fixels contact the object, while the
other separates from the object. This implies that eight
fixels overdetermine the pose of a 3-D object and the idle
one is redundant.

Experiment 2. We need to demonstrate the effectiveness of
the adjusting method. First, the bottle and mouse are
fixtured initially as in Experiment 1. Tables 1 and 2 list the
adjustments together with the variation of dp

�� �� and y. It
can be seen that by adjusting the location errors are greatly
reduced. Figs. 7 and 8 show their final poses.

7. Conclusions

This paper investigates 3-D modular fixtures in a
systematic way. First, by repeated reviewing and improv-
ing, a 3-D modular fixture emerges, particularly aiming to
fixture 3-D complex objects or locate objects in arbitrary
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poses. Then, a mathematical model of the fixture is
established. On this basis, we develop algorithms for
automatically selecting the optimal fixel locations on the
baseplates to precisely locate and firmly clamp the object.
Later, methods for measuring the location error and for
adjusting the fixels to improve the localization accuracy are
presented. Finally, all the work is illustrated by case studies
with experiments.

Although this paper focuses on a typical 3-D modular
fixture, such complete experience of developing this
important tool from principles to practice is a useful
reference for manufacturers.
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Appendix. A distance function of sets

Let S1 and S2 be compact sets with nonempty interiors in

Rl . The distance function of S1 and S2 is defined by

dðS1;S2Þ ¼

min
lB0\ðS1�S2Þa;;lX0

l if S1 \ S2 ¼ ;;

min
lB0	S1�S2;lp0

l if S1 \ S2a;;

8><
>:

where S1 � S2 ¼ x1 � x2 2 Rl
��x1 2 S1; x2 2 S2

	 

and

B0 ¼ u 2 Rl
��uTu ¼ 1

	 

. If S1 \ S2 ¼ ;, then d(S1, S2) is

positive and equal to the distance between the closest
points in S1 and S2. If intS1 \ intS2a; where int( � )
denotes the interior of a set, then d(S1, S2) is negative and
equal to the minimum translation to separate S1 and S2.
Otherwise, d(S1, S2)=0, and S1 just contacts S2 at the
boundaries.

If S1 and S2 are convex, then the distance function can be
rewritten in a unified form as

dðS1;S2Þ ¼ � min
uk k¼1

max
x12S1 ; x22S2

uTðx1 � x2Þ

� �

¼ � min
uk k¼1

max
x12S1

uTx1 � min
x22S2

uTx2Þ

� �
.

For detailed derivation of the above equation, one may
refer to [19]. Furthermore, suppose that û is the vector such

that dðS1;S2Þ ¼ �maxx12S1
ûTx1 þminx22S2

ûTx2. Let Ŝ1

(resp. Ŝ2) be the set of x̂1 2 S1 (resp. x̂2 2 S2) such that

maxx12S1
ûTx1 ¼ ûTx̂1 (resp. minx22S2

ûTx2 ¼ ûTx̂2). If d(S1,

S2) ¼ 0, then S1\S2 equals Ŝ1 \ Ŝ2, and û is the normal at
contact outward to S1 and inward to S2.
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