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Abstract

Friction uncertainty and contact position uncertainty may have a
disastrous effect on the closure properties of grasps. This paper re-
flects our approach to handling these uncertainties in force-closure
analysis. The former uncertainty is measured by the possible re-
duction rate « of friction coefficients, while the radius p of contact
regions is used to quantify the latter uncertainty. The actual con-
tact point may deviate from the desired position but not farther than
p-pS, the supremumof p without loss of force-closure, indicatesthe
grasp toleranceto contact position uncertainty. For investigating the
above uncertainties systematically, we propose three new problems
inforce-closure: whether a grasp with given « and p achievesforce-
closure, what value p5 equalsif « isgiven, and how pS variesversus
«. To facilitate their solutions, we extend the scope of the infinites-
imal motion approach from form-closure analysis to force-closure.
A necessary and sufficient condition for force-closure is deduced by
means of the duality between some convex cones, which play the
key role in solving the problems. Finally, efficient algorithms are
developed and applied to two illustrative examples.
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property (Bicchi 1995). On the other hand, form-closure and
force-closure are dual to each other (Nguyen 1988). If con-
tacts are frictionless, force-closure has the same mathematical
model as form-closure (Lakshminarayana 1978). Thus, in this
paper, form-closure is included in force-closure as a special
(frictionless) case.

1.1. Related Work on the Closure Properties

In this section, let us review previous research on the closure
properties. There are several primary categories.

1.1.1. Required Number of Contacts

The number of contacts necessary for force-closure is a fun-
damental topic, which dates from the 19th century. Reuleaux
(1875), who originally studied form-closure of mechanisms,

indicated that four contacts are necessary to achieve a two-
dimensional (2D) form-closure grasp. Subsequently, Somov
(1900) found that seven contacts are needed in the three-
dimensional (3D) case. Lakshminarayana (1978) reported the
results. Mishra, Schwarz, and Sharir (1987) provided an up-
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1. Introduction

During the past two decades, closure properties, includi
form-closure and force-closure, have been extensively studi@
in robotic grasping. Traditionally, a grasp is said to be form-
closure if the object in any motion collides with the contact
while a grasp is said to be force-closure if the contact forc

can equilibrate any external wrench.

Form-closure is related only to the object geometry a

form-closure grasps on arbitrary objects. Markenscoff, Ni,
and Papadimitriou (1990) proved that four/seven contacts are
sufficient to achieve a form-closure grasp of a 2D/3D object
jthout rotational symmetry, respectively. Also, three/four
ntacts are sufficient for any 2D/3D object with friction. Mur-
ray, Li, and Sastry (1994) summarized the number of contacts

Srequired for various contact models to grasp an object. Bic-

eé@ (1995) generalized the Reuleaux—Somoff condition, i.e.,
m+1 contacts are required to partially form-restrain an object

n\e{ith respect to am-dimensional subspace.

the contact positions. It can be considered as a pure geometric
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1.1.2. Grasping Quality Evaluation

Li and Sastry (1988) presented three quality measures: the
smallest singular value and the volume of the grasp matrix as
well as a task-oriented measure. Trinkle (1992) produced a
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guantitative measure of how far a grasp is from form-closurgrasps. Based on the result by Buss, Hashimoto, and Moore
Buss, Hashimoto, and Moore (1996) transformed the nonlit1996), Han, Trinkle, and Li (2000) further cast the friction
ear friction constraints into positive definiteness constraints @onstraints into linear matrix inequalities and formulated the
a symmetric matrix, whose smallest eigenvalue was taken fasce-closure problem as a convex optimization problem in-
a measure of the grasp stability margin. Zuo and Qian (1998dlving linear matrix inequalities. For grasps with specific
also proposed a quantitative index, which denotes the extentoaintact number and type, the force-closure condition was dis-
a grasp to comply with the friction constraints. In termgbf cussed in more detail (e.g., Nguyen 1986, 1988; Ponce, Stam,
distance, Zhu and Wang (2003) quantified the capability ofand Faverjon 1993; Ponce and Faverjon 1995; Ponce et al.
graspto equilibrate external wrenches. Other quality measurkE397; Liu 2000; Li, Liu, and Cai 2003).

have been made by Abel, Holzmann, and McCarthy (1985), The first school’s conditions require that the convex hull
Barber et al. (1987), Ferrari and Canny (1992), Park and Stanfrthe primitive contact wrenches be six-dimensional and the
(1992), Bekey et al. (1993), Mirtich and Canny (1994), Varmarigin of the wrench space be in its relative interior. The ex-
and Tasch (1995), and Zhang et al. (1997). Some quality mastence of strictly internal forces is a necessary and sufficient
sures can be applied to planning optimal grasps (e.g., Ferradndition for the origin being a relative interior point of the

and Canny 1992; Zhu and Wang 2003). convex hull. On this basis, if the grasp matrix is surjective, the
convex hullis six-dimensional and the origin lies inits interior.
1.1.3. Force-closure Conditions and Tests In addition, the surjection of the grasp matrix is a necessary
There have been many conditions and testing methods fépndition for the convex hull being six-dimensional. Hence,
force-closure. We classify them into two schools. the conditions of the two schools are equivalent. For friction-

The first school investigates force-closure in the wrendigss grasps, they are of the same mathematical model (e.g.,
space. It began with the condition that the primitive contadtfinkle 1992; Murray, Li, and Sastry 1994).
wrenches positively span the entire wrench space (Salisbury
and Roth 19_83). This condition is equiva_lent Fo t_he situatioq 1 4. Force-closure Grasp Planning
that the origin of the wrench space is strictly inside the con-
vex hull of the primitive contact wrenches (Mishra, SchwarZn the beginning, the grasp planning focused on the grasps
and Sharir 1987). Without linearization of the friction conewhose contact number and type are determined. Nguyen
Li and Sastry (1988) asserted that a grasp is force-closureg(1986, 1988) computed independent regions for two fric-
and only if the origin of the wrench space is an interior pointional and for four frictionless contacts to achieve force-
of the image of the grasp matrix with respect to the force dglosure grasps on polygons. Markenscoff and Papadimitriou
main. These statements imply that a grasp is force-closurg(1989) proposed an analytic method for calculating the opti-
and only if it can generate resultant wrenches to constitueaum grip of polygonal objects. Park and Starr (1992) syn-
a convex hull containing the origin of the wrench space dbesized three-fingered grasps on polygonal objects. Chen
an interior point. Nakamura, Nagai, and Yoshikawa (1983nd Burdick (1993b) considered two-fingered antipodal point
adopted six linearly independent resultant wrenches and thghasps of irregular 2D and 3D objects. Ponce and his col-
opposites as vertices of such a convex hull. In fact, only sevégagues (1993, 1995, 1997) extended Nguyen’s idea to two-
resultant wrenches are enough as long as their convex hiiiger, three-finger and four-finger force-closure grasps on 2D
is an origin-centered simplex in the wrench space. Based ourved, polygonal, and polyhedral objects, respectively. Tung
these conditions, several algorithms for the force-closure tetd Kak (1996) brought forward an algorithm for synthesiz-
have been developed. Chen and Burdick (1993a) put forwaift two-fingered force-closure grasps on polygons.
a qualitative force-closure test for 2Bfinger grasps. To de-  Inrecent years, planning algorithms have been oriented to
termine if the origin lies strictly inside the convex hull, Liugrasps with arbitrary contact number. Liu (2000) presented an
(1999) proposed a ray-shooting based algorithm, while Zralgorithm for computing:-finger grasps on polygons. Ding,
and Wang (2003) presented an algorithm by computinghe Liu, and Wang (2001) considered 3Bfinger force-closure
distance between the origin and the convex hull. grasps wherg fingers have been located in advance. With the

The second school studies force-closure in the conta@y-shooting based algorithm (Liu 1999), Ding et al. (2001)
force space, and it is led by the condition that the graggeveloped an algorithm for automatic selection of fixturing
matrix is surjective and that there is a strictly internal forceurfaces and points on polyhedral workpieces. By minimizing
(Murray, Li, and Sastry 1994). Various forms of this conthe Q distance, Zhu and Wang (2003) presented an algorithm
dition have appeared in the literature (Bicchi 1995; Cherigr optimal grasp planning on 3D objects with curved surfaces.
Walker, and Cheatham 1995; Buss, Hashimoto, and Moore
1996;.Yoshikavv.a 1996; Zuo and Qiap 1998; Han, Trinklel_z_ Summary of Our Work
and Li 2000). Bicchi (1995) and Yoshikawa (1996) took the
kinematics of the grasping mechanism into account. Zuereviously, only a few papers have paid attention to the uncer-
and Qian (1998) extended the condition to soft multifingereiinties in robotic grasping. Nakamura, Nagai, and Yoshikawa
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(1989) mentioned friction uncertainty. Pai and Leu (1991)
have computed the end-effector uncertainty resulting from the
robot and have shown that the total uncertainty is the Minkow-
shi difference of the end-effector uncertainty and the task po-
sition uncertainty. Cheah et al. (1998) considered a grasping
control for multifingered robot hands with uncertain Jaco-
bian matrices. Schlegl and Buss (1998) compensated contact
point position errors by the internal impedance. Up to now, no
one has regarded the influence of uncertainties on the closure
properties. In practice, however, some amount of uncertainty
is inevitable and may cause a destructive effect.

This paper copes with grasping uncertainties in force-
closure analysis. Force-closure is mainly threatened by fric-
tion uncertai_nty and_ cqntact position_uncertainty. The formeffig_ 1. An object grasped by a multifingered hand.
only occurs in the frictional case, while the latter usually oc-
curs. We quantify these as the possible reduction xaté
friction coefficients and the radiys of contact regions, re-
spectively. The actual contact point may fall in the region
of the object surface contained in a closed ball of ragius In Section 6 we implement the algorithms with two illustra-
centered at the desired contact pojnt, the supremum of  tive examples. A conclusion is made in Section 7 to highlight
without loss of force-closure, indicates the grasp tolerance tae key points. For use in Section 4, a method for computing
contact position uncertainty. Whether a grasp with givand ~ the polar set of a compact convex set containing the origin as
p achieves force-closure, what valpé equals ifi is given, —an interior point is addressed briefly in the Appendix.
and howp’ varies versux are three new problems we are
solving in this_ paper. Moreover, becaus_e the_z existing meth- praliminaries
ods are unsuitable for the problems (this will be discussed

at the beginning of Section 4), we deal with force-closur€onsider an object grasped by a multifingered robot hand,
analysis using an infinitesimal motion approach, which wags shown in Figure 1. Suppose that the grasp consists of
originally applied to form-closure only (Bicchi 1995; Qian,frictionless point contacts (FPCs), point contacts with fric-

Qiao, and Tso 2001). A necessary and sufficient condition fglon (PCwFs), ands, soft finger contacts (SFCs). The total
force-closure is deduced from the duality between four coprymber of contacts is

vex cones (see Figures 5 and 6), which are closely related

to the closure properties. Compared with the work of Bicchi m=mqy+my+ms.

(1995) on form-closure, our work covers not only friction-_ )

less point contact but also point contact with friction and soffi9ure 2 depicts the three common contact types.
finger contact. Thus, the result is general. Different from the ' N€ total contact force exerted upon the grasped object by
methods of Salisbury and Roth (1983), Liu (1999), and zh{!® contacts can be written as

and Wang (2003), ours does not linearize the friction cone. _[fT T 7 q

Until now, the linearization could not be applied to soft fin- f=life o £l €R @)
ger contact. Simpler than the approaches taken by Murrayhereq = m,+3m, +4m, andf; € R¢ is the contact force
Li, and Sastry (1994), Chen, Walker, and Cheatham (199% contact (i = 1,2, ... , m). For the three contact typeg,
Zuo and Qian (1998), Buss, Hashimoto, and Moore (1996andg; are listed as follows:

and Han, Trinkle, and Li (2000), our force-closure test need

not compute the rank and the null space of the grasp matrix. FPC:fi =1[ful. ¢ =1

Finally, efficient algorithms are developed and demonstrated _ .

with two numerical examples. PCWFf; = fu fio ful'.q:=3
The rest of this paper is arranged as follows. In Section 2 we SFC:fi = [fo fuo fu fiull.qi=4

review basic knowledge about robotic grasping. In Section 3

we discuss the uncertainties in force-closure analysis and th@iiere £, is the normal forcef;,, and f,, are two tangential
quantification. Subsequently, new problems in force-closufgrce components, ang, is the spinmoment about the contact
are presented. In Section 4 we apply an infinitesimal motigformal.

approach to force-closure analysis and then propose a necesThe resultant wrench on the object can be calculated by
sary and sufficient condition for force-closure. In Section 5,

algorithms for solving the presented problems are developed. w=Gf (2)
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Fig. 2. Three common contact types: (a) frictionless point contact, at which the fingertip can exert only a normal force, (b)
point contact with friction, at which the force exerted by the fingertip can be resolved into a normal force and two tangential
force components, and (c) soft finger contact, at which the force exerted by the fingertip can be resolved into a normal force,
two tangential force components and a spin moment about the contact normal.
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where w < RS is the resultant wrench ands = satisfies egs. (6), (7), (8), or (9). Furthermore, a total contact
[G. G, --- G,] € R¥ is the grasp matrixG; € R®% has force f is said to be feasible if every; is feasible.

one of the following forms determined by its contact type DEFINITION 2. A resultant wrenchy is said to be feasible if

FPC: G, = | r)z(,-n ] 3) there is a feasibl¢ such thatw = Gf.
! ! DEFINITION 3. A graspG is said to be force-closure if for
Y 0. ‘ anyw,.,,, there exists a feasibte such thatw = —w.,,.
PCwF: G, = ' ' ! } 4)

| riXn; riXo; r;xt,
_ 3. Grasping Uncertaintiesand New Problems

SFC: G, =| "™ o P (5)

"SR rxnm; rixo; rXton, A key influence on force-closure is the presence of grasping

. » ) uncertainties, which are inevitable in practice and can lead to
where.r,-_z [xi y: z:]" is the position vector of contattn; IS unpredictable, probably undesirable, results. So far, however,
the unitinward normal at contagtando; andt; are two unit 4 gne has mentioned the influence, although a few papers
tangent vectors satisfying = o; x ¢;. For SFC, the fingertip nhaye referred to grasping uncertainties (Nakamura, Nagai, and
contacts the object on a small area, generally elliptic,rand yoghikawa 1989; Pai and Leu 1991; Cheah et al. 1998; Schieg!
means the position vector of the area center. ~and Buss 1998). Most publications assume that all given data

From now on, we represent a grasp by its grasp matrix. ynder discussion are certain. For secure application of a force-
Letw,,, denote the external wrench. For equilibrium,  ¢josyre grasp, itis necessary to figure out the capability of the
w=—w,,. grasp to tolerate grasping uncertainties. In this section, we

first elaborate the uncertainties that threaten the force-closure

To avoid separation and slippage at contgcmust satisfy property. Then we raise some new force-closure problems
the following contact constraints regarding the uncertainties.

FPC: f,, >0 (6) S _
3.1. Uncertaintiesin Force-closure Analysis
PCWF: fi, > 0, v f5 4 fZ < wi fin (7)  The force-closure property of grasps depends on the contact
. . types and positions. For PCwF and SFC, friction coefficients
SFCI: £, >0, VJio + Jii n 1 fis| < fo (8 are uncertain. For any contact, contact position uncertainty al-

M Msi ways exists. Both uncertainties have a stochastic nature. Fig-
. . ure 3 shows how they influence force-closure.
io + i s
SFCe: f;, >0, | ——— = < S 9)
I’Li I’in

3.1.1. Friction Uncertainty

wherey, is the coefficient of tangential friction at contagt Friction, including tangential friction and torsional friction, is

andu,; andu’; are the coefficients of torsional friction for SFC . , . . o
o si L L . —very sensitive to the environment. Under vibration, or with oil
with linear approximation (SFCI) and elliptic approximation

. or water on the contact surface, the coefficients are liable to di-
(SFCe), respectively (Howe, Kao, and Cutkosky 1988). minish. This changes the contact constraints (6)—(9) and thus

DErFINITION 1. A contact forcef; is said to be feasible if it affects the force-closure property, as shown in Figure 3(b).
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(a) (b) (©)

Fig. 3. A planar grasp with two point contacts with friction. (a) The grasp is force-closure, as the line connecting the
contact points lies inside both friction cones. (b) Compared with (a), the grasp is not force-closure any more, owing to the
decline of friction coefficients. The dashed lines depict the original friction cones. (c) Compared with (a), the grasp loses the
force-closure property because of tiny deviations at the contact positions. The dashed curves indicate the original contact
positions.

In order to deal with this uncertainty, we regard eq. (2) are transformed. The deviation may grow to such an
1 1 1 extent that computation of force-closure grasps using exact
Wi = —Hoi, My = —ous My = — Mo (10) contact positions may be completely unreliable in reality, as
k ke k described in Figure 3(c).
as the effective friction coefficients, whesg;, iiq,, anduy, To cope with this uncertainty, we allow the contact position
are the nominal friction coefficients, anrdis the “possible r; to be random on the object surfagé a regionk; bounded
reduction rate”£ > 1). by a closed ball of radiug centered at the desired contact

It is assumed that all the friction coefficients decreasgositionry. The contact regions can be formulated as
with the same rate. There are two reasons for this assump-
tion. First, the friction coefficients depend on the contact sur-R, = {r;, € S| |Ir; —roll <p}, i=12,...,m. (11)
faces (material, roughness, etc.), the substance between them
(clean, dust, moisture, oil, or something else), and the envirolote thatp must be bounded so that all the pointsRpare
ment (vibration, temperature, etc.). The uncertainties of thegggular, because, o;, andt; cannot be determined at singular
factors are often similar at all the contacts. Thus, it seems rgaeints and therG cannot be written as egs. (3)—(5). L@
sonable to assume a unigueEven if the possible reduction denote the desired grasp that makes contact with the object at
rates at different contacts are predicted to be unequal, we nray i = 1,2, ... ,m. Let p° be the supremum ¢ such that
takex to be their maximum value for insurance. Secondly, ithe grasp keeps force-closure.
we take different reduction rates for each friction coefficient,
then the problems would be too complicated owing to t08.2. Problem Statement
many parameters. As a result, the tolerance of a grasp to the ) )
two uncertainties, for instance, cannot be clearly depicted [RROBLEM 1. Suppose that a gragh, a radiusp, nominal
a 2D curve (see Figures 10 and 13). friction coefficientsiuy;, poyi, @andug,;, and a possible reduc-

tion ratex are given. Determine whether the gr&&pis force-

3.1.2. Contact Position Uncertainty closure or not.

Often contacts cannot be located exactly in the desired pogT-f.o'.BLEM 2. Suppose t/hat a gragh, n_omlnal fncpon co-
X o . - . - efficientSig, woyi, andpug,;, and a possible reduction rate
tions and obtaining their actual positions without uncertamtx : P

. . ! . I . are given. Compute®.

is very difficult, even impossible. Contact position uncertainty
can be easily expressed by a position deviation, which occUPrOBLEM 3.  Suppose that a gragh, and nominal friction
initially when the contact is located and further rises under treefficients;, o:, anduy,, are given. Draw the® — «
influence of the environment, such as vibration and shock. Adurve.

ditionally, in the case of rolling contact, the contact points are The above problems are defined progressively. Problem 1
usually changing and uncertain during grasping. The positias natural and fundamental (bathand are constant). Prob-
deviation alters the grasp matrices (3)—(5), so that the feasiliden 2 is to evaluate the grasp tolerance to contact position

resultant wrenches that the grasp can generate accordingitmertainty under a giver (« is constant, whileoS is an
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unknown to be determined). Problem 3 seeks the overall tdtor SFC, different from point contact, the fingertip contacts

erance of a grasp to the two uncertainties bydhe « curve the object on an area. Then the relative movementinvolves not

(bothx andp?’ are variables). only the translation but also the rotation of the object relative
to the fingertip at the contact area, which are characterized by
8; andg, respectively.

4. An Infinitesmal M_Otion Approach to Letd,,, d;,, andd, be the components &f alongn;, o;,
Force-closure Analysis andt;, respectively, and lef,, be the component @f along
n;, ie.,

When trying to solve problems 1-3 with the existing meth-

ods of force-closure analysis, we have encountered somel, =n'8;,, d, =08, d,=1t[8, d,=nlg. (13)

difficulties.
Based on linearization of the friction cone, the method§he relative movement at is consistent with the contact

of the first school (see Section 1.1.3) could not be applied f@nstraint if

SFC until now. Furthermore, th@ distance (Zhu and Wang EPC: £ d. >0

2003) is not so convenient to compute. + Jindin 2
The methods of the second school (see Section 1.1.3) need PCWF: fi.di, + fiodiy + fudy >0

to compute the rank and the null space of the grasp ma-

trix G. This is a tough task involving expensive computa- SFC: fudin + fiodio + fudi + fisdis =2 0

tion cost, since in our problenG is varying in the contact ) . )

regionsR;, i = 1,2,...,m. It is not worth searching;, for all feasible f;. It is worth noting that onlyd;, has an

i = 1,2,...,m for the minimal rank ofG. The computed effect on FPCd,,, d;,, andd;, make sense together at PCwF,

minimal rank is trustless, because a minimization algorithind all these components should be considered for SFC. The

may possibly meet with an ill-conditioned matrix that is sen€Omponents op alongo; and¢; do not have any physical

sitive to the round-off error in computing the rank. Instead€aning for the three contact types (see Figure 4), since they

of the rank ofG, the smallest non-zero singular value can bB2Ve N0 counterparts if. .

used to indicate how closé is to a matrix of lower rank,  F'0mM €gs. (12) and (13), we can formulate a matrix equa-

but the computation cost is increased. In addition, to chedn similar to eq. (2)

the existence of a strictly internal force subjectrtoc R;,

i =1,2,...,m, atwo-level optimization problem will be

used. Thus, especially for multifingered grasps, the computv%ereu e (pT]T € RS, d = [d d] --. dT]T c R

tional complexity is exorbitant. ndd; € R% has one of thé followin1 fOZI‘mS' ! '
The foregoing situation simulates us to explore a nov@dé: € 9 '

d=G"u (14)

way. Inspired by the work of Bicchi (1995) on form-closure, FPC: d, = [d,,]
we analyze the force-closure property from infinitesimal mo- ' "
tions of the grasped object, rather than resultant wrenches or PCwF: d; = [d;, d;, d.]"

contact forces as usual. In order to bridge the gap between
form-closure and force-closure, we investigate the relation-

ship between several convex cones regarding infinitesimal. . . .
. : . ; is called the functional movement, since only it makes sense

motions and their dual cones concerning contact forces. Y - . .

means of their duality we obtain a new force-closure condl determining the consistency of the relative movement.at

. . Y, W . Accordingly,d is called the total functional movement.

tion, which shows superior competence for solving problems

1-3. DErFINITION 4. An infinitesimal motioru is said to be con-

sistent (with the grasp) "« > 0 for all feasiblew.

SFC di = [di,, dl'g dit diS]T'

4.1. Infinitesimal Moation of a Rigid Object DerFINITION 5. A functional movemerd; is said to be con-
sistent (with fingertip) if f'd; > 0 for all feasiblef,. Fur-

Arf1_|r?f|n|fce5|lmal m(l)tl(_)ru € EIESOf adrlgld_o?Je_ct c_ons||sts ofan yhermore, a total functional movemehts said to be consis-
infinitesimal translatios € R* and an infinitesimal rotation ot it every, is consistent.

¢ € R3. This may cause the relative movement of the object
to the fingertip at the contact point/area (see Figure 4).
For FPC and PCwF, the relative movement is just the tran

lation of the object relative to the fingertip at the contact poirttirst, from Definition 1, the set of feasible total contact forces
r;, which can be characterized by can be written as

é._z. Convex Conesin Robotic Grasping

8, =e+o¢xr,. (12) {(fi={feR fiel{f},i=12...,m} (15)
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Fig. 4. Functional movements at three common contact types. Referring to Figure 2, the functional movement is corresponding
to the contact force. At FPQY), only the component,, of §; alongn,; makes sense. At PCwEY), all the three components
of 8, have physical meaning. At SFCY), besides the components&f the componenis, of ¢ alongn; cannot be neglected

either.

where{f,} is defined by

FPC: {fi}=1{f: €R| fi. 20} (16) u}={u eR®| w'u >0forallw e {w}}. (21)
PCwF: {f.} = {fl- eRY £, 20, Vf2+ < Mifm} Equation (21) represents a cone, known as the dual cone of
(17) {w}.
ProrPOSITION3. {u} is a closed convex cone with its vertex
SFCL: {fi} = at the origin ofR®.
. [f2+ 2 |fsl Proof. It is known from convex analysis that the dual cone is
fieRY fu >0, L + T < fu (18) indeed a cone, always convex and closed. O
Fourthly, from Definition 5 and eqgs. (16)—(19), the set of
SFCe: {fi} = consistent total functional movements can be written as
2 2 2 di={deRd e{d},i=12,..., 22
{f{ c R4| f}n 2 0’ 10—'—2 it 1,_32 < ﬁ }' (19) { } { S | € { } l m} ( )
l’l“i I"l’si Where
ProOPOSITIONL. {f;}fori =1,2,...,misaclosed convex {d}={d, eR"| fld, >0forallf, e {f}}. (23)
cone with its vertex at the origin &% . Furthermore{f} is _ _
a closed convex cone with its vertex at the origirRsf Equation (23) meangl;} is the dual cone off}.
Proof. See Li and Sastry (1988). 0 ProposiTIoONd. The following statements are true.
Secondly, from Definition 2 and eq. (15), the set of feasible 1. {d,}fori =1, 2, ..., misaclosed convex cone with its
resultant wrenches has the form vertex at the origin oR%. Furthermore{d} is a closed
convex cone with its vertex at the origin &f .
(w} = {w € R°| w = Gf forsomef < {f}}.  (20) g

PROPOSITIONZ2.
origin of R®,

{w} is a convex cone with its vertex at the

infinitesimal motions can be formulated as

2. {d} is the dual cone off}:

{d)={d eR’| fd>0forall f e {f}}. (24)

Proof. The property can be readily derived from Proposition 1

and eq. (20). O

Proof.

Thirdly, from Definition 4 and eq. (20), the set of consistent 1. See the proof of Proposition 3.



318 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / April 2005

2. We claim the equivalence of egs. (22) and (24). Compared with the Bicchi (1995) form-closure condition,
. - - Theorem 3 involves all three contact types and is a general re-
Eglljnaté%r.] 851))#;9‘1 (2: )'Olfz) rsz'cl:s;(?seeq{. f(.2}2)i, tien sult. Different from the methods by Salisbury and Roth (1983),
L ' v Liu (1999), and Zhu and Wang (2003), it does not employ
1,2,...,m.Thus,f'd = )" fld; > Oforall f € |inearization. Simpler than the methods by Murray, Li, and
Sastry (1994), Chen, Walker, and Cheatham (1995), Zuo and
Qian (1998), Buss, Hashimoto, and Moore (1996), and Han,
Equation (243>eq. (22): ifd does not satisfy eq. (22), Trinkle, and Li (2000), the force-closure test by Theorem 3
then from eq. (23), there is sorde such thatf{d; < need not compute the rank and the null spac&off G is
0 for some f; € {f;}. Thus, for somef = not full row rank, there exists non-zewin the null space
[0--- f7 -~ 0" e {f}, fld = fid, <0.Thisim- of G" such thatG™u = 0 € {d}; hence, the gras( is not
plies, ifd satisfies eq. (24), it will also satisfy eq. (22).force-closure. Moreover, by Theorem 3, we can avoid solving
O problems 1-3 by two-level optimization (see Section 5).

i=1
{f}, which meand satisfies eq. (24).

Frpm thg e_lb_ove_, a necessary and suffi(_:ient condition fgﬂr4. Explicit Expression of {d;}

consistent infinitesimal motions can be derived below.

Although{d;} is given by eg. (23) implicitly, we need to work

out its explicit expression for applying Theorem 3 to problems

Proof. Sufficiency: if there existg € R®suchthaG™u € {d}, 1-3.

then fromeq. (24)f"G™u > Ofor all f € {f}. According to The explicit expression dfd;} is deduced in terms of the

eq. (20), this is equivalent ™u > 0 for allw € {w}. Thus duality betweerid;} and{f}, as indicated by eq. (23). Since

u € {u} from eq. (21). {f:} is a cone according to Proposition 1, it can be rewritten
Necessity: ifu e {u}, then from eq. (21)w's > 0 for in the equivalent form:

all w € {w}, which impliesfTG™u > 0 for all f € {f} by

PROPOSITIONS. u < {u}if and only if GTu € {d}.

eq. (20). HenceG "u € {d} from eq. (24). O {fy={fi=ful1x/1" eR"| f,, > 0andx; € {xi}(}zs)
4.3. Force-Closure Conditions where{x; } takes one of the following forms obtained by com-

bining eqgs. (16)—(19) and (25), respectively.
From Definition 3 and eg. (20), we have Theorem 1 directly.
FPC:{x;} is a compact convex set & that

THEOREM 1. A grasp is force-closure if and only {iv} = contains the origin as an interior point  (26)

R®.
THEOREMZ2. A grasp is force-closure if and onlyfié} con- PCWF: {x;} = 1 x; € R?| 3 x2 +x%, < 1} (27)
sists only of the origiO®f R®. wi Vo '

- _ _ .
Proof. Sufficiency: when{u} = {0 € R®}, the dual cone of SFCI (x,) = | x, € B?

1 p 2 1
— /Xt X+ — |x,«,3| <1
Iui I’Lx[

of {w} equalsR®. Hence {w} = R®, which ensures that the
] (29)
6 _ 6
{0 € R®} when{w} = R°. U Wherex, s, x5, andx; s are components of..

{u} isR®. Since{u} is the dual cone ofw} and{w} is convex,
grasp is force-closure by Theorem 1.

Necessity: from Theorem 1, the grasp being force-closure SFCe: {x;} =

Theorem 2 means that a force-closure grasp can prevent FEE\/IARK 1. For PCwF, SFCI, and SFCE;} is a compact
object from moving. This is in accordance with our intuition ey set that contains the origin as an interior point. For

the dual cone ofu} is the closure ofw}. Then the closure (28)
means{w} = R®. Since{u} is the dual cone ofw}, {#} =
THEOREM 3 A grasp iS force_c|osure |f and 0n|y |f there Uniﬁca.tion, we assume thetl} fOI’ FPC iS aISO SUCh a set.

does not exist non-zeww € R® such thaG'u € {d}. LEMMA 1. {d.} can be rewritten in the equivalent form
Proof. Sufficiency: if there is not non-zewo ¢ R® such that T ;

dl' == d,‘ == dl',, 1 . € Rq‘ d[n 2 0 and i € i
G'u € {d}, then from Proposition Hu} = {0 € R®}. There- .} ={ L1y | Vi € 1y }(}30)

fore the grasp is force-closure from Theorem 2.
Necessity: if there is non-zewn € R® such thatG'u € where{y;} is the polar set ofx;}:
{d}, then from Proposition 54 € {u}. Thus, the grasp is not

force-closure from Theorem 2. O i} ={y eR xy, <lforallx; € {x;}}. (31)
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5. Efficient Algorithms

R¢~!and supposé; satisfies eq. (23). From egs. (23) and (25Based on Theorem 3, we provide the algorithms to solve prob-

it follows that f7d; = f,,(d,, + x[a;) > Oforall f; € {f.}.
Fromf, € {f.} whenf;, > 0andx; = 0, it next follows that
findin = 0forall £, > 0. Thusd,, > 0.

If d;,, = 0, then from egs. (23) and (25),d; = f.x]a; >
O forall f; € {f;}. From f,, > 0 we see that]a; > 0 for
all x; € {x;}. Note that, from eqs. (26)—(29,i8 an interior
point of {x,}. Hencea; = 0, andd; = 0 satisfies eq. (30).

If 4, > 0O, from egs. (23) and (25))d; = f.,d..(1+
x!y) > Oforall f; € {f;} wherey, =a; /d,,. From f,, > 0
it follows thatx]y, > —1 for all x; € {x,}. Since{x,} is
symmetric about the origin;]y;, < 1 for allx; € {x;}; that
is,y; € {y;}. Therefored,; satisfies eq. (30).

Equation (30)>eq. (23): suppose that, = d,[1y/]"
satisfies eq. (30). From eq. (31) and the symmetrixgf it

follows thatx|y, > —1 for allx; € {x,}. From egs. (25) and

(30) it next follows thatf'd; = f,,d.,(x]y; + 1) > O for all
fi € {f:}. Thusd, satisfies eq. (23). |

The Appendix offers an approach to computing the polar
set of a compact convex set containing the origin as an interior
point. Using this approacky; } for egs. (26)—(29) is computed

lems 1-3. Herein, we adopt SFCe, but the presented algo-
rithms can also be applied to SFCI.

ALGORITHM 1. (solving problem 1). The algorithm searches
the contact region®;,i = 1, 2, ... , m for the contact posi-
tions such that the grasp is not force-closure.

Step 1. Let u; = pLO,»/K and u,; = MOA.,-/K fori =
1,2,...,m.

Step 2. Letd = G'u. Setg; fori = 1,2, ..., m as follows:
FPCC, = d,',,

PCWF; = din — M dzzg + dlzt

Seeku* € {u| |ul|=1}andr: € R, i =1,2,...,

m, for which¢ = min ¢ is maximal. This can be
1<i<m

formulated as

Maximize¢ = min ¢;

as follows. 1<i<m
FPC:{y,} is a compact convex set & that subjecttofull =1, r; € Ri, i =1.2.... 7m.40
contains the origin as an interior point (32) (40)
Suppose that the maximal objective value of eq. (49} s
. _ 2 2 2
PCWF: {y;} = { yi € R?| ;y/y2 + % < 1} (33)  which gives the results according to Theorem 3.
[ 5 1. If ¢* < 0,thenG™u ¢ {d} for anyr, € R;,i =
. _ . 3 . 2 2 . ’ i iy
SFCEyi) = 1 s € B y/yli 32 < Lopay )y"-3‘ S 1} 1,2,...,m,andnon-zera € R Thusthe given grasp
(34) G, is force-closure withr andp.
_ 3 > ) P 2. If¢* > 0,thenG™u € {d} forr;,i =1,2,... ,m,and
SFCe:{y;} = | y; € R’| \/M,» ity +ugyis <1 u*. This means the grasgp*, whose contact positions

(39)

wherey; 1, y; 2, andy; ; are components of;.

arerr,i = 1,2,...,m, is a non-force-closure grasp
andu* is a consistent infinitesimal motion. Thus, the
given graspG, is not force-closure witk andp.

Finally, substituting egs. (32)—(35) into eq. (30) respec-

tively yields

FPC:{d;} ={d; e R| d;, > 0} (36)
PCWF: (d;} = {d,. € R wi/d2 +d? < d,.n} 37)

SFCI: (d,) = {d; € RY| /a2 + &2 < o 1di] < diy
(38)

SFCe:(d) = {d; € R'| ViE(&Z + ) + pZdZ < dy .
(39)

Figure 5 depictg f;} and{d;} for various contacts. The re-

lationships betweefx;}, {y;}, {f}, {d:}, {f}, {d}, {w}, and
{u} are summarized in Figure 6.

REMARK 2. ¢* provides a the-less-the-better quality mea-
sure of the grasgr, with respect to the given andp. The
graspG* is the closest to non-force-closurg® (< 0) or the
furthest from force-closure;( > 0) within the contact re-
gions. In addition, whem = 1 andp = 0, the algorithm
degenerates into a force-closure test for the g@gplisre-
garding the uncertainties.

When is fixed, ¢* is continuous and monotonically in-
creasing with respect to on [0, pV], wherep? is the upper
bound ofp such that the points iR, fori = 1,2,... ,m are
all regular.

For a giver, if ¢*(0) < 0 and¢*(pY) > 0, there isp €
[0, pY] such that *(p) = 0. Then the minimunp satisfying
*(p) = 0 is the supremum of the radius we are looking
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i

i

FI?C

(d)

Fig. 5. Graphic representations f;} and{d;}. The former denotes the feasible contact force set, while the latter denotes
the consistent functional movement set dual to the former. Both sets are closed convex cones. (a) Ffr}FP@,(d;}

are half-lines along,. (b) For PcwF{f,} and{d,} are circular cones in the coordinate frafee o,, t;].c; = tan* u; and

B: = tam ;. (c) For SFCI, in the coordinate frame,, e,;, e,;], {f;} is a rhombic cone, wheredd,} is a rectangular
cone. The coordinate of; with respect tce,; is / f2 + f2 or —/ f2 + f2, while that with respect te,; is f;, or — f,,.

o, =tamt w;, o, = tamt u, B, = tamt u;t, B, = tamt u;t. (d) For SFCe{f,;} and{d,} are elliptic conesy,; = tanm™ u/,

andg,; = tarm*u;*.

(31
Podar set
Dual cone
{24}
[Mual cone

[
Dual cone

roposition 3

Fig. 6. Diagram of relationships. The hollow arrow represents that the dual cda¢ isfnot {w} but the closure ofw} if
{w} is not closed.
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for in problem 2. Accordingly, problem 2 is formulated as an
algebraic equation of one variable.

ALGORITHM 2. (solving problem 2). The algorithm com-
putes the supremup? of the radiuso within which the given
graspG, is force-closure.

Step 1. Computez*(0) by Algorithm 1. If ¢*(0) > 0, then
p* = 0 and the algorithm ends; otherwise, go to Step 2.

Step 2. Determine the upper bound of p. Compute *(o¥)
by Algorithm 1. If £*(pY) < 0, p5 = pY and the algo-
rithm ends; otherwise, go to Step 3.

Step 3. Now, £*(0) < 0 andz*(pY) > 0. We use the bisec-
tion method to search for the minimum solution to the
equations*(p) = 0 on[0, pY]. Initialize p, = 0 and
0= pY. Fig. 7. A wedge is grasped by a seven-fingered gripper with

a soft finger contaof’;, two point contacts with frictiorC,

Step 4. p = (pr+p2)/ 2. Computet*(p) by Algorithm 1. andc,, and four frictionless point contact—C-.
If £*(p) < 0, thenp, = p; otherwisep, = p.

Step 5. If p, — p1 < &, (¢, > O is the termination tolerance

onp), thenps = (p, + ,02)/ 2 and the algorithm ends;

otherwise, return to Step 4. seven-fingered robot hand, whose fingertips make a 8EC (
two PCwFs (., C3), and four FPCs(, — C;). The nominal
friction coefficientsu, = 0.2 andu,, = 0.2mm.

REMARK 3. p°% represents the capability of the gra6p ) e
The desired contact positions are as follows:

to overcome contact position uncertainty with respeot.to

In steps 3-5, besides the bisection method, other numerical

methods for solving algebraic equations can also be used.
Notice thatp® is related tac, and obviously® is mono- rs=[25501%", ru=[-5019",

tonically decreasing or > 1. This implies that the grasp

tolerances to the two grasping uncertainties are restricted by I T _ [ ]T

each other. Thus, we require Algorithm 3. ros=[-5250".  res=[015/335] .

rop = [—25 25 15T, roo = [25 25 251—’

ALGORITHM 3.  (solving problem 3). The algorithm plots the For = [O 35/3 15]T )
p35 — k curve to show the relation betweer andk. It is a

straightforward application of Algorithm 2. We begin WithThe contact regions can be formulated as
x« = 1 and compute?® at some intervals.

ril (rz—25% + (ris— 152 < p%, ru = —25},

ra| (rz2 — 252 + (rzs — 257 < p°, ra = 25},

REMARK 4. Thep’s — « curve offers a complete report on
the closure properties of the gra€y and its capability to
tolerate the two grasping uncertaintiespff > 0 atx = 1,
then the gras)@, is force-closure; otherwise’ = 0 and the
graspG, is not force-closure. If I+imp5(/<) = Const > 0,

r3| (rzz — 50)? + (rs — 15)* < p%, ra1 = 25} )

then the gras, is form-closure; otherwise limpS(x) =0
K—>-+00
and the gras, is not form-closure.

Ry
R,
Ry
R4
Rs rs| (rs1+5)% + (rs2 — 25 < p?, rs3 =0},
R

{
{
{
{ral s+ 57+ (rs— 192 < p°, rip = 0},
{
{

6. Numerical Examples ril i =rall < p. r,-2+«/§r,»3:50«/§}

We implement the presented algorithms using the optimiza- fori =6,7.

tion toolbox of MATLAB on Pentium-1V PC. First, using Algorithm 1 withc = 1, we obtain the* — p
ExampLE 1. Figure 7 depicts a wedge with ver-(maximal objective value versus radius) curve, as shown in
tices Vi(25,50v/3,0), Vy(—25,50v/3,0), V5(—250,50), Figure8.Forp =0andp =4,¢* = —6.1697x 102 < 0
V4(25, 0, 50), V5(25,0,0), Vs(—25,0, 0). It is grasped by a and¢* = 5.6618x 1072 > 0, respectively. This means that
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Fig. 8. Thes” — p curve obtained by Algorithm 1 when Fig 9. The trajectory of;.
k = 1. The plus signs indicate the data, ¢*) in running
Algorithm 2.

the graspG, is force-closure, but not force-closure with the
radiusp = 4, since we find a non-force-closure grasp withir
the contact regions as

ol
-,

r; = [—25.0000 242974 110627",
r; = [25.0000 285222 23158(",

[
&

r; = [25.0000 507033 189377",

i

r; = [—1.0000 Q0 150003",

Bupremum p* of the Radius

ri = [—1.0000 250002 Q0] ",

ri = [—2.5999 259808 350000, L5 10 15 20 25 34 35 4
r; = [—4.0000 606219 :|.4999qT . Possible Reduction Rate

u* = [9.9138 06496 10336 Q0 — 0.4674 Q0834" x Fig. 10. Thep® — « curve forG, obtained by Algorithm 3.
107! is a direction of consistent infinitesimal motions of the
wedge at the moment. The required CPU time for running
Algorithm 1 once is 1.02 s.
In Figure 8, the;* — p curve seems to consist of two line
segments with a slope change aropnd 2.5. Thisis because
ri with respect top traces a line turning suddenly aroun
p = 2.5, as shown in Figure 9 which takesas an example.
Next, takingoV = 4 ands, = 10~*, we apply Algorithm 2
to computingp’ of G, with respect tac = 1. The data in
each loop are listed in Table 1, afd, ¢*) is marked by plus
signs in Figure 8. The algorithm terminatespat= 2.4999
andp, = 2.5000. In the endp® = 2.5000, for whicht* = ExAmPLE 2. Figure 11 represents an L-shaped pipe grasped
—0.0002x 1072. The required CPU time is 13.84 s. by a three-fingered robot hand. All the contadts € C;) are
Finally, Figure 10 shows thg® — « curve obtained by PCwFs where the nominal friction coefficiem§ = 0.4. The
Algorithm 3. As clearly reflected in Figure 105 is mono- pipe can be expressed piecewise by

dtonically decreasing om > 1. Sincep® = 25000 > 0
atx = 1, the graspG, is force-closure. A% increasesp?
approaches a positive number. Using Algorithm 1, we have
|pS(k) — 1.3179 < 107* for ¥ > 10*. This means tha is
not only force-closure but also form-closure; hence friction
uncertainty can be entirely overcome.
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Table 1. Data During the Iteration by Bisection in Running Algorithm 2 for Example 1

Loop P P2 p = (p1+p2)/2 ¢*(107%)
1 0 4 2.0000 —-1.1853
2 2.0000 4 3.0000 1.8513
3 2.0000 3.0000 2.5000 0.0000
4 2.0000 2.5000 2.2500 -0.5891
5 2.2500 2.5000 2.3750 —0.2936
6 2.3750 2.5000 2.4375 —-0.1466
7 2.4375 2.5000 2.4688 -0.0776
8 2.4688 2.5000 2.4844 —-0.0387
9 2.8444 2.5000 2.4922 -0.0184
10 2.4922 2.5000 2.4961 —0.0092
11 2.4961 2.5000 2.4980 —0.0049
12 2.4980 2.5000 2.4990 —-0.0024
13 2.4990 2.5000 2.4995 -0.0012
14 2.4995 2.5000 2.4998 —0.0006
15 2.4998 2.5000 2.4999 —0.0003

ri1 = 10 cosp, 0< ¢ <21

Sii{rz=¢ 0< ¢ <40

riz3 = 10 s|n¢1 + 40,

ry = 10 sing, 0< ¢ <21
Sy: { oy = (10cosp, +40)cosp, m/2< . <7
Foz3 = (10 COsz =+ 40) Sin(pz

V31=10COS¢3 0<¢3<27T
Sg: I3p = 10 Sin¢3 —40 -50 < ©3 < 0
T3z = ¢3

The desired contact positions are

¢01 = 7T/2, Yo1 = 30, ror — [00 300 50.0]T 5
¢02 =T, Qo2 = 37'[/4, roo = [00 —212132 21213aT 5

Gos=—7/2, @oz=—40, rez=[0.0 —50.0 —400]".
The contact regions are formulated as
Ri={r,eS| llri—roull <p} fori=123

Running Algorithm 1 withk = 1 andp = 0 yields¢* =
—1.4525x 10! < 0, which means the grad@, is force-
closure. Usingp = 3 and running Algorithm 1 again, we get
* = 1.4032x 10! > 0; thusG, is not force-closure with
the radius = 3. A non-force-closure grasp is found with the
CPU time of 1.52 s:

Sy

(]
ot

.

Fig. 11. An L-shaped pipe is grasped by a three-fingered
gripper with point contacts with frictiod’;, C,, andCs.

¢; = 18675 ¢ =305122

ri =[—2.9235 305122 495637 ;
¢; =2.8405 ¢} =2.3573

r; =[2.9659 — 215549 215079 ;
¢; = —1.8656 ¢} = —40.6085

r; =[—2.9058 — 49,5685 — 40.6085" .
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=~ |5 : . : x 7. Conclusions

| The existing literature on the closure properties has been
summarized and classified distinctively. Although it is so ex-
tensive, no one has studied friction uncertainty and contact
position uncertainty, which are the main dangers to force-
closure. This paper seeks to fill this void. The former uncer-
tainty is quantified by the possible reduction ratef friction
coefficients, while the latter is measured by the ragiusf
contact regions. The force-closure test with giweand p,
the supremunp’ of p without loss of force-closure, and the
't p% — i curve are three emergent problems in this respect. The
first problem is solved by searching for a non-zero consistent
1.5 - = - - infinitesimal motion using nonlinear programming technique
o s ' ! ’ ' (Algorithm 1). The second problem is transformed to an alge-
Rads p braic equation of one variable, to which the bisection method
Fig. 12. Thec* — p curve obtained by Algorithm 1 when is appliec_i (Algo_rithm 2). Using_ the two algorithms, the last
« = 1. The plus signs indicate the data, €*) in running problem is readily settled and its re;ul_t evaluate_s the overall
Algorithm 2. tolerance of a grasp to both uncertainties (Algorithm 3).

In order to solve the above problems efficiently, we gen-
eralize the infinitesimal motion approach from form-closure
to force-closure analysis. This approach covers the three con-
tact types, does not use linearization, and does not need to

2 ; : ' compute the rank and the null space of the grasp matrix. In
: the force-closure analysis, the sets of feasible contact forces,
feasible resultant wrenches, consistent infinitesimal motions,
and consistent functional movements are formulated. They
are convex cones and are discussed systemically. In virtue of
the duality between them (Figures 5 and 6), we prove that a
grasp is force-closure if and only if any non-zero infinitesimal
motion is inconsistent. Furthermore, an approach to comput-
ing the polar set of a compact convex set containing the origin
as an interior point is addressed with application to comput-
ing the set of consistent functional movements. On this basis,
looking for a non-zero consistent infinitesimal motion is for-
mulated as a nonlinear programming problem.

Maximal (Ohjective Value £ ( =1
I

5]

ol the Boadius

Supremum -

Possible Reduction Rate x Appendix: Computing the Polar Set of a

Fig. 13. Thep’ — « curve forG, obtained by Algorithm 3. Co_m_paCt Convex Set antaining the
Origin asan Interior Point

The set{x;} is a compact convex set containing the origin as
an interior point. The sdly;} defined by (31) is the polar set

u* = [9.9371 — 05496 — 0.4416 Q0267 — 0.5870 of {x;}. The computation ofy;} is preceded by the following

—0.6413" x 10! is a direction of consistent infinitesimal lemmas.
motions of the pipe. Figure 12 describes fte— p curve LEMMA 2. {y;}is a hon-empty compact convex set contain-
with respect toc = 1 and the valuesgp, ¢*) in each loop ing the origin as an interior point.

! S ™ 4 .
of Algorithm 2 usingp” = 3 ande, = 10", As displayed Proof. It follows from that{x;} is a non-empty compact con-

in Table 2, Algorithm 2 terminates @k = 1.8879 ando, = | " ' contains the origin as an interior point (see Lay
S ich— 1
1.8880. Thenp® = 1.8880, for which—0.0001x 10+ < 1982, p. 142). O

¢* < 0. The required CPU time is 24.81 s. Figure 13 shows
the result of Algorithm 3. A% increases to 13’ decreases ~ Lemma 2 allows us to find the boundary{gf}, and then
to 0; hence the grasfi, is not form-closure. {y;} is the convex hull of its boundary. Lét! {x;} andbd {y,;}
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Table 2. Data During the Iteration by Bisection in Running Algorithm 2 for Example 2

Loop 1 p = (p1+ p2)/2 £*(10h)

1 0 1.5000 —0.4673

2 1.5000 3 2.2500 0.4778

3 1.5000 2.2500 1.8750 -0.0214
4 1.8750 2.2500 2.0625 0.2344
5 1.8750 2.0625 1.9688 0.1096
6 1.8750 1.9688 1.9219 0.0463
7 1.8750 1.9219 1.8984 0.0144
8 1.8750 1.8984 1.8867 —0.0020
9 1.8867 1.8984 1.8926 0.0063
10 1.8867 1.8926 1.8896 0.0023
11 1.8867 1.8896 1.8882 0.0003
12 1.8867 1.8882 1.8875 —0.0008
13 1.8875 1.8882 1.8878 —0.0003
14 1.8878 1.8882 1.8880 0.0001
15 1.8878 1.8880 1.8879 -0.0001

denote the boundaries ¢f;} and{y,}, respectively. To de-

terminebd {y,}, we introduce the support functignof {x,},
which is the real-valued function defined by

p(z) = supx)z

xi€fx;}

for all z for which the supremum is finite.

LEMMA 3.

following hold (see Lay 1982, p. 206):

1.
2.
3.

LEMMA 4.

x]z < p(z)forallx; € {x;};
There exists a point,; € bd {x;} suchthap(z) = x,z;

The hyperplané?, = {x;| x[z = p(z)} supportsix;}
atx,;;

The function is positively homogeneoug(iz) =
Ap(z) for A > O;

p@@) > 0.

following hold:

1.
2.

p(@) 7'z € bd {y};
p(Az)~*Az = p(z)~‘zfor A > 0.

Proof.

1.

From Lemma 3, points (1) and (R p(z) ™z < 1
for all x; € {x;}. Then from eq. (3L)p(z) "z € {y;}.
Suppose that there is a closed bk, p(z)~'z) with

If z is any fixed point other than the origin, the

centerp(z)~'z and radius- > 0. Lety = p(z)~'z +
rz/|iz|l. Obviously,y € S(r, p(z)"*z). However, from
Lemma 3, points (2) and (5%l.y = x|.p(z)~'z +
rxjz = 1+ rp@)/llzll > 1, which meany ¢ {y}.
Hencep(z)'z € bd {y;}.

2. If A > 0, then from Lemma 3, point (4), we readily
havep(iz) ™Az = A p(z)*rz = p(2)'z.

If z is any fixed point other than the origin, the

O

Lemma 4, point (2), implies thai(z) 'z is decided only
by the direction ofz. Then, from Lemma 4, point (1), the
boundary of{y;} can be expressed by

bd {y;} = {yi =p@) 'z px) = supx]z, |zl = 1}.

xi€fx;}

From Lemma 3, points (2) and (3)d {y;} can be rewritten
as

bd{y;} = {y: = (x},2)7'z| x,; € bd {x;}, z € {z},,}

where{z},; consists of the unit outward normal vectors of all
hyperplanes supporting;} atx,,;.
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