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a b s t r a c t

The capability to equilibrate external wrenches is crucial in optimal grasp planning. This paper presents
a new method for evaluating this capability when the external wrench is unknown. Two criteria are
reformulated using the L2 distance function, and further transformed into two nonlinear optimization
problems. The differentiability of the objective functions and choice of initial conditions for global
optimization are discussed. Keeping all the merits, that the criteria are applicable to grasps of 3-D objects
with any contact types, and that the friction cones are not linearized, this work endows them with
several new virtues: (a) Their formulation and computation are unified for both force-closure and non-
force-closure grasps; (b) They are independent of the choice of coordinate frame and unit; (c) The object
geometry is taken into account; (d) The computational efficiency is even higher than some methods by
linearizing the friction cones.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The capability of a grasp to equilibrate external wrenches on
the grasped object is the key index for choosing a good grasp.
During the past two decades, various evaluation methods were
proposed [1–15]. Until now, the criteria can be generally described
as the scale factor of a required wrench set such that the scaled set
just fits within a grasp wrench set.
The grasp wrench set consists of the resultant wrenches that

can be generated by the grasp with limited contact forces. Each
contact force is bounded by its friction cone. The overall contact
forces are limited by limiting the sum or the maximum of their
normal components. Accordingly, by linearizing friction cones, the
grasp wrench set is given by the convex hull of the primitive
contact wrenches, or of their Minkowski sums [1,2]. Therefore, for
any required wrench set, there are two scale factors with respect
to the two grasp wrench sets.
Selections of required wrench sets are various. In the absence

of any task information, Kirkpatrick et al. [1], and Ferrari and
Canny [2] selected the 6-D unit ball centered at the origin. In this
case, Miller and Allen [3] used the ‘‘Qhull’’ program to compute
the former scale factor. Borst et al. [4] put forward an incremental
algorithm for computing both. Xiong et al. [5] calculated the latter
one using nonlinear programming technique. Zhu and Wang [6]
substituted a polytope for the ball and computed the former
factor by solving linear programming problems. Liu et al. [7]

∗ Corresponding author. Tel.: +86 21 54520419.
E-mail address: yuzheng001@gmail.com (Y. Zheng).

expressed two scale factors as min–max and max–min problems.
Zheng and Qian [8] clarified their difference. As the force and
moment components of a wrench have different units and the
latter depends on the chosen coordinate frame and length unit,
changing either frame or unit will alter the grasp wrench sets but
have no effect on the unit ball. As a result, the scale factors vary
with the change. One popular remedy is replacing the ball by a set
with the same variances as the grasp wrench sets [9–13]. Li and
Sastry [9] suggested a task-oriented ellipsoid. Pollard [10] offered
an object wrench set comprising the external wrenches that are
yielded by acting pure forces on the object surface. Combining
the ideas of [9,10], Borst et al. [11] adopted an ellipsoid enclosing
an object wrench set. Strandberg and Wahlberg [12] generalized
the idea of [10] to 3-D objects with frictional point contacts and
added an offset wrench to denote some other kinds of external
wrenches. Watanabe and Yoshikawa [13] utilized a convex
polyhedral required wrench set for facilitating the computation.
Other remedies include dividing the moment component by a
length, to eliminate the unit dependence [2,10], treating the
force and moment components separately to avoid the ambiguity
between them [14], and considering the change of coordinate
frame and length unit in establishing the wrench set, so as to
compute the largest scale factors over all possible changes [15].
The above work remarkably enhanced the grasp quality

evaluation. Each method has its virtues and weakness, as listed in
Table 1. Some methods cannot apply to non-force-closure grasps,
or treat them differently from force-closure grasps [1–7,9–15].
The method [8] formulates the two cases as a single optimization
problem, but it has other weaknesses. Users often find difficulty
in selecting among these methods. In view of the situation, this
paper seeks a method with all the virtues for computing the
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Table 1
Comparing different methods of grasp quality evaluation.

Reference Knowledge of external
wrenches

Non-force-closure case Dependent on frame
or unit

Contact
types

Linearizing the friction
cone

Considering the object
geometry

[1] Not required N.A. Both FPC / No
[2] Not required N.A. Frame FPC, PCwF Yes No
[3] Not required Separate treatment Frame FPC, PCwF Yes No
[4] Not required N.A. Both FPC, PCwF Yes No
[5] Not required N.A. Both FPC, PCwF No No
[6] Not required Separate treatment Both FPC, PCwF Yes No
[7] Not required N.A. Both FPC, PCwF,

SFC
No No

[8] Not required Unified treatment Both FPC, PCwF Yes No
[9] Required N.A. No FPC, PCwF,

SFC
No No

[10] Required N.A. No FPC / Yes
[11] Required N.A. No FPC, PCwF No Yes
[12] Required N.A. No FPC, PCwF Yes Yes
[13] Required N.A. No FPC, PCwF No No
[14] Not required N.A. Frame FPC, PCwF No No
[15] Not required N.A. No FPC, PCwF Yes No
This work Not required Unified treatment No FPC, PCwF,

SFC
No Yes

FPC, PCwF, and SFC denote frictionless point contact, point contact with friction, and soft finger contact, respectively.

two scale factors. Different from [9–13], we consider the case
that the external wrench is entirely unknown, and still take the
required wrench set to be the unit ball to equally consider all
forms of external wrench in all directions. An improvement over
our previous work [8], the grasp wrench sets are formulated for
all the three contact types without linearizing friction cones. The
moment origin is set at the centroid of contact positions so that the
graspwrench sets are frame independent. Rather than dividing the
moment components [2,10], the force components are multiplied
by the average distance from contact positions to their centroid
so that the grasp wrench sets have the same scales in all wrench
directions. Furthermore, by doing this, the scale factors of the
unit ball in the grasp wrench sets are directly proportional to the
average distance, so that a good grasp should have wide-spread
contact positions. Finally, either scale factor is cast into a nonlinear
optimization problem. The objective function is differentiable
almost everywhere and its derivative is calculated in closed form.
As the optimization problem may have local optima, the choice of
initial conditions for attaining the global optimum is addressed.
Unlike those linearization-based methods for computing the two
scale factors [3,6,8,15], this method needs neither to calculate
the primitive contact wrenches and their Minkowski sums, nor
to determine every facet of a grasp wrench set. Thus it is more
efficient, especially when the grasp wrench set is taken to be the
Minkowski sum of the primitive contact wrenches and has many
vertices [15].

2. Preliminaries

In this section,we introduce the statics involved in grasp quality
evaluation and a distance function, which will be used later to
formulate the grasp quality criteria.

2.1. Basic knowledge about multi-fingered grasping

Consider an object grasped by anm-fingered robot hand, which
makesm0 frictionless point contacts (FPCs),mf point contacts with
friction (PCwFs), andms soft finger contacts (SFCs) with the object
surface. Thus m = m0 + mf + ms. Let ri be the position vector
of contact i (i = 1, 2, . . . ,m), ni the unit inward normal, and
oi and ti two unit tangent vectors satisfying ni = oi × ti, all of
which are described in the coordinate frame attached to the object.

The contact force fi can be expressed in the local coordinate frame
{ni, oi, ti} by
FPC: fi = [fi1]
PCwF: fi = [ fi1 fi2 fi3]T

SFC: fi = [ fi1 fi2 fi3 fi4]T,
where fi1 is the normal force; fi2 and fi3 are two tangential force
components along oi and ti, respectively; fi4 is the spin moment
about the contact normal. To avoid separation and slip at contact,
fi must satisfy one of the following contact constraints:
FPC: Fi = {fi ∈ R | fi1 ≥ 0} (1)

PCwF: Fi =
{
fi ∈ R3 | fi1 ≥ 0,

√
f 2i2 + f

2
i3 ≤ µifi1

}
(2)

SFCl: Fi =

fi ∈ R4 | fi1 ≥ 0,

√
f 2i2 + f

2
i3

µi
+
|fi4|
µsi
≤ fi1

 (3)

SFCe: Fi =

{
fi ∈ R4 | fi1 ≥ 0,

√
f 2i2 + f

2
i3

µ2i
+
f 2i4
µ′si
2 ≤ fi1

}
, (4)

whereµi is the coefficient of tangential friction at contact i, andµsi
and µ′si are the coefficients of torsional friction for SFC with linear
(SFCl) and elliptic (SFCe) models [16], respectively. For PCwF, Fi is
a convex cone of R3 known as the Coulomb friction cone. For FPC
and SFC, Fi are convex cones ofR1 andR4, whichwe call the friction
cones likewise.
The image Gi(Fi) of Fi under the mapping Gi into the wrench

space R6 is a convex cone, which comprises all the feasible
wrenches from contact i, where

FPC: Gi =
[

ni
ri × ni

]
(5)

PCwF: Gi =
[

ni oi ti
ri × ni ri × oi ri × ti

]
(6)

SFC: Gi =
[

ni oi ti 0
ri × ni ri × oi ri × ti ni

]
. (7)

Then the Minkowski sum
∑m
i=1 Gi(Fi) = G(F) is a convex cone

in R6 consisting of all the resultant wrenches that the robot hand
can exert on the grasped object, where G = [G1 G2 · · · Gm]
and F =

∏m
i=1 Fi. A grasp is said to be force-closure if G(F) =

R6 [17].
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2.2. Previous results concerning the distance function

Let S be a nonempty compact convex subset of Rn and B0 ={
u ∈ Rn | uTu = 1

}
the unit sphere centered at the origin 0. The

unit vector u specifies a direction in Rn. The distance between 0
and S is defined by

d(0, S) =

 min
λB0∩S 6=∅,λ≥0

λ, if 0 6∈ int S

min
λB0⊂S,λ≤0

λ, if 0 ∈ int S, (8)

where int(·) denotes the interior of a set. This distance definition
contains the cases of 0 being separated from or contained in the
interior of S. In other words, d(0, S)means the radius of the largest
ball centered at 0 separated from S or contained in S. Its value is
positive or negative, respectively.
Define a real-valued function qS on S as

qS(u) = min
x∈S

uTx, (9)

where u ∈ Rn. Our previous work [8] has shown

d(0, S) = maxuTu=1 qS(u). (10)

Let S1 and S2 be nonempty compact subsets ofRn. Thenwe have
the following properties, which are useful for computing qS(u):
1. qconvS1(u) = qS1(u), where conv(·) denotes the convex hull of a
set.

2. qS1∪S2(u) = min
{
qS1(u), qS2(u)

}
.

3. qα1S1±α2S2(u) = α1qS1(u)+ α2qS2(±u) for α1 ≥ 0 and α2 ≥ 0.
4. qR(S1)(u) = qS1(R

Tu), whereR ∈ Rn
′
×n and n′ denotes a positive

integer.
5. qS1×S2(u) = qS1(u1) + qS2(u2), where S1 and S2 are subsets of

Rn1 and Rn2 , u1 ∈ Rn1 , u2 ∈ Rn2 , and u = [uT1 uT2]
T
∈ Rn1+n2 .

3. Reformulation of the grasp quality criteria

In all previous work [2–4,6,8,12,15,18], the primitive contact
wrenches are derived from finite edges for approximating the
nonlinear friction cones. In this section, we first provide a precise
expression of the primitive contact wrench set based on the
original friction cones (1)–(4). Then the grasp wrench sets and
the grasp quality criteria are formulated accurately. Their physical
meanings and differences are elucidated. Finally, a new remedy is
given to keep the grasp quality criteria invariant under a change of
coordinate frame and dimension unit.

3.1. Primitive contact wrench sets

From (1)–(4), the friction cone Fi can be rewritten as

Fi = coUi, (11)

where co (·) denotes the set of all nonnegative linear combinations
of the elements in a set, also known as the convex cone with apex
at the origin 0 generated by the set, and the set Ui has one of the
following forms:

FPC: Ui = {fi ∈ R | fi1 = 1} (12)

PCwF: Ui =
{
fi ∈ R3 | fi1 = 1,

√
f 2i2 + f

2
i3 = µi

}
(13)

SFCl: Ui =

fi ∈ R4 | fi1 = 1,

√
f 2i2 + f

2
i3

µi
+
|fi4|
µsi
= 1

 (14)

SFCe: Ui =

{
fi ∈ R4 | fi1 = 1,

√
f 2i2 + f

2
i3

µ2i
+
f 2i4
µ′2si
= 1

}
. (15)

This means that Fi can be generated by a basic set Ui and
Ui is called the primitive contact force set. From (12)–(15) it can
be seen that Ui is a singleton for FPC but an infinite set given
by a nonlinear equation for PCwF or SFC. In [2–4,6,8,12,15,18],
a subset of Ui with finite elements is used instead, so that from
(11) the friction cone Fi consists of only the nonnegative linear
combinations of these elements, and thenonlinearity is eliminated.
Hereinafter, however, we still use the original nonlinear models.
Their geometric meanings can be realized by decomposing (13)–
(15) as

Ui = Ni × Ti, (16)

where

Ni = {fi1 ∈ R | fi1 = 1} (17)

and Ti takes one of the following forms:

PCwF: Ti =
{
[fi2 fi3]T ∈ R2 |

√
f 2i2 + f

2
i3 = µi

}
(18)

SFCl: Ti =

[fi2 fi3 fi4]T ∈ R3 |

√
f 2i2 + f

2
i3

µi
+
|fi4|
µsi
= 1

 (19)

SFCe: Ti =

{
[fi2 fi3 fi4]T ∈ R3 |

√
f 2i2 + f

2
i3

µ2i
+
f 2i4
µ′2si
= 1

}
. (20)

The set Ti depicts a circle ofR2 for PCwF, a bicone ofR3 for SFCl,
and an ellipsoid of R3 for SFCe, as shown in Fig. 1.
From (11) it follows that

Gi(Fi) = Gi(coUi) = co (Gi(Ui)) = coWi,

whereWi is just the primitive contact wrench set:

Wi = Gi(Ui). (21)

The set Wi for FPC is a singleton, while Wi for PCwF or SFC is
an infinite set, which consists of all primitive contact wrenches at
contact i.
Combining (1)–(4) and (12)–(15) we see that the convex hull of

Ui, denoted by convUi, is equal to Fi ∩ {fi|fi1 = 1}. Then from (21),
the convex hull convWi ofWi has the following meaning:

convWi = Gi(convUi) = {Gifi|fi ∈ Fi and fi1 = 1} . (22)

3.2. Grasp wrench sets and grasp quality criteria

To establish the grasp wrench sets, we first define W k as the
union of Minkowski sums of different k (k = 1, 2, . . . ,m) of Wi,
i = 1, 2, . . . ,m, given by

W k =
m−k+1⋃
i1=1

m−k+2⋃
i2=i1+1

· · ·

m⋃
ik=ik−1+1

(Wi1 +Wi2 + · · · +Wik), (23)

where i1, i2, . . . , ik designate k ofWi, i = 1, 2, . . . ,m to add up. In
particular,W 1 =

⋃m
i=1Wi andW

m
=
∑m
i=1Wi. There are n =

(
k
m

)
different selections of k ofWi, i = 1, 2, . . . ,m, as depicted in Fig. 2.
LetW kc be the convex hull ofW

k. From (23) we have

W kc = conv

(
m−k+1⋃
i1=1

m−k+2⋃
i2=i1+1

· · ·

m⋃
ik=ik−1+1

(convWi1

+ convWi2 + · · · + convWik)

)

=

{
n∑
j=1

λjconvWj|
n∑
j=1

λj = 1 and 0 ≤ λj ≤ 1

}
, (24)
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Fig. 1. The set Ti for (a) PCwF, (b) SFCl, and (c) SFCe.

Fig. 2. Different selections of k ofWi , i = 1, 2, . . . ,m. Totally there are n =
(
k
m

)
selections. Each Wi appears in ni =

(
k− 1
m− 1

)
selections. The nonnegative scalars

λj , j = 1, 2, . . . , nwith
∑n
j=1 λj = 1 give a convex combination of the n selections.

where convWj = convWi1 + convWi2 + · · · + convWik . From
(22) it follows that convWj consists of the wrenches generated by
fi ∈ Fi, i = 1, 2, . . . ,m with fi1 = 1 for i = i1, i2, . . . , ik and
fi1 = 0 otherwise and

∑m
i=1 fi1 = k, which means that only k

contacts are really working and the rest m − k contacts are idle
(they do not take part in generating the resultant wrench). Then
the wrenches in W kc are generated by fi ∈ Fi, i = 1, 2, . . . ,m
with

∑m
i=1 fi1 =

∑n
j=1 λjk = k. Moreover, from Fig. 2 we see that

only ni =
(
k− 1
m− 1

)
< n selections contain Wi. Then fi1 of fi ∈ Fi

in generating W kc is equal to the sum of ni of λj, j = 1, 2, . . . , n,
which is not more than

∑n
j=1 λj = 1. Hence,W

k
c has the physical

meaning:

W kc =

{
Gf |f ∈ F ,

m∑
i=1

fi1 = k, and max
1≤i≤m

fi1 ≤ 1

}
= G(F ∩Ωk), (25)

where Ωk =
{
f |
∑m
i=1 fi1 = k and max1≤i≤m fi1 ≤ 1

}
. Particu-

larly, Ω1 =
{
f |
∑m
i=1 fi1 = 1

}
and Ωm = {f | fi1 = 1 for i =

1, 2, . . . ,m}. Let WM =
⋃m
k=1W

k and WMc be the convex hull of
WM . From (25) we have

WMc = conv

(
m⋃
k=1

W k
)
= conv

(
m⋃
k=1

W kc

)
= G(F ∩ΩM), (26)

where ΩM =
{
f |
∑m
i=1 fi1 ≥ 1 and max1≤i≤m fi1 ≤ 1

}
. The sets

W 1c andW
M
c are so-called grasp wrench sets. According to (25) and

(26), they consist of the resultant wrenches that can be produced
by the contact forces in F ∩Ω1 and F ∩ΩM , respectively. A grasp
is force-closure if and only if 0 ∈ intW 1c or 0 ∈ intW

M
c .

Remark 1. Using the distance function (8), the grasp quality
criteria in [1,2] can be directly reformulated as d(0,W 1c ) and
d(0,WMc ). A grasp is force-closure if and only if d(0,W

1
c ) or

d(0,WMc ) is negative. If this is so, their absolute values indicate the
largest resultant wrenches in the worst directions yielded by the
contact forces in F ∩Ω1 and F ∩ΩM , respectively; otherwise they
imply how far the grasp is from achieving force-closure.

Remark 2. In the early stages of seeking the optimal grasp, the
tentative grasps are often tested to be non-force-closure (see
Example 2). Namely, d(0,W 1c ) or d(0,W

M
c ) is positive. This value

serves as a guide for further optimization. The foregoing unified
formulas for both force-closure and non-force-closure greatly
facilitate the work.

Remark 3. From (24) and (26),W 1c results only from the primitive
contact wrench sets Wi, i = 1, 2, . . . ,m, while WMc comes from
not only the primitive contact wrench sets themselves but also
their Minkowski sums. This leads toW 1c being just a proper subset
of WMc and the constraint Ω

1 on the force magnitude for W 1c is
much stronger than the constraint ΩM for WMc . Therefore, the
absolute value of d(0,W 1c ) is not greater than that of d(0,W

M
c ).

Themaximumnormal contact force is determinedby the capability
of the fingers and also limited by the material strength of the
gripped object and the gripper. Hence the maximum normal
contact force is a compulsory upper bound and d(0,WMc ) is a
reasonable criterion. However, computing it previously was more
difficult, and therefore the sum of the normal contact forces or
correspondingly d(0,W 1c ) is used as a substitute in many classical
papers.

3.3. Modification for frame and unit invariances

A good grasp quality criterion should be independent of the
choice or invariant under a change of object coordinate frame. Let
Q ∈ SO(3) and p ∈ R3 denote the changes of the orientation and
position of object coordinate frame, respectively. Then the contact
position vector, unit inward normal, and unit tangent vectors are
changed by

r ′i = Qr i + p, n′i = Qni, o′i = Qoi, and t ′i = Qt i. (27)

Then from (5)–(7), the matrix Gi is changed by

G ′i = diag(Q ,Q )Gi + Pi,

where diag(Q ,Q ) ∈ R6×6 and Pi has one of the following forms:

FPC: Pi =
[

0
p× Qni

]
PCwF: Pi =

[
0 0 0

p× Qni p× Qoi p× Qt i

]
SFC: Pi =

[
0 0 0 0

p× Qni p× Qoi p× Qt i 0

]
.

If p = 0, then Pi is a zero matrix, and from (21) the set Wi
is changed only by the matrix diag(Q ,Q ). Since diag(Q ,Q ) is an
orthogonal matrix, the distances d(0,W 1c ) and d(0,W

M
c ) remain

unchanged. However, if p 6= 0, then Pi causes additional change
in only three moment components of a wrench vector, which in
turn might alter the values of d(0,W 1c ) and d(0,W

M
c ). Similarly,

changing the unit of the object dimension also alters the quantities
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of the moment components of a wrench but has no effect on the
force components, which may change the values of d(0,W 1c ) and
d(0,WMc ) aswell. So far, therefore, the grasp quality criteria are not
invariant under a change of frame position and unit.
To remedy this drawback, we modify Gi as follows:

FPC: Gi =
[

Rni
(ri − r0)× ni

]
(28)

PCwF: Gi =
[

Rni Roi Rt i
(ri − r0)× ni (ri − r0)× oi (ri − r0)× ti

]
(29)

SFC: Gi =
[

Rni Roi Rt i 0
(ri − r0)× ni (ri − r0)× oi (ri − r0)× ti ni

]
,

(30)

where

r0 =
1
m

m∑
i=1

ri (31)

R =
1
m

m∑
i=1

‖ri − r0‖ . (32)

This modification means that the moment origin is selected at
the centroid of the contact positions, and the force components of
a wrench are multiplied by the average distance from the contact
positions to the centroid. Then the moment origin may probably
not coincide with the origin of the chosen object coordinate frame.

Theorem 1. By the modification given by (28)–(32), the values of
d(0,W 1c ) and d(0,W

M
c ) are invariant under a change of object

coordinate frame and similarly invariant under a change of dimension
unit.

Proof. First, we prove the frame invariance. From (27), (31), and
(32) it follows that

r ′0 =
1
m

m∑
i=1

r ′ i =
1
m

m∑
i=1

(Qr i + p) = Qr0 + p (33)

R′ =
1
m

m∑
i=1

∥∥r ′i − r ′0
∥∥ = 1

m

m∑
i=1

‖Q (ri − r0)‖ = R. (34)

From (31) and (33) we have

r ′i − r ′0 = Q (ri − r0). (35)

Substituting (27), (34) and (35) into (28)–(30), we obtain

G ′i = diag(Q ,Q )Gi.

The matrix diag(Q ,Q ) ∈ SO(6) preserves the distances
d(0,W 1c ) and d(0,W

M
c ).

The change of dimension unit only affects the contact position
vector, which can be described by r ′i = λri, where λ is a positive
scalar. Then from (31) and (32) we see that r ′i − r ′0 = λ(ri − r0)
and R′ = λR. Substituting them into (28)–(30) yields

G ′i = λGi.

This implies that the values of d(0,W 1c ) and d(0,W
M
c )will also

be scaled by λ. �

Now the performance quality of any grasp on an object can be
evaluated by d(0,W 1c ) or d(0,W

M
c ) in any selected, fixed, object

coordinate frame anddimension unit. Furthermore, from (28)–(30)
we see that the values of d(0,W 1c ) and d(0,W

M
c ) are related to

ri − r0, i = 1, 2, . . . ,m. To minimize either of them (should be
negative) in optimizing the contact positions ri, i = 1, 2, . . . ,m,

increasing ‖ri − r0‖, i = 1, 2, . . . ,m is helpful. From (31) and (32)
we have

ri − r0 =
1
m

m∑
i′=1

(ri − r ′i ).

Then
m∑
i=1

‖ri − r0‖ =
1
m

m∑
i=1

∥∥∥∥∥ m∑
i′=1

(ri − r ′i )

∥∥∥∥∥
≤
1
m

m∑
i=1

m∑
i′=1

∥∥ri − r ′i
∥∥ .

Note that
∥∥ri − r ′i

∥∥ is the distance between two contact
positions. Then the above inequality implies that the increase in
‖ri − r0‖, i = 1, 2, . . . ,m helps to increase the distance between
any two contact positions, so that the optimal contact positions
will spread more widely on the object surface. This enables the
optimal grasp to produce larger moments on the object under the
same contact force limit. In this sense, the effect of the object
geometry is counted in the grasp quality criteria.

4. Computation of the grasp quality criteria

In this section, the two grasp quality criteria are transformed
into two optimization problems. The analytical formulas for
computing the objective functions and their derivatives are
derived. The strategy for finding the globally maximum values
of the objective functions is given. It will be shown that this
computational method, without linearizing the friction cones, is
even simpler than that in [8], which uses the linearized friction
model.

4.1. Computing formulas

It follows directly from (10) that, no matter whether the grasp
is force-closure or not, d(0,W 1c ) and d(0,W

M
c ) can be computed by

solving the following optimization problems, respectively:

d(0,W 1c ) = max
uTu=1

qW1c (u) (36)

d(0,WMc ) = max
uTu=1

qWMc (u). (37)

Either of the above ismaximizedw.r.t. the directionu. Heremax
means the worst (see Remark 1 in Section 3.2). From (24), (26) and
Points 1 and 2 given in Section 2.2, the objective functions of (36)
and (37) can be calculated respectively by

qW1c (u) = qW1(u) = min1≤i≤m
qWi(u) (38)

qWMc (u) = qWM (u) = min
1≤k≤m

qW k(u). (39)

From (23) and Points 2 and 3 we have

qW k(u) = min
1≤i1<i2<···<ik≤m

qWi1+Wi2+···+Wik (u)

= min
1≤i1<i2<···<ik≤m

(
qWi1 (u)+ qWi2 (u)+ · · · + qWik (u)

)
.

(40)

Eq. (40) shows that the minimum value of the function q over
the Minkowski sums of Wi, i = 1, 2, . . . ,m is just equal to the
minimum value over the scalar sums of the function q of Wi, i =
1, 2, . . . ,m. By this nice property, we do not need to figure out the
Minkowski sums of Wi, i = 1, 2, . . . ,m, and thus the complexity
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of computing d(0,WMc ) is almost the same as d(0,W
1
c ). From (21)

and Point 4 we further obtain

qWi(u) = qUi(G
T
i u) = qUi(di),

where

di = GTi u (41)

and di has one of the following forms:

FPC: di = [di1]
PCwF: di = [di1 di2 di3]T

SFC: di = [di1 di2 di3 di4]T.

For FPC, from (12) it is evident that qUi(di) = di1. For PCwF and SFC,
from (16), (17), and Point 5 we may rewrite qUi(di) as

qUi(di) = qNi(di1)+ qTi(τ i) = di1 + qTi(τ i),

where τ i = [di2 di3]T for PCwF and τ i = [di2 di3 di4]T for SFC.
Taking τ i as an inward normal or −τ i as an outward normal to a
supporting hyperplane of Ti, we see that the function qTi(τ i) on Ti
attains its value at the point where the hyperplane supports Ti, as
depicted in Fig. 1. Thus from (18)–(20) we derive

PCwF: qTi(τ i) = −µi
√
d2i2 + d

2
i3

SFCl: qTi(τ i) = −max
{
µi

√
d2i2 + d

2
i3, µsi |di4|

}
SFCe: qTi(τ i) = −

√
µ2i (d

2
i2 + d

2
i3)+ µ

′2
si d
2
i4.

Finally, we attain

FPC: qWi(u) = di1 (42)

PCwF: qWi(u) = di1 − µi
√
d2i2 + d

2
i3 (43)

SFCl: qWi(u) = di1 −max
{
µi

√
d2i2 + d

2
i3, µsi |di4|

}
(44)

SFCe: qWi(u) = di1 −
√
µ2i (d

2
i2 + d

2
i3)+ µ

′2
si d
2
i4. (45)

Formulas (36) and (37) for computing d(0,W 1c ) and d(0,W
M
c )

are nonlinear optimization problems with only one constraint
uTu = 1. They can be interpreted in terms of the infinitesimal
motion and the virtual work [19]. Let u = [εT/R ϕT]T, where
ε ∈ R3 is an infinitesimal translation of the grasped object and
ϕ ∈ R3 is an infinitesimal rotation. Then qWi(u) calculates the
minimum work generated by fi ∈ Fi ∩ {fi|fi1 = 1} w.r.t. the total
infinitesimal motion ε and ϕ, and qW1c (u) and qWMc (u) are the
minimum total work that can be generated by the contact forces in
F ∩Ω1 and F ∩ΩM , respectively. Either of them indicates whether
the grasp can restrain ε and ϕ. In (36) and (37), u is taken to be
a unit vector, which defines a direction of infinitesimal motion.
In this sense, the criteria evaluate the capability of the grasp to
restrain motions over all directions. If their values are negative,
then all the infinitesimal motions of the object can be restrained.
Suppose that u∗ is an optimal solution of (36) or (37). Then u∗ gives
theworst direction of infinitesimalmotion for the grasp to restrain,
since the minimum total work w.r.t. u∗ is maximal. If the value of
a criterion is nonnegative, then the infinitesimal motions along u∗
cannot be restrained.

4.2. Differentiability of the objective functions

Herein we figure out the differentiability of the objective
functions qW1c (u) and qWMc (u) of (36) and (37) and deduce their
derivatives so that gradient-based search methods can be used to
compute (36) and (37).

Theorem 2. The function qS satisfies the Lipschitz continuity, i.e.,
|qS(u+∆u)− qS(u)| ≤ ξ ‖∆u‖, where ξ > 0 is independent of
u and∆u.

Proof. From (9) we have qS(u + ∆u) ≥ qS(u) + qS(∆u) and
qS(u) ≥ qS(u + ∆u) + qS(−∆u). Then qS(∆u) ≤ qS(u + ∆u) −
qS(u) ≤ −qS(−∆u). Noticing that qS(∆u) = minx∈S ∆uTx ≥
−ξ ‖∆u‖ and −qS(−∆u) = maxx∈S ∆uTx ≤ ξ ‖∆u‖, where
ξ = maxx∈S ‖x‖ is positive and independent of u and∆u, we then
obtain |qS(u+∆u)− qS(u)| ≤ ξqS(∆u). �

The Lipschitz continuity implies that qW1c (u) and qWMc (u) are
differentiable almost everywhere w.r.t. u. The partial derivative of
qW1c (u)w.r.t. the element ul (l = 1, 2, . . . , 6) of u is determined by

∂qW1c (u)

∂ul
=
∂qWi∗ (u)
∂ul

=

qi∗∑
h=1

∂qWi∗ (u)
∂di∗h

·
∂di∗h
∂ul

, (46)

where i∗ is the index for which qW1c (u) = qWi∗ (u) from
(38), ∂di∗h/∂ul is equal to the (l, h) entry of Gi∗ from (41), and
∂qWi∗ (u)/∂di∗h can be easily computed from (42)–(45). It should
be indicated that i∗ depends on u and may not be unique for some
u. At such u, ∂qWi∗ (u)/∂di∗h may not be continuous; thus qW1c (u)
may not be differentiable.
Similarly, the partial derivative of qWMc (u) w.r.t. ul can be

calculated by

∂qWMc (u)

∂ul
=

∂qWi∗1
(u)

∂ul
+

∂qWi∗2
(u)

∂ul
+ · · · +

∂qWi∗k
(u)

∂ul
, (47)

where i∗1, i
∗

2, . . . , i
∗

k satisfy qWMc (u) = qWi∗1+Wi∗2+···+Wi∗k
(u) and

∂qWi∗k
(u)/∂ul can be computed by (46). Also, qWMc (u) may not be

differentiable at u for which qWMc (u) can be attained with multiple
choices of i∗1, i

∗

2, . . . , i
∗

k .
In (36) and (37), u is taken to be a point on the 6-D unit sphere

B0 =
{
u ∈ R6 | uTu = 1

}
. First, there are only few irregular points

in B0 where qW1c (u) or qWMc (u) is nondifferentiable. Then irregular
u is rarely encountered in the numerical computation. Besides, in
any small neighborhood of an irregular u in B0 there exist many
regular points where qW1c (u) or qWMc (u) is still differentiable. Thus,
in case of qW1c (u) or qWMc (u) being nondifferentiable, it is easy to
find a small perturbation imposed on u to force it away from these
irregular points.

4.3. Global optimum and computational complexity

Usually the nonlinear optimization problems (36) and (37) have
local maxima. In the present problem, however, as the dimensions
are not high and the single constraint is very simple, the global
maxima could be found just by properly selecting different points
on the sphere B0 for the initial values of u. A good choice is the set
of vertices of the 6-D regular simplex circumscribed by B0, namely

wv =

(
w0v −

1
7

7∑
v=1

w0v

)/∥∥∥∥∥w0v − 17
7∑
v=1

w0v

∥∥∥∥∥
for v = 1, 2, . . . , 7,
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where

w01 =
[
1 1 1 0 0 0

]T
w02 =

[
−1 −1 1 0 0 0

]T
w03 =

[
−1 1 −1 0 0 0

]T
w04 =

[
1 −1 −1 0 0 0

]T
w05 =

[
0 0 0

√
5 0 0

]T
w06 =

[
0 0 0

√
5/5 2

√
30/5 0

]T
w07 =

[
0 0 0

√
5/5 2/

√
30
√
42/3

]T
.

Letdv(0,W 1c )be the value ofd(0,W
1
c ) computedby solving (36)

w.r.t.wv . Then d(0,W 1c ) is taken to be the maximum of dv(0,W
1
c )

for all v. d(0,WMc ) can be computed in the same way.
The total time complexity of computing the criteria is

dependent on the method used to solve (36) or (37) as well as the
number of initial values for u to be tried. The computation cost
is mainly spent on evaluating the objective functions qW1c (u) and
qWMc (u) of (36) and (37). From (38)–(45), their evaluations take
merely algebraic operations. If SFCe is adopted, then computing
qW1c (u) requires 5m0+17mf +23ms additions, 6m0+21mf +29ms
multiplications, and mf + ms square roots from (41)–(43) and
(45), andm− 1 comparisons from (38); computing qWMc (u) needs
2m−m−1 additions and 2m−2 comparisons from (39) and (40) in
addition to those from (41)–(43) and (45).Moreover, since (36) and
(37) contain only 6 variables and a simple equality constraint, it is
not difficult for modern nonlinear optimization methods to solve
them.
Assume that the friction cone Fi is linearized; that is, Ui is

replaced by a finite subset, say {s1, s2, . . . , sN}. The selection of
the subset can be found in [2–4,6,8,12,15,18], fromwhichwe know
that N = 1 for FPC, N ≥ 3 for PCwF, and N ≥ 5 for SFC. For better
linearization quality,N is taken to be a valuemuch greater than the
minimum, especially for SFC. From (9), (21), and (41) we have

qWi(u) = min
{
dTi s1, d

T
i s2, . . . , d

T
i sN
}
. (48)

For PCwF, computing qWi(u) by (48) requires 2N additions,
3N multiplications, and N − 1 comparisons, while by (43) it
takes 2 additions, 3 multiplications, and 1 square root. For SFC,
(48) undergoes 3N additions, 4N multiplications, and N − 1
comparisons, while (45) takes 3 additions, 5 multiplications, and 1
square root. It is clearly shown that the method proposed here for
computing the criteria not only avoids the loss of accuracy caused
by linearization but also increases the computational efficiency.

5. Numerical examples

We implement the proposed grasp quality evaluation method
using Matlab on a Pentium-M 1.8 GHz notebook and verify its
performance with two examples. Formulas (36) and (37) are
computed by the function fmincon of Matlab with the initial
values for u given in Section 4.3. Assume µ = 0.2 and µs = 0.4
mm.

Example 1. This example is to verify the proposed method of
grasp quality evaluation. The object is an 80 mm × 30 mm ×
30 mm cuboid, grasped with two couples of antipodal PCwFs on
the midlines of four facets (see Fig. 3). Such a grasp configuration
is easier to implement in practice. Let the contactsmove apart from
the centers of the cuboid in opposite directions by distances s1 and
s2, respectively. With only two variables, the computed results can
be visualized: the values of d(0,W 1c ) and d(0,W

M
c ) versus (s1, s2)

are plotted in Fig. 4, which constitute two smooth and continuous

Fig. 3. A cuboid grasped with four PCwFs.

surfaces without local minima and jumps. Apparently, the minima
of d(0,W 1c ) and d(0,W

M
c ) w.r.t. (s1, s2) are both attained at s1 =

40 mm and s2 = 40 mm, and the contacts are by the sides of
the facets and far from each other, which implies that the two
criteria consider the object geometry. The average CPU times for
computing the two criteria at each point are 1.98 s and 1.82 s,
respectively.
To demonstrate the advantage of this method over the

linearization-basedmethod [8], we replace the friction cone Fi by a
4-sided polyhedral cone and compute the function qWi(u) by (48).
Then computing d(0,W 1c ) and d(0,W

M
c ) by (36) and (37) takes

1.79 s and 2.06 s, respectively, which are slightly shorter or even
longer than the required CPU times without linearizing the friction
cones. Moreover, the values of d(0,W 1c ) and d(0,W

M
c ) computed

by the two methods have evident differences, as displayed in
Fig. 4. The average differences are 0.25 N mm and 1.01 N mm,
respectively. In addition, Fig. 4 also reveals that the linearization
distorts the gradient flows of d(0,W 1c ) and d(0,W

M
c ), which may

lead to the optimal grasp planning falling into other undesirable
locally optimal grasps.
In Fig. 4 it can be seen that the absolute value of d(0,W 1c ) is

much less than that of d(0,WMc ). This is due to the constraint Ω
1

on themagnitude of the contact forces forW 1c beingmuch stronger
than the oneΩM forWMc , as discussed in Section 3.2.

Example 2. This example tries to use the criteria in optimal grasp
planning. The object is a hammer involving two spheres S1 and S2,
an ellipsoid S3, and a cylinder S4 (Fig. 5):

S1 :

{x = 100 cosα cosβ
y = 100 cosα sinβ
z = 100 sinα − 68,

S2 :

{x = 100 cosα cosβ
y = 100 cosα sinβ
z = 100 sinα + 68,

S3 :

{x = 20 cosα cosβ
y = 20 cosα sinβ
z = 50 sinα,

S4 :

{x = 8 cosβ
y = α
z = 10 sinβ.

The contacts are so arranged: C1, C2, and C3 are FPCs on S1,
S2, S3, respectively, and C4 and C5 are SFCs on S4. Each contact
position is specified by (αi, βi). Fix (α1, β1), (α2, β2), (α3, β3) to
(23π/50, 0), (−23π/50, π), (0, 3π/2), and change (α4, β4) and
(α5, β5) in [40, 120]×[0, π] and [40, 120]× [π, 2π ], respectively.
Then the computation of optimal grasps can be formulated as{
minimize d(0,W 1c ) or d(0,W

M
c )

s.t. (α4, β4)∈ [40, 120] × [0, π], (α5, β5)∈ [40, 120] × [π, 2π ].

This problem is solved by the function fmincon of Matlab
and the maximum iteration number is taken to be 10. Fig. 6
exhibits many trials with the initial values of (α4, β4) and (α5, β5)
randomly set by the computer. Saving the best grasp so far, such
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Fig. 4. d(0,W 1c ) and d(0,W
M
c ) versus (s1, s2). The upper patches express the results computed using the linearized friction cones, while the lower ones are computed

without linearizing the friction cones. Each patch contains 21× 21 points. (a) d(0,W 1c ) versus (s1, s2). (b) d(0,W
M
c ) versus (s1, s2).

Fig. 5. A hammer grasped with FPCs C1 , C2 , C3 and SFCs C4 , C5 .

trials can go on automatically until a satisfying one turns out.
Now the minima of d(0,W 1c ) and d(0,W

M
c ) are −3.0704 and

−8.6342, respectively, and the corresponding grasps are the same,
as depicted in Fig. 5. The average CPU times for a single trial
based on the two criteria are 155.75 s and 159.53 s, respectively.
Normally, optimal grasp planning can proceed offline. One may
take as many trials as possible within acceptable time to find a

relatively better grasp. Developing an efficient method for the trial
will definitely increase the chance to attain a good grasp.
Fig. 6 shows that, with the same initial values, the optimized

grasps according to the two criteria might be different. This is
because the criteria have different gradients w.r.t. the parameters
specifying the contact positions, and optimizations often converge
to different local minima. Finding the globally optimal grasp is a
challenging task, since any criterion usually hasmany localminima
w.r.t the contact positions that make the global minimum hard
to find and verify. Fortunately, the best of many scattered locally
optimal grasp configurations often has a pleasing d(0,W 1c ) or
d(0,WMc ), as shown in Fig. 6. Whether it is the global optimum is
not so important, since our goal is a reliable force-closure grasp.

6. Conclusions

Based on a systematical study of the previous work, this paper
aims to improve the grasp quality evaluation, which is the kernel
of grasping problems. Making strides towards perfection in all
aspects (Table 1), two grasp quality criteria are formulated as the
distances between the wrench origin and two grasp wrench sets.
Their computations are cast into nonlinear optimization problems,
essentially better than the approaches using the linearized friction
cones. To optimize by some gradient-based search methods, the
derivatives of the objective functions are calculated in closed form

Fig. 6. Multiple trials of grasp optimization according to d(0,W 1c ) or d(0,W
M
c )with the same initial configurations. The circles denote the initial values, while the downward

triangles denote the minimized values. (a) Adopting d(0,W 1c ) as the objective function. (b) Adopting d(0,W
M
c ) as the objective function.
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and the choice of initial conditions is addressed. It is shown that
the computational method proposed in this paper is as fast as the
linearization-based ones.Moreover, the criterion d(0,WMc ), whose
computationwas considered to bemuchmore complex previously,
can be calculated as efficiently as the criterion d(0,W 1c ) now.
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