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Abstract  Currently, most efficient algorithms for force-closure analysis and dynamic 
force distribution utilize linear programming, but friction models are nonlinear. Substituting 
polyhedral cones for circular cones of Coulomb friction realizes the linearization of the 
frictional point contact constraint. So far, however, there is no approach to soft finger 
contact. This paper presents such an approach. Then the foregoing algorithms can be 
extended to grasping with soft finger contact. Herein an optimal force distribution 
algorithm for soft multifingered grasps is developed with an illustrative example. 
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(DFD). 
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Multifingered grasping was ardently studied in the past two decades. Force-closure 
property and dynamic force distribution (DFD) are two basic topics. The former ensures 
that the contact forces of a grasp can equilibrate any external wrench. The latter seeks 
the optimal contact forces to equilibrate a dynamic external wrench. Force-closure is a 
prerequisite to stable grasps, while fast force distribution is required for real-time control 
of dexterous robot hands. 

There are three common contact types: frictionless point contact, frictional point 
contact, and soft finger contact. Previous work[1 8] focused on the grasps with the for-
mer two. Only a few papers concern the last where the fingertip exerts a frictional spin 
moment about the inward contact normal besides a force. Howe et al.[9] suggested two 
friction models of soft finger contact. Buss et al.[10] transformed contact constraints into 
the positive definiteness of a certain linearly constrained matrix and proposed algorithms 
for force optimization[10,11]. Zuo and Qian[12] presented a force-closure test for 
soft-fingered grasps and put forward a DFD algorithm covering soft finger contact[13]. 
Han et al.[14] formulated the force-closure problem as a convex optimization problem 
involving linear matrix inequalities. 
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Linearizing circular cones of Coulomb friction at frictional point contacts by poly-
hedral convex cones, several efficient algorithms have been developed for force-closure 
test[2 4], force optimization[1,2], and grasp planning[6 8]. However, they cannot be applied 
to soft fingers, as linearization seems impossible when spin moments are involved. We 
attempt to fill this void. In fact, the soft finger contact constraint can be linearized as 
well, if we expand our idea from 3-D space to 4-D. Still the linearization can be viewed. 
Then the aforementioned algorithms[1 4,6 8] go generally applicable. A fast DFD algo-
rithm for soft-fingered grasps is addressed first in this paper. 

1  Preliminaries 

Consider a soft m-fingered hand grasping an object, fixed with a right-handed co-
ordinate frame. For soft finger contact, the contact force can be expressed in a local 

right-handed coordinate frame   { , , }i i in o t  by 

 [ ]T
,i in io it isf f f f=f  (1) 

where inf  is the force component along the unit inward normal ;in  iof  and itf  are 

the force components along the unit tangent vectors oi and ti, respectively; isf  is the 

spin moment about ni; ni, oi, ti are specified with respect to the object coordinate frame. 
The wrench exerted by the i-th fingertip can be computed by 

 i i i=w G f , (2) 

where 

 6 4i i i
i

i i i i i i i

× 
= ∈ × × × 

0 ¡n o t
G

r n r o r t n
 (3) 

is the grasp matrix at contact i; ri is the position vector in the object coordinate frame. 

Let w and wext denote the resultant wrench applied by the hand and the external 
wrench. For equilibrium 

 ext
1

.
m

i
i=

− = = ∑w w w  (4) 

To avoid separation and slippage at contact, fi must satisfy either condition[9 14] in 
(5) and (6) expressing its sets: 

(i) Linear model 

 
2 2

4
2

 0,  isio it
li i in in

sii

ff f
V f f

µµ

 + = ∈ + 
  

¡f ; (5) 

(ii) Elliptical model 
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where iµ  is Coulomb friction coefficient for the tangential force; siµ  and siµ ′  are 

the coefficients of spin moment for the linear and elliptical models, respectively. 

2  Linearization 

The section hyperplanes of liV  and eiV  at 1inf =  are 

 
2 2
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 1li
sii

S
ττ τ
µµ

 + = ∈ + 
  

¡τ , (7) 
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 1 ,ei
i si

S
ττ τ

µ µ

 + = ∈ + 
′  

¡τ  (8) 

where   1 2 3, ,τ τ τ  are components of τ. According to the above two models, liS  and 

eiS  represent the sets of allowable tangential force components and spin moments 

without slippage when the normal force component equals unity. liS  is a bicone of 
3 ,¡  while eiS  is an ellipsoid of 3 ,¡  as shown in fig. 1. Comparing (5) with (7) and 

(6) with (8) we deduce: for soft finger contact, i liV∈f  (resp. i eiV∈f ) if and only if 

T T [1 ] ,i ρ=f ô  where ρ 0 and liS∈τ  (resp. eiS∈τ ). This conclusion first clearly 

displays liV  and eiV , though they are known to be convex cones[12]. It also implies that 

linearizing liV  and eiV  can be transformed to linearizing liS  and eiS , respectively. 

This can be done by substituting a polyhedral bicone liS  and an oval polyhedron eiS  

for liS  and eiS  (fig. 1). Formulated below, the vertices of liS  and eiS  fall on the 

boundaries of liS  and eiS . 

 
  

T
2ðð2ððð

cos cos sin cos sin ,
2 2 2i j k i i si

j k j k k

J K J K K
µ µ µ =   

τ  (9) 

where 1j =  if ,k K= ±  otherwise 1,2, ,j J= L  (J 3); , , 1,0,1, ,k K K= − −L L  

(K = 1 for liS ; 1K >  and replace siµ  with siµ ′  for eiS ). Greater J and K improve 

the linearization quality but increase computation cost. For simplicity, we rearrange the 

vertices and shorten τijk to τij. Then the side edges for linearizing liV  and eiV  can be 

represented by 

 
TT1ij ij =  s τ , 1,2, ,j l= L  ( 2 2l JK J= − + ). (10) 
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Fig. 1.  Linearization of the linear model (a) and the elliptical model (b). 

The contact force at the i-th soft finger contact is given by 

 
1

l

i ij ij
j

λ
=

= ∑f s , 0ijλ  for 1,2, , .j l= L  (11) 

Combining (1), (10) and (11) leads to 

 
1

l

in ij
j

f λ
=

= ∑ . (12) 

Substituting (11) into (2) yields 

 
1

,
l

i ij ij
j

λ
=

= ∑w w  (13) 

where  

 ij i ij=w G s . (14) 

Vectors wij are called primitive wrenches. From (4) and (13) we end up with 

 ext
1 1

m l

ij ij
i j

λ
= =

− = = =∑∑w w w W λ , (15) 

where 6
11[ ] ml

ij ml
×= ∈L L ¡W w w w  and T

11[ ] ml
ij mlλ λ λ= ∈L L ¡λ . 

Being a 6-D polytope, the convex hull of the primitive wrenches ijw  is thereby 
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  1, 0 for 1,2, , , 1,2, ,
m l m l

ij ij ij ij
i j i j

Q i m j lα α α
= = = =

  = = = = = 
  

∑∑ ∑∑ L Lw w . (16) 

We reason furthermore: (i) an external wrench wext can be equilibrated if and only if 
−wext can be expressed by a nonnegative combination of the primitive wrenches wij; (ii) a 
grasp is force-closure if and only if the origin of the wrench space is an interior point of 
Q. Although acknowledged already[2 4,6 8], the above principles were limited to fric-
tionless and frictional point contacts. Now we get rid of this limitation and the primitive 
wrenches here include those from the frictional spin moments.  

3  Application to DFD 

3.1  Problem statement 

Given: A force-closure grasp (so W is settled) and a dynamic external wrench wext. 

Find: The optimal contact forces at the fingertips, such that σ (summation of nor-
mal force components at all the contacts) becomes minimum. 

Following Han et al.[14], we adopt σ  as the objective function (but our approach 
hereafter is brand-new), because generally a smaller σ  means smaller contact forces 
and smaller actuator power. 

From (12) we obtain 

 
1

1 1 1

,
m m l

in ij
i i j

fσ λ
= = =

= = =∑ ∑∑ λ  (17) 

where || ||1 denotes 1-norm. 

Eq. (17) shows that the summation σ  of all the normal force components just 

equals the 1-norm of the coefficient vector λ. Thus the problem is to find λ of the least 
1-norm satisfying (15). In addition, from (16) and (17) Q is the set of all resultant 
wrenches exerted by the grasp when the summation of all the normal force components 
is unity. 

3.2  A linearization based solution 

Eq. (15) can be rewritten as 

 ext
1 1

m l
ij

ij
i j

λ
σ σ

σ= =

− = =∑∑w w x , (18) 

where the second equal sign gives the definition of x. 

Equality (18) indicates that the point x is on the half-line −wext (from the origin of 
the wrench space to the point −wext) and 
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 ext 1

1

σ =
w

x
. (19) 

From (16), (17) and (18) we see that .Q∈x  Thus x is a resultant wrench along 

−wext exerted by the grasp subject to the summation of all the normal force components 
being unity. From (19), σ  attains a minimum when x is the intersection point xe of the 

half-line −wext with the boundary Q∂  of Q, since 
1

x  therein is maximum. Further-

more, xe can be expressed by a convex combination of only the primitive wrenches wij 
that fall on a hyperplane supporting Q at xe. According to (18), −wext can be restricted to 
a nonnegative combination of only such primitive wrenches. Let us partition W into W1 
and W2, where W1 comprises such primitive wrenches and W2 consists of the others. 

Correspondingly, the coefficient vector λ  is partitioned into 1λ  and 2.λ  Due to (15), 

we have 

 1 1 ext 2,   0,+= − =λ λW w  (20) 

where 1
+W  is the pseudoinverse of W1. The components of λ1 from (20) are all non-

negative because −wext is inside the convex cone decided by the columns of W1 and the 
origin. 

In what follows, we seek a hyperplane supporting Q at xe, which is the key to the 
solution. For this, we first derive a new theorem in convex analysis, starting with two 
definitions[15]. Let Q* be the polar set of Q, which is defined by 

 { }* 6 T 1 for all .Q Q= ∈ ∈¡u w u w  (21) 

Recalling (16), rewrite (21) as 

 { }* 6 T   1 for 1,2, , , 1,2, , ,ijQ i m j l= ∈ = =¡ L Lu w u  (22) 

which is also a 6-D polytope. 

Let p be the support function of Q*, which is the real-valued function defined by 

 
*

T( ) sup  
Q

p
∈

=
u

z z u , (23) 

where z is a point other than the origin. 

It follows directly from (23) that: 

(I) T ( )pz u z  for all *Q∈u . 

(II) There exists a point *
b Q∈∂u  such that T( ) bp =z z u . 
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(III) ( ) 0p >z  if *Q  contains the origin as an interior point. Since the grasp is 

force-closure, both Q  and *Q  satisfy this condition. 

Additionally, convex analysis[15] tells us: 

(IV) **Q Q= , where ** * *( )Q Q= . 

Theorem 1.  The following statements are true: 

(i) 1( )p Q− ∈∂z z . 

(ii) The hyperplane { }6 T 1bH = ∈ =¡w u w  supports Q  at the point 1( )p −z z . 

Proof.  (i) From (I) and (III), 1 T( ) 1p −z z u  for all * ,Q∈u  which means 
1 **( ) .p Q− ∈z z  Then from (IV), we have 1( )p Q− ∈z z . Suppose that there is a closed 

ball 1( , ( ) )B r p −z z  of radius 0r >  centered at  

1( ) .p −z z  Let 1( ) .p r−= +y z z z z  

Obviously, 1( , ( ) ).B r p −∈y z z  But from (II) and (III), T 1 T( )b bp −= +y u z z u  

T 1 ( ) 1,br rp= + >z u z z z  which means **Q∉y  and .Q∉y  Therefore 

1( ) .p Q− ∈∂z z  

(ii) From (II) it follows that T 1( ) 1b p − =u z z , and thus 1( )p H− ∈z z . In addition, 

from (21) T 1bu w  for all Q∈w , which means that H  bounds Q. Q.E.D. 

By substituting −wext for all z above, Theorem 1(i) indicates 1
ext ext( ) .e p −= − −x w w  

Substituting it into (19) yields the minimum value min ext( ).pσ = −w  Actually, the goal 

of the problem is neither xe nor minσ , but a hyperplane supporting Q  at xe. Theorem 

1(ii) indicates that H  is just the hyperplane we are looking for, where ub and 

ext( )p −w  can be found by (II) and (23). 

3.3  Algorithm procedure 

The algorithm can be summarized as: 

Step 1.  Linearize friction models by (10) and calculate primitive wrenches by 
(14). 

Step 2.  Compute ub. From (22) and (23), ub is the optimal solution of the 
following linear programming problem: 

 
T
ext

T

Maximize  ,

subject to 1,  1,2, , ,  1,2, , .ij i m j l

 −


= = L L
w u

w u
 (24) 
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Step 3.  Partition W into W1 and W2 by testing wij one by one. If T 1b ij =u w , then 

this wij falls on H  and joins W1, otherwise it joins W2. 

Step 4.  Compute λ by (20). 

Step 5.  Compute fi, 1,2, ,i m= L  by (11). 

3.4  Computation cost 

The first step calculates ml  primitive wrenches. The problem (24) in Step 2 can 
be solved in ( )O ml  time. Step 3 takes ( )O ml  time to find the primitive wrenches wij 

on the hyperplane H , which are commonly much less than ml . Thus computing 1
+W  

does not need much computation cost. In Step 4, λ is computed by (20) in only (1)O  

time. Step 5 also takes ( )O ml  time. To sum up, the time complexity of the algorithm is 

( )O ml  and linear with the finger number, essentially faster than the polynomial time 

complexity of Han et al.’s algorithm[14]. 

4  Numerical example 

Fig. 2 depicts a soft three-fingered hand manipulating a conical flask of mass M = 
0.1 kg. Its motion consists of the whirling about the axis z0 of the spatial coordinate 

frame { }0 0 0, ,x y z  and the rotation about the axis zb of the 

object coordinate frame { }, ,b b bx y z  with its origin at the 

mass center. The two axes intersect at O  with angle 
/12ϕ π= , and the distance between O  and the mass center 

is a = 0.12 m. The origin of the frame {x0, y0, z0} is located at 
the projection of the mass center onto z0. The motion can be 

described by g0b
[16], the trajectory of the frame { }, ,b b bx y z  

relative to the frame { }0 0 0, ,x y z , 

02 2 2 2 1 1 ˆˆˆˆ

0

0 0

e ( ) e 0 e 0

0 1 0 1 0 1

,
0 1

b

b b

e
g

ϕθ θ θ     −
=     

     
 

≡  
 

ωω ω ωΙ

Ρ

q

p
 

where 1θ  and 2θ  are the rotation angles about z0 and zb, respectively; 0 =ω  

[ ]T
0 1 0  gives the initial configuration, [ ]T

1 0 0 1=ω  and 2 =ω  

[ ]T
1 1sin cos sin sin cosϕ θ ϕ θ ϕ−  denote the rotational axes, and 0 1 2ˆˆ,̂  ,  ω ω ω  are 

the cross-product matrices for them; I is the identity matrix; [ ]T
0 0 cos .a ϕ=q  Set 

 

Fig. 2.  A whirling flask. 
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1 2  rad/sθ π=& , 2 2 / 3 rad/sθ π=& , 2
1 2 0 rad/sθ θ= =&& && . The required resultant wrench can 

be computed by the well-known Newton-Euler equation: 

00

0 0

b b b T
b

b b b

M M     × 
= + +      

×          

&
&

I v ùv R g
w

T ùùTù
, 

where T is the inertia tensor, 0 0 ,b T
b b= &v R p  0 0( ) ,b T

b b
∨= &ω R R  [ ]T 20 0 9.8 m/s .=g  

The contact positions are: [ ]T
1 16 0 105 ,=r  

T

2 8 8 3 105 , = − − r  

T

3 8 8 3 105 = − r  (unit: mm). The coefficients of Coulomb friction and spin mo-

ment µ = 0.2, µs = 0.4 mm. 

We implement the proposed algorithm using Matlab. Employ (3) to reckon the 
grasp matrix at each contact: 

1

1 0 0 0

0 0 1 0

0 1 0 0

0 0 105 1

105 16 0 0

0 0 16 0

− 
 
 
 

=  
− − 

 − −
 
  

G ,    2

0.50 0 0.87 0

0.87 0 0.50 0

0 1.0 0 0

90.93 13.86 52.50 0.50

52.50 8.0 90.93 0.87

0 0 16.0 0

 
 − 
 

=  
− − 

 
 
  

G , 

3

0.50 0 0.87 0

0.87 0 0.50 0

0 1.0 0 0

90.93 13.86 52.50 0.50

52.50 8.0 90.93 0.87

0 0 16.0 0

− 
 − − 
 

=  
 
 − −
 
  

G . 

Taking 10J =  and 1K =  in (10), we get 36 primitive wrenches from (14). Fig. 3 
shows the contact forces produced by the DFD algorithm. The required CPU time on 
Pentium-IV PC for a point is 26.6 ms. 

5  Conclusion 

The linear and elliptical friction models of soft finger contact constraint can be re-
garded as two 4-D convex cones. We linearize them by linearizing their section hyper-
planes, which are 3-D and visible (fig. 1). Then two basic principles concerning 
force-closure are generalized to all types of contact. Aided by a new theorem in convex 
analysis, a general and fast DFD algorithm comes out. By modifying certain equations 
properly, the theory and the methods in this paper can be applied to mixed use of the 
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three contact types without difficulty. 

 
Fig. 3.  The contact forces at fingertips. 
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