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is in the hole. Then, the assembly is completed after inserting the shaft
to the desired depth.

V. CONCLUSION

With the ongoing development of micro machining technology,
the need for micro assembly technology is growing. In this research,
a micro parts assembly system with the following components is
proposed.

1) Micro gripper with two SMA coils as actuator:
This micro gripper has a loading capacity of more than 0.58

N, with mass of only 0.5 g.
2) Micro RCC unit:

Links of this micro RCC unit are made of thin piano wires so
that the unit has low translational/rotational stiffness.

3) VCM-drive operating mechanism:
Themechanism creates linearmotionwith adjustable stiffness

and measures the applied forces with the VCM current.
4) Feed system of five precision motion stages

In micro parts assembly, even positioning the shaft within the
chamfer of the hole is difficult. An automatic assembly algorithm
that searches the hole by sensing the force applied to the VCM-drive
operating mechanism is proposed. The efficacy of the algorithm was
proven by the experiment with a 97-�m diameter shaft with 100-�m
diameter hole.
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Simplification of the Ray-Shooting Based Algorithm for
3-D Force-Closure Test

Yu Zheng and Wen-Han Qian

Abstract—This paper addresses a shortcut in the ray-shooting based al-
gorithm proposed by Liu. His algorithm provides an efficient force-closure
test of 3-D frictional grasps, which is formulated as a linear programming
(LP) problem. We prove that the optimal objective value of the LP formula-
tion indicates the force-closure property of grasps directly. Thus computing

, , and can be omitted.

Index Terms—Duality, force closure, linear programming (LP), ray-
shooting technique.

NOTATIONS

n Number of contacts.
ri Position vector of the ith contact (i = 1; 2; . . . ; n).
m Number of side facets linearizing a friction cone.
sij The jth edge vector of the polyhedral cone at the ith con-

tact (i = 1; 2; . . . ; n, j = 1; 2; . . . ;m).
wij Primitive contact wrench (i = 1; 2; . . . ; n, j =

1; 2; . . . ;m).
N Number of wij , N = nm.
W Set of wij(i = 1; 2; . . . ; n; j = 1; 2; . . . ;m).
H(W ) Convex hull of wij(i = 1; 2; . . . ; n; j = 1; 2; . . . ;m).
@H(W ) Boundary of H(W ).
P An interior point of H(W ).
O Origin of the wrench space.
PO Ray from P to O.
t Direction vector of PO.
Q Intersection point of @H(W ) with PO.
F Facet of H(W ) intersected by PO.
CT (W ) Convex polytope dual to H(W ) after a coordinate trans-

lation of �P .
k � k 2-norm of a vector.
d1 Distance between P and Q.
d2 Distance between P and O.
z Objective function of Liu’s LP formulation.
zmax Optimal objective value of Liu’s LP formulation.

I. INTRODUCTION

During the past two decades, multifingered grasping was ardently
studied. Many papers can be found on testing and planning force-
closure grasps.

Early in 1983, Salisbury and Roth [1] proposed a necessary and suffi-
cient condition for force closure; that is, the primitive contact wrenches
wij(i = 1; 2; . . . ; n; j = 1; 2; . . . ; m) of the grasp positively span the
whole wrench space 6. This is equivalent to that the origin O of 6

lies strictly inside the convex hull H(W ) of wij(i = 1; 2; . . . ; n; j =
1; 2; . . . ;m) [2], [3]. After that, however, no efficient algorithm was
developed for 3-D frictional grasps to check whether or not O is an
interior point ofH(W ) until Liu [4] put forward a ray-shooting based

Manuscript received March 9, 2004; revised July 8, 2004. This paper was
recommended for publication by Associate Editor Y.H. Liu and Editor F. Park
upon evaluation of the reviewers’ comments. This work was supported by the
National Natural Science Foundation of China under Grant 59685004.

The authors are with the Robotics Institute, Shanghai Jiao Tong Univer-
sity, Shanghai 200030, China (e-mail: yuzheng007@sjtu.edu.cn; whqian@
sh163.net).

Digital Object Identifier 10.1109/TRO.2004.842351

1552-3098/$20.00 © 2005 IEEE



IEEE TRANSACTIONS ON ROBOTICS, VOL. 21, NO. 3, JUNE 2005 471

Fig. 1. Illustration of Lemma 1.

algorithm. The ray used in the algorithm starts from an interior point
P of H(W ) to O and intersects the boundary @H(W ) of H(W ) at
another pointQ. P is taken at the centroid ofwij(i = 1; 2; . . . ; n; j =
1; 2; . . . ;m). Q is detected by linear programming (LP) based on the
duality between convex polytopes. If the distance d1 between P andQ
is larger than that d2 between P and O, then O is an interior point of
H(W ), so the grasp is force closure; otherwise, the grasp is not force
closure, since O is not insideH(W ). Later, the algorithm was applied
to automatic generation of fixtures for polyhedral workpieces [5].

After repeatedly studying Liu’s trailblazing work, we found a
shortcut to make the algorithm simpler. Actually the optimal objective
value of the LP formulation just equals to the ratio of d2 to d1.
More straightforwardly, if the ratio is smaller than unity, the grasp is
force closure; otherwise, the grasp is not force closure. In this way,
computing Q, d1, and d2 is no longer required.

II. KEY TO THE RAY-SHOOTING–BASED ALGORITHM

Theorem 1: A grasp is force closure if and only if d1 is larger than
d2 [4].

The following lemma supports the exactness of Theorem 1.
Lemma 1: Any point on segment PQ except Q is an interior point

of H(W ).
Proof: Since P is an interior point of H(W ), there exists a ball

B(P; r) with center P and radius r lying strictly inside H(W ). Let
S be the convex hull of B(P; r) and Q. As shown in Fig. 1, PQ is
the central axis of S and any point strictly between P and Q is an
interior point of S. From the convexity of H(W ) it follows that S �
H(W ). Thus any point on segment PQ except Q is an interior point
ofH(W ).

Alternatively, the ray PO intersects @H(W ) at a unique point.
The crucial step of the algorithm is to detect the intersection pointQ

of @H(W )with PO, which is a typical ray-shooting problem (see [4],
Definition 2). Liu applied a coordinate translation of �P on points in
the wrench space 6 so that the facet F of H(W ) intersected by PO
can be detected based on the duality between H(W ) and CT (W ),
where

CT (W ) = x 2 6j(wij � P )Tx � 1

for i = 1; 2; . . . ; n; j = 1; 2; . . . ; mg : (1)

After the coordinate translation of �P , the ray-shooting problem is
equivalent to an LP problem

Maximize z = tTx

subject to x 2 CT (W ):
(2)

Suppose that the optimal solution of the LP problem (2) is
E = [e1; e2; . . . ; e6]

T . Then, F lies in the hyperplane

ETx = 1: (3)

Thus, Q is the intersection of the hyperplane (3) with PO.

III. A SHORTCUT

Assume that the coordinate translation is applied so that P moves
to the origin and the origin becomes an interior point of H(W ). Let
zmax(t) denote the optimal objective value of the LP problem (2) with
respect to t

zmax(t) = tTE: (4)

Since H(W ) is a compact convex set that contains the origin as an
interior point, CT (W ) is also a compact convex set containing the
origin as an interior point [6, p. 142]. Thus zmax(t) > 0 for any
nonzero t.

In our opinion, to calculate Q, F is unnecessary. Indeed

Q = zmax(t)
�1t: (5)

Firstly, (5) represents a point on the ray PO. Secondly, after substi-
tuting (4) into (5), the latter satisfies (3). Hence, (5) is the intersection
point of @H(W ) with PO.

Now, we give another proof of the preceding conclusion without in-
troducing F and (3).
Proposition 1: zmax(t)

�1t is a point of @H(W ).
Proof: Since E is the optimal solution of the LP problem (2),

xT zmax(t)
�1t � zmax(t)

�1ET t = 1 for 8x 2 CT (W ). According
to the duality between H(W ) and CT (W ), zmax(t)�1t 2 H(W ).
Suppose that there is a closed ball B(zmax(t)

�1t; r) of radius r > 0
centered at zmax(t)�1t. Let y = zmax(t)

�1t + rt=ktk. Obviously,
y 2 B(zmax(t)

�1t; r). Then, ET y = 1 + rzmax(t)=ktk > 1. Since
E 2 CT (W ), y 62 H(W ) for 8r > 0, which implies zmax(t)�1t 2
@H(W ).
Lemma 2: Q is irrelevant to the magnitude of t.
Proof: Since E is irrelevant to the magnitude of t, from (4) and

(5), zmax(�t)�1�t = zmax(t)
�1t for 8� > 0.

As a consequence of Lemma 2 and Theorem 1, we have the following
theorem.
Theorem 2: zmax(�P ) is the ratio of d2 to d1. If zmax(�P ) < 1,

the grasp is force closure; otherwise, it is not.
Proof: Since Q is irrelevant to the magnitude of t by Lemma 2,

let t = �P . Substituting t = �P into (5) yields

Q = �zmax(�P )�1P:

Then

d1 = �zmax(�P )�1P = zmax(�P )�1kPk:

Since d2 = kPk, we have

zmax(�P ) =
d2
d1
: (6)

From (6), zmax(�P ) < 1 is equivalent to d1 > d2. Thus from
Theorem 1 it follows that a grasp is force closure if and only if
zmax(�P ) < 1.

Theorem 2 reveals the geometric meaning of the optimal objective
value of (2). By doing this, the ray-shooting based algorithm for force-
closure test need not computeQ, d1, and d2, so thatO(1) time is saved
(Steps 4 and 5 in the original algorithm [4] can be eliminated).
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IV. NUMERICAL EXAMPLES

We implement the algorithm using the optimization toolbox of
MATLAB on Pentium-IV PC and verify the shortcut with two exam-
ples. Each friction cone is linearized by a 100-sided polyhedral cone
(m = 100), of which the edge vectors are

dj = 1 � cos
2j�

m
� sin

2j�

m

T

; j = 1; 2; . . . ; m: (7)

Then

sij = Ridj ; i = 1; 2; . . . ; n; j = 1; 2; . . . ;m (8)

where Ri is the relative orientation of the local coordinate frame at
contact i with respect to the object frame.
Example 1: This is the first example in [4], which is a four-fingered

grasp of a polyhedral object. The contact points ri are given by

r1 = [2 0 0]T

r2 = [0 1:5 0]T

r3 = [0 0 2]T

r4 = [1:2 � 2 0]T :

The relative orientations are expressed by

R1 =

�1 0 0

0 0 1

0 1 0

R2 =

0 1 0

�1 0 0

0 0 1

R3 =

0 0 1

0 1 0

�1 0 0

R4 =

0 0 1

1 0 0

0 1 0

:

When � = 0:3, with the CPU time of 4.7 ms, we have

P = [�0:2138 � 0:0667 � 0:2076 0 0 0:1715]T :

Let t = �P . The optimal objective value of (2) is

zmax(�P ) = 1:1926 > 1:

The CPU time is 156.5 ms. Hence, the grasp is not force closure. When
� = 0:5, with the CPU time of 4.6 ms, we obtain

P = [�0:1797 � 0:0456 � 0:1667 0 0 0:1421]T :

Then, with the CPU time of 132.5 ms, the LP problem (2) with respect
to t = �P turns out

zmax(�P ) = 0:7421 < 1:

Thus, the grasp is force closure.
The shortcut reaches the same result as [4].

Fig. 2. Snuff bottle is gripped by (a) a three-fingered hand or (b) a four-
fingered hand.

Example 2: As shown in Fig. 2, it is required to grasp a snuff bottle,
whose body can be expressed by

x = a cos�

y = b1 cos� sin�

z = b2 sin�

where �0 � 4�=5 � � � �0, 0 � � � 2�, �0 = arccos(a=b1),
a = 7:5, b1 = 30, b2 = 35.

Suppose that � = 0:2 at each contact. We first consider a three-
fingered grasp [Fig. 2(a)], whose contacts are at

r1 = [�3:75 18:3712 24:7487]T �1 =
�

4
; �1 =

2�

3

r2 = [0 � 25:9808 17:5]T �2 =
�

6
; �2 =

3�

2

r3 = [6:9291 9:9424 � 17:5]T �3 = �
�

6
; �3 =

�

8
:

The relative orientations are

R1 =

0:7951 0:3082 �0:5222

�0:4869 �0:1888 �0:8528

�0:3614 0:9324 0

R2 =

0 0 1

0:8963 0:4435 0

�0:4435 0:8963 0

R3 =

�0:9927 0:0223 �0:1187

�0:1187 0:0027 0:9929

0:0225 0:9997 0

:

With the CPU times of 3.1 ms and 164.9 ms, we have

P = [�0:0054 0:0422 � 0:0348 � 0:0757 0:5506 � 0:0295]T

zmax(�P ) = 8:0629 > 1:

Thus, the grasp is not force closure.
Next we try a four-fingered grasp [Fig. 2(b)] having contacts

r1 = [�5:3033 18:3712 � 17:5]T �1 = �
�

6
; �1 =

3�

4

r2 = [�3:75 � 18:3712 24:7487]T �2 =
�

4
; �2 =

4�

3

r3 = [6:4952 13:8582 13:3939]T �3 =
�

8
; �3 =

�

6

r4 = [6:4952 � 13:8582 � 13:3939]T �4 = �
�

8
; �4 =

11�

6
:
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The relative orientations are

R1 =

0:9563 �0:0928 �0:2774

�0:2761 0:0268 �0:9608

0:0966 0:9953 0

R2 =

0:7951 0:3082 0:5222

0:4869 0:1888 �0:8528

�0:3614 0:9324 0

R3 =

�0:9876 �0:0271 �0:1544

�0:1543 �0:0042 0:9880

�0:0274 0:9996 0

R4 =

�0:9876 0:0271 0:1544

0:1543 �0:0042 0:9880

0:0274 0:9996 0

:

With the CPU times of 4.7 ms and 175.8 ms, we have

P = [�0:0080 0:0023 � 0:0030 � 0:0449 0:0220 � 0:0359]T

zmax(�P ) = 0:5159 < 1:

Hence, the grasp is force closure.

V. CONCLUSION AND FUTURE WORK

A shortcut is found to simplify Liu’s ray-shooting based algorithm
for force-closure test [4]. The optimal objective value of the LP
problem (2) with respect to t = �P is the ratio of d2 to d1; that
is, zmax(�P ) = d2=d1. If zmax(�P ) < 1, then the grasp is force
closure; otherwise, it is not. Consequently, we can skip the steps
of computing Q, d1, and d2. Having the geometric insight into the
maximum zmax(�P ), we can apply it to optimal grasp planning as a
force-closure index. As this work goes beyond the topic of the paper,
it is decent to leave it for the future.
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The Hierarchical Atlas

Brad Lisien, Deryck Morales, David Silver, George Kantor,
Ioannis Rekleitis, and Howie Choset

Abstract—This paper presents a new map specifically designed for robots
operating in large environments and possibly in higher dimensions. We call
this map the hierarchical atlas because it is a multilevel and multiresolution
representation. For this paper, the hierarchical atlas has two levels: at the
highest level there is a topological map that organizes the free space into
submaps at the lower level. The lower-level submaps are simply a collec-
tion of features. The hierarchical atlas allows us to perform calculations
and run estimation techniques, such as Kalman filtering, in local areas
without having to correlate and associate data for the entire map. This
provides a means to explore and map large environments in the presence
of uncertainty with a process named hierarchical simultaneous localization
and mapping. As well as organizing information of the free space, the map
also induces well-defined sensor-based control laws and a provably com-
plete policy to explore unknown regions. The resulting map is also useful
for other tasks such as navigation, obstacle avoidance, and global localiza-
tion. Experimental results are presented showing successful map building
and subsequent use of the map in large-scale spaces.

Index Terms—Concurrent mapping and localization, generalized
Voronoi diagram, Kalman filtering, mobile robots, simultaneous localiza-
tion and mapping (SLAM), topological maps.

I. INTRODUCTION

This paper presents a new map organization for mobile robots
which embodies scalability in both storage and computation to address
common robot tasks in large-scale environments. These tasks include
simultaneous localization and mapping (SLAM), path planning, global
localization, and obstacle avoidance in nonstatic environments. This
paper addresses each of these tasks, and presents experimental results
obtained with a mobile robot in a large environment containing cycles,
to show how the new map is well-suited to address these tasks.

The successful implementation of these tasks depends on a reliable
and usable map. With the choice of three basic types of maps, topo-
logical, grid-based, and feature-based, it seems that one must settle
for drawbacks inherent in each type in order to take advantage of its
particular benefits. Topological maps scale nicely to large planar envi-
ronments and to environments of higher dimension by storing a min-
imal amount of information. Such a minimalistic representation lacks
the necessary information to localize arbitrarily (can only localize to
nodes in the topological graph) and to disambiguate similar topolog-
ical regions.

Grid-based approaches offer discretized renditions of unstructured
free spaces which can be used for many robot tasks. However, the high
resolution required for accurate representations demands large amounts
of memory to store and computation time to maintain. Feature-based
methods extract distinct landmark features from the environment for
use in robot localization, but do not explicitly address obstacles unless
the obstacles have structured, observable characteristics. Feature- and
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