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Summary. We present an appearance-based localization algorithm for an indoor
environment that is inspired by human’s localization and navigation capabilities.
Our localization approach integrates the Monte-Carlo localization technique with an
omnidirectional image matching algorithm. The approach yields robust localization
outcome with reasonable accuracy even when operating in a large map with sparse
reference images.

1 Introduction

The ability of human beings to use vision to navigate in daily life has inspired
us to investigate vision to be used as a primary external sensor for robot local-
ization. We can remember and relate places without explicitly knowing their
exact locations. This motivates us to develop a vision-based localization algo-
rithm, where the robot recognizes landmarks and uses them to navigate to the
goal. Such approaches have been referred to as appearance-based methods [1].
Our system combines visual information with metrical information, resulting
in a hybrid map consisting of a topology of landmarks (visual images) and
their relative location and orientation (relative odometry).

Recently, a appearance-based localization has gained more popularity
among mobile robotics researchers, perhaps due to the approach being still
under explored and technological advances in computer and vision hardware.
The main difference between appearance-based and other approaches is the
method to represent the environment. The appearance-based approach relies
on remembering features of the environment rather than explicitly model-
ing it. Many work in this field such as [2] and [3] take inspiration from the
biological counterparts.
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Early implementations of appearance-based localization [2] and [4] in-
volved quite complicated image processing techniques. The ultimate aims of
these methods are to find the image stored in the map that best matches a
query image. They were either tested in a static environment or a specially
structured one. More recently, many implementations attempted to deal with
realistic environments. These algorithms incorporated probabilistic techniques
with relatively simpler image processing algorithms. We take this approach to
implement our robot localization. The Monte-Carlo localization (or particle
filters) is specifically studied. The existing work by Gross et al [5], Menegatti
et al [6] and Andreasson et al [7] demonstrate the success of incorporating
the Monte-Carlo localization with omnidirectional vision sensors. Neverthe-
less, there are still challenges before appearance-based localization becomes
pervasive.

An image contains rich information of the environment compared with
other sensor data. However, high computational requirement to interpret the
image prohibits it to be used directly in the localization algorithm. As a
result, many appearance-based localization researchers focus their efforts to
develop methods of extracting robust features from an image. For example, the
Fourier coefficients are used in [6], and the SIFT features are adopted in [7]. In
our previous work [8], we elaborate the technique to extract features directly
from original (circular) omnidirectional images without projecting them to
any other surfaces. This results in a marginal increase in computational speed
and that the locations of features in the image are always spread over the
entire image. Hence, they are naturally robust to occlusion.

The bottle neck of the appearance-based approach is the time spent in
the image matching process in spite of the availability of low dimensional
image features. This limits many approaches and makes them impractical in
very large scale environments. Consequently, we try to ease the limitation by
developing the localization technique to be able to work in a map that has
relatively few reference images of an environment. Although our technique
sacrifices the overall accuracy of the localization system for the applicability
to a large scale map, we can still maintain robustness of the system.

In this paper, we present the main concepts of our localization technique.
We first describe the image matching algorithm that is the crucial component
in our localization implementation. Next, we elaborate the technique to in-
corporate the Monte-Carlo localization (MCL) with our image matching. We
present experimental results, which demonstrate the efficacy of our localiza-
tion. Finally, the conclusions are drawn to summarize our work.

2 Image Matching for the Appearance-based localization

In [8], we presented a method to extract information (image features) di-
rectly from an original omnidirectional image. The summary of image feature
extraction is illustrated in Fig. 1. The method employs the wavelet-based
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Fig. 1. Summary of image feature extraction procedure. The salient locations (cross)
are determined from the input image. The descriptor vector is assigned to each
neighborhood region (sub image.)

salient point identification to select some distinctive locations in the image.
The neighborhood pixels around each salient location are then extracted in a
rotational invariant manner to form a descriptor-vector describing the salient
location. In our implementation, we fix the size of the omnidirectional image
at 224×224 pixels. A total of 80 salient locations are extracted from the image.
The feature point in an image consists of the salient point location (x, y) and
its corresponding descriptor-vector (24 elements). The compactness of feature-
dimensionality reduces computation time involved in the image matching.

Our localization implementation involves two levels of image matchings:
global matching and local matching. The global image matching compares a
query image with all images in the database, whereas the local image matching
determines similarity between the query image and individual database image.
Both global and local matching are independently used in different stages of
our localization algorithm (described in Section 3).

2.1 Global Image Matching

The global image matching adopts the searching technique reported in [9]. The
technique approximately searches the map-database for closest descriptors to
the query vector given the maximum number of descriptor-candidates to be
obtained. This maximum number of candidates is adjusted according to a
compromise between computational speed and accuracy. In particular, we
set the maximum number of candidates at 10% of total descriptors in the
database.

The global matching requires a construction of the KD-Tree of all de-
scriptors for all the images in the database (map). The global matching sub-
mits each descriptor of the query image to search for some closest descriptor-
candidates from the tree. The Euclidean distance between the query descrip-
tor and each candidate is computed. The closest candidates are chosen by a
user-defined threshold in comparing Euclidean distances. A query descriptor
should match only one descriptor from one reference image. If a query descrip-
tor matches with more than one descriptor-candidates from the same reference
image, the pair with smallest Euclidean distance is kept. After obtaining the
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candidates from initial searching, the shortest Euclidean distance among a
query descriptor and descriptor-candidates is identified. The pairs of (query
and database) descriptors that have Euclidean distance smaller than 1.25
times the smallest Euclidean distance are selected as matching candidates.
This searching process is then repeated with new query descriptor until all
query descriptors are matched.

After all query descriptors are matched, the number of matching pairs are
counted for each reference image. The reference images are sorted according
to their numbers of matching pairs. The reference images that have numbers
of matching pairs higher than 80% of the highest number of matching pairs
are kept. This results in a reduced set of reference images where each image
consists of a set of matching pairs. Each reference image is further examined
to remove the matching pairs that are outliers. A matched pair consists of a
pair of feature points in the reference and query image, but may be viewed
from a different angle by the robot. The angle can be obtained by

θqd = tan−1(
ydxq − xdyq

xdxq + ydyq
) (1)

where (xd, yd) and (xq, yq) are the coordinates of the feature point (salient
location) of the reference and query images, respectively. If the match is per-
fect, the angles computed for all matching pairs should be equal. However, in
practice, the angles will vary. We therefore discretize the angles into bins of
45 deg and determine the number of matched pairs in each bin. Pairs in the
bin with the highest number are retained and the pairs in the rest of the bins
are considered as outliers and discarded. Each reference image will then have
a score which is the number of remaining matched pairs. All the scores of the
references images are compared to find the maximum. The maximum is used
as the global score. The results from the global matching are the global score
and the set of reference images that resemble the query image.

2.2 Local Image Matching

The local image matching analyzes similarity between a query image and a
single reference image. Each descriptor of the query image is compared to all
(80) descriptors of the reference image. The pair that has smallest Euclidean
distance is recorded and its corresponding angle computed according to Eq. 1.
This results in an angle for each feature point in the query image. The outliers
are removed in a similar way as described in the previous section. The angle
bin that has the maximum number of feature points is retained and is the local
score, and the angles of the pairs in this bin are averaged. This average is an
estimate of the relative orientation between the query and reference images.
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3 Appearance-based Localization with the Monte-Carlo
Localization

The environment is modeled using a hybrid map between topological and
metrical maps. Since robot’s odometry has accumulated errors, the absolute
position of each map-node is obviously inaccurate. Therefore, our hybrid map
contains only the relative metrical information obtained from the odometry
reading. The map is represented by the graph where nodes are encoded with
the image feature information, and edges are encoded with the relative po-
sition to/from adjacent nodes. The map can be learned quickly using only
information from the odometry and the omnidirectional image. The state
model of a robot in the hybrid map is modeled:

ξξξ(t) = [n, xr, xr, θr]T (2)

where n is the reference node, and (xr, xr, θr) is the position of a robot with
respect to the reference node. The objective of our localization process is to
identify the appropriate reference node that the robot is nearest to.

We aim to develop the appearance-based localization that requires min-
imal computational cost and memory usage to store a map by creating the
map that has fewer reference images. Our localization system does not rely
solely on the image matching, since the image matching results are inaccurate
in many realistic situations. Consequently, the probabilistic approach is incor-
porated to deal with uncertainty and ambiguities of image matching results.
The Monte-Carlo localization (MCL) is specifically studied. The Monte-Carlo
localization represents the belief state of a robot by a set of discrete sam-
ples. Each sample consists of a state of the system of interest (Eq. 2) with an
associated weight indicating its importance.

We observe characteristics of the similarity score from the local matching.
The prominent characteristic is that more than 80% of the query images taken
within 20 cm range from the corresponding reference node have similarity
scores (local score) above 15, whereas the similarity scores of the query images
taken farther from this area vary over a wide range. As a result, we develop the
technique to update the importance weight of a sample with real observation
(via local matching) only when the individual sample is within the 20 cm
range from its reference node.

When a robot is in the sensitive area (within 20 cm range) of any map
node, the similarity score between the query image and the reference image of
the particular map node is likely to be much higher than the score of other map
nodes. Therefore, samples in the that (nearest) reference node are updated
with higher importance weight than the others. Moreover, rotational angle
from local matching is added in the importance weight updating to decrease
matching ambiguities, e.g., other reference nodes also having high similarity
scores. The false reference node often has a random rotational angle with
the query image even though their similarity score is high. Consequently, the
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weight updating of a sample with real observation is evaluated by the function
given in Eq. 3. The weight of a sample outside the range are calculated from
the last actual updated weight with a linear discounting factor proportional
to the distance from the reference node.

wi = exp [−a(s(q, r)− S)− b|φ(q, r)− θr|] (3)

where a, b are the positive arbitrary constants, S is our empirically derived
minimum similarity score, and θr is from the state of the particle (orientation).
s(q, r) and φ(q, r) are the local similarity score and the rotational angle, re-
spectively, between the query image and the reference image of the map node.
In addition, the similarity score s(q, r) is clipped at S if it is larger than S.

Another difference from existing techniques is that we utilize the global
matching to speed up the convergence rate of the particle filter. In particular,
particles are not placed uniformly over all map nodes in the case of unknown
starting position. Furthermore, the global matching is used for re-initializing a
portion of particles after majority of particles converges to one map node. This
criteria is valid when one reference node has number of particles significantly
higher than other nodes. We refer to our re-initialization algorithm as the
Disbelief algorithm.

In the disbelief algorithm, some particles from the prominent node (the
node with maximum number of particles) are randomly removed when the
global score reaches a certain threshold. The removed particles are then placed
at node-outputs from the global matching. Please note that the global score
is computed every time a query image is taken.

3.1 Disbelief Algorithm

We investigate the accuracy the global matching to test its applicability in our
disbelief algorithm. We test by putting a robot within 20 cm radius from any
map node. We then execute our global matching algorithm to see if the set of
nodes/reference images contains the correct map node. We run the algorithm
for map database of size 5 to 50 map nodes, with many runs for each map size
(number of nodes). The number of runs is proportional to the map size. The
global matching produces correct results more than 84% of the time. Fig. 2
shows the average global score of the query images versus number of images
in a map database. The sensitive area is set to be the area within 20 cm radius
from the map node.

As shown in Fig. 2, the averaged global similarity score of the query images
inside the sensitive area of the map node is significantly higher than the global
score of the images outside the sensitive area. Hence, we empirically derive
the minimum global score (disbelief threshold) to indicate that a robot is in
one of the map nodes (hopefully in one of the output map nodes from the
global matching) as:

Td = 5 + 10exp(−0.05N) (4)
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Fig. 2. The average global score of the query images inside and outside the sensitive
area of the map nodes (20 cm radius from the corresponding map node).

where N is the total number of reference images in the database.
Consequently, the disbelief algorithm is set to re-initialize the particle filter

when the global score of the query image is higher than the disbelief threshold
defined in Eq. 4. Moreover, the disbelief algorithm is being activated when
there is only one node that has number of particles significantly (e.g., more
than 20%) higher than the other nodes. The disbelief algorithm randomly
removes 40% of the particles from the prominent node, and then uniformly
places the removed particles over each output nodes from the global matching.

4 Experimental Results

The robot in our experiments was equipped with the central catadioptric
vision sensor as depicted in Fig. 3 (Left). The on-board computer was a note-
book PC (Pentium M processor 1.73 GHz). The computer performed all re-
quired tasks such as image processing, robot control, and localization. The
map database was constructed from the reference images that were captured
at approximately 100 cm interval while the robot was manually controlled
along the route shown in Fig. 3 (Right); a total of 72 reference images were
taken. Moreover, The number of particles in all experiments was fixed at 720
particles. During localization phase, the query image was captured when ei-
ther the robot had moved by 10 cm or turned by 30 degrees.

The first experiment was conducted to evaluate the overall performance of
our localization. Two scenarios were tested by manually controlling a robot
to travel along the route that the map was built. The robot was moving from
the node number 1 to 72 in the first test, whereas the robot was moving in the
reverse order during the second test. At the start of localization process, the
robot did not have the true position information. The particles initialization
was done by using the global matching to select starting nodes. The video
clips of the user interface program of this experiment can be found at the
url: http://guppy.mpe.nus.edu.sg/∼manna/localization. The big green dot in
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Fig. 3. (Left) the robot for the experiments was equipped with the omnidirectional
camera. (Right) the floor plan of the laboratory, and the traveling route of the robot
during map learning phase.

the user interface indicates the estimated reference node, and the blue dot
indicates true location of the robot.

Table 1 presents the performance after completing both tests. The false
localization time was counted if the estimated reference node is farther than
200 cm from the true position of the robot. The loss time was counted when
the estimated reference node has less than 30% of the total particles. The
results in Table 1 show that our localization algorithm is able to localize the
robot within the position error range of 200 cm. However, both scenarios show
some false localization (the estimated robot location is farther than 200 cm
from the true location). This is because the method to select reference node is
based on identifying the node with maximum number of particles. Therefore,
there are some occasions that the correct reference node has lower number of
particles than other nodes.

Table 1. Performance of our localization algorithm

Localization Outcome (100%)
Trial Correct False Loss

1 79.9 16.2 3.9
2 66.9 28.3 4.8

The kidnapping situation was tested in the second experiment. After the
particles has converged to correct location, the robot was manually lifted
and then placed somewhere in the map without informing the robot. Four
kidnapping attempts were conducted to verify whether the robot was able to
recover from localization errors. The average time steps spent before the robot
discovered the correct reference node was 125 steps. However, there were some
kidnapping trials took much longer time to discover the robot’s true position.
The snapshots of the distribution of particles during the first kidnapping trial
is depicted in Fig. 4. In the figure, the square with cross mark indicates the
estimated reference node, and the star shows the true location of the robot.
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The small dots are the particles where more particles near each other are seen
as blobs. Note that some particles appear in infeasible areas such as being in
tables or being outside the lab. This is because our map does not contain any
information regarding these infeasible areas.

5 Conclusion and Research Perspective

We present our appearance-based localization technique that utilizes omni-
directional image and robot’s odometry information. The technique requires
less reference nodes to localize a robot with reasonable accuracy. Hence, our
algorithm is able to extend to larger working environment easily. The future
development is to enhance the robot’s capability to incrementally build the
map from scratch, and to use that map to localize itself.
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Fig. 4. Snapshots of particle distribution during the first kidnapping trials. The
robot was kidnapped immediately after time step 80th. The star indicates the true
position of a robot, and the square with cross mark indicates the estimated location.




