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Abstract
A prediction rule in binary classification that
aims to achieve the lowest probability of mis-
classification involves minimizing over a non-
convex, 0-1 loss function, which is typically a
computationally intractable optimization prob-
lem. To address the intractability, previous meth-
ods consider minimizing the cumulative loss –
the sum of convex surrogates of the 0-1 loss of
each sample. We revisit this paradigm and de-
velop instead an axiomatic framework by propos-
ing a set of salient properties on functions for bi-
nary classification and then propose the coherent
loss approach, which is a tractable upper-bound
of the empirical classification error over the en-
tire sample set. We show that the proposed ap-
proach yields a strictly tighter approximation to
the empirical classification error than any convex
cumulative loss approach while preserving the
convexity of the underlying optimization prob-
lem, and this approach for binary classification
also has a robustness interpretation which builds
a connection to robust SVMs.

1. Introduction
The goal of supervised learning is to predict an unobserved
output value y from an observed input x. This is achieved
by learning a function relationship y ≈ f(x) from a set
of observed training examples {(yi,xi)}mi=1. The quality
of predictor f(·) is often measured by some loss function
ℓ(f(x), y). A typical statistical setup in machine learning
assumes that all training data and testing samples are IID
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samples drawn from an unknown distribution µ, and the
goal is to find a predictor f(·) such that the expected loss
E(y,x)∼µℓ(f(x), y) is minimized. Since µ is unknown, the
expected loss is often replaced by the empirical loss

Lemp(f) ≜
1

m

m∑
i=1

ℓ(f(xi), yi). (1)

Minimizing Lemp(f), as well as numerous regularization
based variants of it, is one of the fundamental cornerstones
of statistical machine learning (e.g., Vapnik & Lerner,
1963; Vapnik & Chervonenkis, 1991; Poggio et al., 2004).

This paper focuses on binary classification problems,
where y ∈ {−1,+1}. A point (y,x) is correctly pre-
dicted if sign(f(x)) = y, and its classification error is
given by the 0-1 loss ℓ(f(xi), yi) = 1(y ̸= sign(f(x)) =
1(yf(x) ≤ 0). Due to the non-convexity of the indica-
tor function, minimizing the empirical classification error∑

i 1(yif(xi) ≤ 0) is known to be NP-hard even to ap-
proximate (Arora et al., 1997; Ben-David et al., 2003). A
number of methods have been proposed to mitigate this
computational difficulty, all based on the idea that to mini-
mize the “cumulative loss”, which is the sum of individual
losses given by,

Lϕ(f) ≜
1

m

m∑
i=1

ϕ(yf(x))

where ϕ(·) is a convex upper bound of the classification
error 1(yf(x) ≤ 0). For example, AdaBoost (Freund &
Schapire, 1997; Friedman et al., 2000; Schapire & Singer,
1999) employs the exponential loss function exp(−yf(x)),
and Support Vector Machines (SVMs) (Boser et al., 1992;
Cortes & Vapnik, 1995) employ a hinge-loss function
max{1− yf(x), 0}.

In this paper we revisit this paradigm, and introduce a no-
tion termed coherent loss, as opposed to cumulative loss
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used in the conventional approach. Briefly speaking, in-
stead of using an upper bound of the individual classifi-
cation error (the 0-1 loss), we propose to use a tractable
upper bound of the total empirical classification error for
the whole training set. That is, we look for Φ : ℜm 7→ ℜ
such that

Φ(c1, · · · , cm) ≥ 1

m

m∑
i=1

1(ci ≤ 0), ∀(c1, · · · , cm) ∈ ℜm.

Intuitively, since coherent loss functions are more general
than cumulative loss functions, one may expect to obtain
a tighter and still tractable bound of the empirical classifi-
cation error via coherent loss function. We formalize this
intuition in this paper. Specifically, our contributions in-
clude the followings.

In Section 2, we consider a principled approach by formal-
izing the salient properties of functions, termed as coherent
classification loss functions, that could be used to quan-
tify the performance of a classification rule. These func-
tions have dual-representations which enable us to identify
the minimal coherent classification loss function, which,
loosely speaking, is the coherent classification loss function
that best approximates the 0-1 loss, which also achieves a
tighter bound of the empirical classification error than any
convex cumulative loss. We show that optimizing this func-
tion is equivalent to a convex optimization problem, and
hence tractable.

In Section 3, we consider an equivalent form of the coher-
ent loss function and then provide several applications of
this loss function in classification problems. We remark
that a tighter approximation of the 0-1 loss can potentially
reduce the impact of outliers on the classification accuracy.
Cumulative loss function may significantly deviate from
the 0-1 loss when c ≪ 0. Consequently, a misclassified
outlier can incur a huge loss, and prevents an otherwise
perfect prediction rule from being selected. This sensitiv-
ity can be mitigated by a tighter approximation.

Section 4 provides a statistical interpretation of minimiz-
ing the coherent loss function. Section 5 reports the exper-
imental results which show that our classification method
outperforms the standard SVM when additional constraints
are imposed on the decision function.

Notations: We use boldface letters to represent column
vectors, and capital letters for matrices. We reserve e for
special vectors: ei is the vector whose i-th entry is 1, and
the rest are 0; eN , where N is an index set, is the vector
that for all i ∈ N , the corresponding entry equals 1, and
zero otherwise; e is the vector with all entries equal to 1.
The i-th entry of a vector x is denoted by xi. We use [c]+ to
denote max{0, c} and 1[·] to denote the indicator function,
and let Pm be the set of all m × m permutation matrices
and Ip be the p× p identity matrix.

2. Coherent Classification Loss Function
We now propose the notion of coherent classification loss
functions based on an axiomatic approach. Along the way,
we show the existence of a “tight” coherent classification
loss function which can achieve better approximation of
the empirical classification error than any convex cumu-
lative loss. The definition of the coherent classification
loss function is motivated from analyzing the salient prop-
erties of functions used to quantify the performance of a
classification rule. A natural approach is to elicit these
properties from the classification error. Specifically, given
u1, · · · , um where ui the “decision value” of the ith sam-
ple, e.g. ui = yif(xi), the classification error ϱ : ℜm 7→
[0, 1] is given by

ϱ(u1, . . . , um) =
1

m

m∑
i=1

1[ui < 0]. (2)

We will next propose a set of properties and that functions
endowed with these properties are known as coherent clas-
sification loss functions.

2.1. Salient Properties and Representation Theorem

We elicit the five salient properties from the classification
error as follows. Consider ρ(·) : ℜm → [0, 1].

Property 1 (Complete classification). ρ(u) = 0 if and only
if u ≥ 0.

Complete classification essentially says if every sample is
correctly classified, then it is optimal.

Property 2 (Misclassification avoidance). If u < 0, then
ρ(u) = 1.

This property states that if all samples are misclassified,
then it is the worst classification and hence ρ(·) achieves
the maximal value.

Property 3 (Monotonicity). If u1 ≥ u2 then ρ(u1) ≤
ρ(u2).

Monotonicity requires that if a decision better classifies ev-
ery sample, then it is more desirable.

Property 4 (Order invariance). For any P ∈ Pm, we have
ρ(u) = ρ(Pu).

Order invariance essentially states that the order of the sam-
ples does not matter. This is natural in the classification
problem, since each sample is drawn IID, and is treated
equally.

Property 5 (Scale invariance). For all α > 0, ρ(αu) =
ρ(u).

Scale invariance is a property that the classification error
function satisfies. It essentially means that changing the
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scale does not affect the preference between classifiers.
While it may be debatable whether scale invariance is as
necessary as other properties, indeed as we show later in
this section, this property can be relaxed.
Definition 1 (Coherent Classification Loss). A function
ρ(·) : ℜm → [0, 1] is a coherent classification loss function
(CCLF) if it satisfies Property 1 to 5, and is quasi-convex
and lower semi-continuous.

Here, quasi-convexity and semi-continuity are introduced
to for tractability. Our first result is a (dual) representation
theorem of any CCLF. We need the following definition
first.
Definition 2 (Admissible Class). A class of sets Vk ⊆ ℜm

parameterized by k ∈ [0, 1] is called admissible class, if
they satisfy the following properties:

1. For any k ∈ [0, 1], Vk is a closed, convex cone, and
is order invariant. Here, being order invariant means
that v ∈ V implies Pv ∈ V for any P ∈ Pm;

2. k ≤ k′ implies Vk ⊆ Vk′;

3. V1 = cl(limk↑1 Vk) and V0 = limk↓0 Vk.

4. V1 = ℜm
+ ;

5. For any λ > 0, we have λe ∈ V0.

Theorem 1 (Representation Theorem). A function ρ(·) is
a CCLF if and only if it can be written as

ρ(u) = 1− sup{k ∈ [0, 1]| sup
v∈Vk

(−v⊤u) ≤ 0}, (3)

for an admissible class {Vk}. Here sup over an empty set
is set as 0.

Proof. We sketch the proof and leave the details in the
supplementary material. The “if” part is relatively easy,
by checking that any function ρ(u) = 1 − sup{k ∈
[0, 1]| supv∈Vk

(−v⊤u) ≤ 0} for some admissible class
{Vk} satisfies all properties required for a CCLF.

The “only if” part requires more work. We want to show
that given a function ρ(·) which is a CCLF, it can be rep-
resented as (3) for some admissible class {Vk}. The proof
consists of three steps: We first show that ρ(·) can be repre-
sented as ρ(u) = 1− sup{k ∈ [0, 1]| supv∈Vk

(−v⊤u) ≤
0}, for some {Vk}, not necessarily admissible. This es-
sentially follows from a result in Brown & Sim (2009). We
then show that we can replace Vk by a class of closed, con-
vex, order-invariant, cones Vk. Specifically, we can pick
Vk ≜ cl(cc(or(Vk))), where or(·) (respectively cc(·)) is
the minimal order invariant (respectively, convex cone) su-
perset. Finally we show that {Vk} is admissible, by check-
ing that all properties in Definition 2 are satisfied, to com-
plete the proof.

2.2. Minimal coherent classification loss function

This section shows that among all CCLF functions that
upper-bound the classification error, there exists a minimal
(i.e., best) one.
Theorem 2. Define ρ(·) : ℜm 7→ [0, 1] as follows

ρ(u) =
max{t :

∑t
i=1 u(i) < 0}
m

,

where {u(i)} is a permutation of {ui} in a non-decreasing
order, and max over an empty set is taken as zero. Then
the following holds.

1. ρ(·) is a CCLF, and is an upper-bound of the classifi-
cation error, i.e., ρ(u) ≥ ϱ(u), ∀u ∈ ℜm.

2. Let Vk ⊂ ℜm satisfy that if k = 0, then Vk =
conv {λe|λ > 0}; and if s

m < k ≤ s+1
m for s =

0, · · · ,m− 1, then

Vk = conv {λeN | ∀λ > 0, ∀N : |N | = m− s} ,

where N is an index set. Then {Vk} is an admissible
class corresponding to ρ(·).

3. ρ(·) is the tightest CCLF bound. That is, if ρ′(·) is
a CCLF function and satisfies ρ′(u) ≥ ϱ(u) for all
u ∈ ℜm, then ρ′(u) ≥ ρ(u) for all u ∈ ℜm.

Proof. We provide a sketch of the proof and leave the de-
tails to the supplementary material. Claim 1 is relatively
straightforward. It is also easy to see that Vk is an ad-
missible set. So one only needs to show that Vk is the
set corresponding to ρ(·), to establish Claim 2. To show
Claim 3, we let {V′

k} be an admissible class corresponding
to ρ′(·), and show that λeN ∈ V′

k, which further implies
Vk ⊆ V′

k. This establishes claim 3.

We next show that scale invariance can be relaxed. In-
deed, for any quasi-convex upper bound of classification
error that satisfies other properties, the minimal CCLF is a
tighter bound.
Theorem 3. Let ρ̂ : ℜm 7→ [0, 1] be a quasi-convex
function that satisfies complete classification, misclassifi-
cation avoidance, monotonicity, order invariance, and that
ρ̂(u) ≥ ϱ(u). Then there exists a CCLF ρ(·) such that

ϱ(u) ≤ ρ(u) ≤ ρ(u) ≤ ρ̂(u), ∀u ∈ ℜm.

Proof. We sketch the proof. The main idea is to construct
such a function

ρ(u) ≜ lim
ϵ↓0

[min
γ>0

ρ̂((u+ ϵ)/γ)],

and show that ρ(·) is a CCLF and ˆρ(u) ≥ ρ(u) ≥ ϱ(u).
Finally, since ρ(·) is the minimal CCLF, this completes the
proof.
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One important property of ρ(·) is that it achieves better ap-
proximation of the empirical classification error than any
convex cumulative loss.

Theorem 4. If f(·) is a convex function and an up-
per bound of the 0-1 loss function, then for any u =
(u1, · · · , um), we have ϱ(u) ≤ ρ(u) ≤ 1

m

∑m
i=1 f(ui).

Proof. Without loss of generality, assume (u1, · · · , um)
are in a non-decreasing order. Let p ≜ max{i|ui < 0} and
q ≜ max{t|

∑t
i=1 ui < 0}, then

∑q
i=1 ui =

∑p
i=1 ui +∑q

i=p+1 ui < 0.

Since f(·) is convex and f(x) ≥ 1[x ≤ 0], there exists
k ≤ 0 such that f(x) ≥ max{kx+ 1, 0} (this can be done
for example by taking k as a subgradient of f(x) at x = 0).
If k = 0, then 1

m

∑m
i=1 f(ui) ≥ 1 ≥ ρ(u), the theorem

holds. Otherwise k < 0, we have

m∑
i=1

f(ui) ≥
p∑

i=1

(kui + 1) +

m∑
i=p+1

f(ui)

= p+ k

p∑
i=1

ui +
m∑

i=p+1

f(ui)

> p− k

q∑
i=p+1

ui +

m∑
i=p+1

f(ui)

≥ p+

q∑
i=p+1

(f(ui)− kui).

Note that ui ≥ 0 for i = p + 1, · · · ,m, then if ui ≥ − 1
k ,

f(ui) − kui ≥ −kui ≥ 1. Otherwise f(ui) − kui ≥
kui + 1 − kui = 1. Hence, p +

∑q
i=p+1(f(ui) − kui) ≥

p + (q − p) = q. By the definition of ρ(u), the theorem
holds.

2.3. Optimization with the coherent loss function

We now discuss the computational issue of optimization
of the minimal CCLF ρ(·). Indeed, we show that this can
be converted to a tractable convex optimization problem.
Specifically, we consider the following problem on vari-
ables (u,w):

min ρ(u)

s.t. fj(u,w) ≤ 0; j = 1, · · · , n,
(4)

where fi(·, ·) are convex functions. We have the following
theorem.

Theorem 5. Assume complete classification is not achiev-
able, i.e., there is no feasible (u,w) with u ≥ 0. Let
(s∗, t∗, h∗) be an optimal solution to the following opti-

mization problem:

min
h,s,t

1

m

m∑
i=1

[1− si]+

s.t. hfj(s/h, t/h) ≤ 0; j = 1, · · · , n;
h > 0.

(5)

Then (s∗/h∗, t∗/h∗) is an optimal solution to Problem (4).

Proof. We provide a sketch of the proof. We first show that
the level set of Problem (4), i.e., Ui ≜ {(u,w) | ρ(u) ≤
1 − i/m; fj(u,w) ≤ 0,∀j} for i = 1, · · · ,m, equals the
following

{(u,w)| ∃d :
m∑
i=1

[d− ui]+ ≤ (m− i+ 1)d;

fj(u,w) ≤ 0, ∀j.}

This can be proved by applying the Theorem 2, and then
using duality of linear program. This set can further be
shown equivalent to the feasible set of

m∑
i=1

[1− ui/d]+ ≤ (m− i+ 1) (6)

fj(u,w) ≤ 0; j = 1, · · · , n.

Thus, finding the optimal solution to Problem (4) is equiv-
alent to solve the following problem

min
m∑
i=1

[1− ui/d]+

s.t. fj(u,w) ≤ 0; j = 1, · · · , n;
d > 0.

(7)

Then let h = 1/d, s = hu and t = hw, the theorem is
established.

Notice that hfj(s/h, t/h) is the perspective function of
fj(·, ·), and is hence jointly convex to (h, s, t) (Boyd &
Vandenberghe, 2004). Thus, Problem (5) is equivalent to a
tractable convex optimization problem.

3. Equivalent Formulation and Applications
From Theorem 5, when there is no (u,w) such that u ≥ 0
and fj(u,w) ≤ 0 for j = 1, · · · , n, Problem (4) is equiva-
lent to minimizing the following optimization problem:

min Φ(u)

s.t. fj(u,w) ≤ 0; j = 1, · · · , n,
(8)

where Φ(u) is defined by

Φ(u) ≜ min
γ>0

1

m

m∑
i=1

[1− ui/γ]+. (9)
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From this formulation, we also show, from another per-
spective, that minimizing the coherent loss function is
equivalent to minimizing a “tighter” upper bound of the 0-1
loss function, or in other words, the coherent loss function
achieves better approximation of the empirical classifica-
tion error than any convex cumulative loss.

Theorem 6. Let ϕ : ℜ 7→ ℜ+ be a non-increasing, convex
function that satisfies

ϕ(c) ≥ 1(c ≤ 0), ∀c ∈ ℜ.

Then we have for all u ∈ ℜm:

1

m

m∑
i=1

1(ui ≤ 0) ≤ Φ(u) ≤ 1

m

m∑
i=1

ϕ(ui).

Proof. Recall that the hinge-loss ϕ∗
1(c) ≜ [1 − c]+ is the

tightest convex bound of 0-1 loss which has a derivative
(or sub-gradient) −1 at c = 0 (e.g., (Schölkopf & Smola,
2002)). That is, if a convex function ϕ(·) satisfies ϕ(c) ≥
1(c ≤ 0),∀c, and also satisfies −1 ∈ ∂ϕ(0), then ϕ∗

1(c) ≤
ϕ(c) for all c. Similarly, ϕ∗

γ(c) ≜ max[1 − c/γ]+ is the
tightest convex bound of 0-1 loss with a derivative −1/γ at
x = 0. Since ϕ(·) is non-increasing, it can not have positive
derivative at c = 0. Thus, Φ(·) is a tighter bound than any
non-increasing, convex cumulative loss functions.

Recall that (8) is equivalent to the following convex opti-
mization problem

min
h,s,t

1

m

m∑
i=1

[1− si]+

s.t. hfj(s/h, t/h) ≤ 0; j = 1, · · · , n;
h > 0,

(10)

which can be solved efficiently. We now provide some ap-
plications of the proposed coherent loss function.

At first, we illustrate with an example, that the pro-
posed coherent loss function can be more robust to
outliers. Let u1,u2 ∈ R100 be the followings:
u1 = (−1000, 1000, 1000, · · · , 1000), and u2 =
(+1,−1,+1,−1, · · · ,+1,−1). In this case, u2 appears
to be a less favorable classification since 50% of samples
are misclassified. It is easy to check that u1 incurs a much
larger hinge-loss than u2, even though only one sample is
misclassified. In contrast, the coherent loss of u1 is no
more than 0.02 (take γ = 1/1000), and that of u2 is at
least 0.5 (since 50% samples are misclassified, and the co-
herent loss is an upper bound). Thus, the coherent loss is
more robust in this example, partly because it better ap-
proximates the 0-1 loss, and hence is less affected by large
outliers. See Figure 1.

−1000 −500 0 500 1000
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

w
2

w
1

outlier

Figure 1. Illustration of the effect of outliers to the cumulative loss
vs the coherent loss. Here, w1 has a margin u1, and w2 has a
margin u2. The cumulative loss approach will pick w2, where the
proposed method will pick w1, which is a better classification.

EXAMPLE: LINEAR SVM

We illustrate the proposed method with the linear classifi-
cation problem, and in particular, the linear Support Vector
Machines algorithm (SVMs) (Boser et al., 1992; Cortes &
Vapnik, 1995; Schölkopf & Smola, 2002). Given m train-
ing samples (yi,xi)

m
i=1, the goal is to find a hyperplane that

correctly classify as many training samples as possible with
a large margin, which leads to the following formulation:

min
1

m

m∑
i=1

1[yi(w
⊤xi + b) ≤ 0]

s.t. ∥w∥2 ≤ C

(11)

for a given C > 0. Since the objective function is non-
convex, Problem (11) is an intractable problem. Hence,
SVM uses the hinge-loss function ϕ∗

1(c) = [1 − c]+ as a
convex surrogate.

Following the proposed coherent loss function approach,
we minimize the 0-1 loss function with margin a ≥ 0:
1
m

∑m
i=1 1[yi(w

⊤xi + b) ≤ a] and replace this objec-
tive function by the coherent loss function ρ(u) where
ui = yi(w

⊤xi + b) − a (Margin a makes the condition
in Theorem 5 hold, and the approximation of this 0-1 loss
function by using the hinge-loss function still leads to the
standard SVM). Then we obtain the following formulation,

min
w,b,γ>0

1

m

m∑
i=1

[1− (yi(w
⊤xi + b)− a)/γ]+

s.t. ∥w∥2 ≤ C.

(12)

As discussed above, we can change variables h = 1/γ,
ŵ = w/γ and b̂ = b/γ, and simplify Formulation (12) as
the following:

min
ŵ,b̂,h>0

1

m

m∑
i=1

[1 + ah− yi(ŵ
⊤xi + b̂)]+

s.t. ∥ŵ∥2 ≤ hC.
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This is also equivalent to the robust formulation of SVM
(Shivaswamy et al., 2006):

min
w,b,ξ

m∑
i=1

ξi

s.t. inf
x̃i∼(xi,I)

P[yi(w⊤x̃i + b) ≥ 1− ξi] ≥ 1− κ,

where x̃i ∼ (xi, I) denotes a family of distributions which
have a common mean xi and covariance I, and κ ≜
a2/(a2 + C2).

We next consider the case where one may like to impose
additional constraints on w. For instance, if the first feature
is measured from a less reliable source, then an ideal clas-
sification rule should discount the importance of the first
feature, by imposing a constraint like |w1| ≤ 0.001. Thus,
the linear classification problem becomes

min
w,b

1

m

m∑
i=1

1[yi(w
⊤xi + b) ≤ a]

s.t. ∥w∥2 ≤ C

Aw ≤ d.

Using the coherent loss to replace the objective function,
and simplifying the resulting formulation, we obtain the
following second order cone program

min
ŵ,b̂,h

1

m

m∑
i=1

[1 + ah− yi(ŵ
⊤xi + b̂)]+

s.t. ∥ŵ∥2 − Ch ≤ 0

Aŵ ≤ dh

h > 0.

Finally, we remark that the coherent loss approach can be
kernelized, since a representation theorem (Schölkopf &
Smola, 2002) still holds if the coherent loss function is
used.

EXAMPLE: MULTI-CLASS SVM

The coherent loss function can also be applied in multi-
class classification problems. The main idea of previous
approaches (Liu & Shen, 2006; Lee et al., 2004; Crammer
& Singer, 2002) of multi-class SVMs is solving one single
regularization problem by imposing a penalty on the values
of fy(x) − fz(x) for sample (x, y) where fy(·) and fz(·)
are decision function for class y and z, respectively. Sup-
pose that the training samples are drawn from k different
classes and the decision function fy(x) = w⊤

y x + by for
each y = 1, · · · , k. Consider the following 0-1 loss penalty

formulation:

min
fi

1

m

m∑
i=1

1

[
min

z∈[k],z ̸=yi

{fyi(xi)− fz(xi)} ≤ a

]
s.t. Gi(wi) ≤ C; i = 1, · · · , k

k∑
i=1

fi = 0,

where
∑k

i=1 fi = (
∑k

i=1 wi,
∑k

i=1 bi), Gi(·) is convex
(e.g. Gi(·) = ∥ · ∥2) and margin a ≥ 0, then we can apply
the coherent loss function approach to make an approxima-
tion:

min
fi,γ>0

1

m

m∑
i=1

[
1−

minz∈[k],z ̸=yi
{fyi(xi)− fz(xi)} − a

γ

]
+

s.t. Gi(wi) ≤ C; i = 1, · · · , k
k∑

i=1

fi = 0,

which can be simplified as the following:

min
f̂i,h>0

1

m

m∑
i=1

[
1 + ah+ max

z∈[k],z ̸=yi

{f̂z(xi)− f̂yi(xi)}
]
+

s.t. hGi(ŵi/h) ≤ hC; i = 1, · · · , k
k∑

i=1

f̂i = 0,

where f̂i(x) = ŵ⊤
i x + b̂i. Clearly, this is a convex opti-

mization problem and can be solved efficiently.

4. Statistical Property
In this section, we provide a statistical interpretation of
minimizing the coherent loss function. As standard in
learning theory, we assume that the training samples are
drawn IID from an unknown distribution P, and the goal is
to find a predictor f(·) such that the classification error of
f given below is as small as possible:

L(f(·)) = E(x̃,ỹ)∼P[I(f(x̃), ỹ)].

Here (x̃, ỹ) ∼ P means sample (x̃, ỹ) follows the distri-
bution P, and I(f(x̃), ỹ) = 1[ỹf(x̃) ≤ 0]. Recall that
minimizing the coherent loss function is equivalent to min-
imizing the following function

Φ(u) ≜ min
γ>0

1

m

m∑
i=1

ϕγ(ui),

where ϕγ(u) = max{0, 1 − u/γ}. Let η(x) = P[ỹ =
1|x̃ = x], then the optimal Bayes error L∗ = L(2η(·)− 1).
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We now develop an upper bound of the difference between
L(f(·)) and L∗ using similar techniques in Zhang (2004).

For fixed γ, denote the expected loss of f(·) w.r.t ϕγ(·) by

Qγ(f(·)) = E(x̃,ỹ)∼P[ϕγ(ỹf(x̃))],

and define

Qγ(η, f) = ηϕγ(f) + (1− η)ϕγ(−f)

∆Qγ(η, f) = Qγ(η, f)−Qγ(η, f
∗
γ (η)),

where f∗
γ (η) = argminf Qγ(η, f). Recall that ϕγ(u) =

max{0, 1− u/γ}, which implies f∗
γ (η) = sign(2η − 1)γ.

Then we have the following lemma.

Lemma 1. For γ > 0, we have ∆Qγ(η, 0) = |2η − 1|.

Proof. From the definition of Qγ(η, f) and ∆Qγ(η, f), we
have

∆Qγ(η, f)

=η(ϕγ(f)− ϕγ(f
∗
γ (η))) + (1− η)(ϕγ(−f)− ϕγ(−f∗

γ (η)))

=ηmax{0, 1− f/γ}+ (1− η)max{0, 1 + f/γ}−
η(max{0, 1− sign(2η − 1)})−
(1− η)(max{0, 1 + sign(2η − 1)})

=ηmax{0, 1− f/γ}+ (1− η)max{0, 1 + f/γ}
− 1 + |2η − 1|.

This implies that ∆Qγ(η, 0) = |2η − 1|.

By applying the lemma above, we can bound the
classification error of f(·) w.r.t ϕγ(·) in terms of
Ex̃∆Qγ(η(x̃), f(x̃)).

Theorem 7. For any γ > 0 and any measurable function
f(x), we have

L(f(·))− L∗ ≤ Ex̃∆Qγ(η(x̃), f(x̃))

= Ex̃[Qγ(η(x̃), f(x̃)) + |2η(x̃)− 1| − 1].

Proof. By definition of L(·), it is easy to verify that

L(f(·))− L(2η(·)− 1)

=Eη(X)≥0.5,f(X)<0(2η(X)− 1)+

Eη(X)<0.5,f(X)≥0(1− 2η(X))

≤E(2η(X)−1)f(X)≤0|2η(X)− 1|.

From Lemma 1 ∆Qγ(η, 0) = |2η − 1|, we have

L(f(·))− L∗ ≤ E(2η(x̃)−1)f(x̃)≤0∆Qγ(η(x̃), 0).

To complete the proof, since ∆Qγ(η, f) = Qγ(η, f) −
Qγ(η, f

∗
γ (η)), it suffices to show that Qγ(η(x), 0) ≤

Qγ(η(x), f(x)) for all x such that (2η(x) − 1)f(x) ≤ 0.
To see this, we consider three scenarios:

• η > 0.5: We have f∗
γ (η) = sign(2η − 1)γ > 0. In

addition, (2η−1)f ≤ 0 implies that f ≤ 0. Since 0 ∈
[f, f∗

γ (η)] and the convexity of Qγ(η, f) w.r.t. f , we
have Qγ(η, 0) ≤ max{Qγ(η, f), Qγ(η, f

∗
γ (η))} =

Qγ(η, f).

• η < 0.5: In this case we have f∗
γ (η) < 0 and

f ≥ 0, which leads to 0 ∈ [f∗
γ (η), f ], which implies

that Qγ(η, 0) ≤ max{Qγ(η, f), Qγ(η, f
∗
γ (η))} =

Qγ(η, f).

• η = 0.5: Note that f∗
γ = 0, which implies that

Qγ(η, 0) ≤ Qγ(η, f) for all f .

From the proof of Lemma 1, we have ∆Qγ(η, f) =
Qγ(η, f) + |2η − 1| − 1. Hence the theorem holds.

Corollary 1. For any measurable function f(x),

L(f(·))− L∗ ≤ min
γ>0

Ex̃[Qγ(η(x̃), f(x̃))+

|2η(x̃)− 1| − 1].
(13)

Proof. Since Theorem 7 holds for any γ > 0, we obtain
this corollary.

For the training samples {xi, yi}mi=1, since η(xi) = yi ∈
{1,−1}, the empirical estimation of the bound in (13) is
Φ(u) = minγ>0

1
m

∑m
i=1 ϕγ(ui) where ui = yif(xi),

which implies that minimizing the coherent loss function
is equivalent to minimizing the empirical bound of the dif-
ference between L(f(·)) and L∗.

5. Simulations
We report some numerical simulation results in this section
to illustrate the proposed approach. Besides the regulariza-
tion constraints (e.g. ∥w∥ ≤ C for binary-class SVMs and
∥wi∥ ≤ C, i = 1, · · · , k for multi-class SVMs), we con-
sider the case where additional linear constraints are also
imposed on the coefficient w. For clarity, we choose a sim-
ple additional constraint ∥Aw∥∞ ≤ T to compare the per-
formance of the cumulative loss formulation (SVM) and
our coherent loss formulation (CCLF) for binary-class and
multi-class classification, where A = [Ik,0] ∈ Rk×n. In
other words, the constraint ensures that the maximum of
the first k elements of w is bounded by T . We now com-
pare their performance under two cases: 1) k is fixed, T
varies; 2) T is fixed, k varies.

Three binary-class datasets “Breast cancer”, “Ionosphere”
and “Diabetes”, and two multi-class datasets “Wine” and
“Iris” from UCI (Asuncion & Newman, 2007) are used,
where we randomly pick 50% as training samples, 20% as
validation samples, and the rest as testing samples. For
the cumulative loss formulation approach, parameter C is
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Figure 2. Performance comparison of cumulative loss approach
vs coherent loss approach where bound T is fixed and the fraction
k/n varies from 0.0 to 1.0. Left and right columns report the
classification errors for the two cases T = 0.1 and T = 0.3.

determined by cross-validation. For the coherent loss for-
mulation approach, parameter C is fixed while parameter
a is determined by cross-validation. For each T , we re-
peated the experiments 20 times and computed the aver-
age classification errors. To solve the resulting optimiza-
tion problems, we use CVX (Grant & Boyd, 2011; 2008),
and Gurobi (Gurobi Optimization, 2013) as the solver.

Figure 3 shows the simulation results under fixed k.
Clearly, when additional constraints are imposed, it ap-
pears that the coherent loss approach consistently outper-
forms the cumulative loss approach. When T is small, the
cumulative loss approach performs much worse. When T
becomes large, its performance can be close to the coher-
ent loss approach. Figure 2 provides the results under fixed
T , which shows that the coherent loss and cumulative loss
approaches have similar performance when k/n is small
but the coherent loss approach outperforms the cumulative
loss approach when k/n is large. We believe that these phe-
nomena are due to the fact that the coherent loss is a better
approximation for the empirical classification error.

6. Conclusion
In this paper, we revisit the standard cumulative-loss ap-
proach in dealing with the non-convexity of the 0-1 loss
function in classification, namely minimizing the sum of
convex surrogates for each sample. We propose the notion
of coherent loss, which is a tractable upper-bound of the
total classification error for the entire sample set. This ap-
proach yields a strictly tighter approximation to the 0-1 loss
than any cumulative loss, while preserving the tractability
of the resulting optimization problem. The formulation ob-
tained by applying the coherent loss to binary classification
also has a robustness interpretation, which builds a strong
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Figure 3. Performance comparison of cumulative loss approach
vs coherent loss approach. Left and right columns report the clas-
sification errors for the two cases k = 0.8n and k = n (recall that
k and n are the numbers of the rows and columns of matrix A, re-
spectively). The four rows, from top to bottom, report results for
Breast Cancer, Ionosphere, Diabetes, Wine and Iris, respectively.

connection between the coherent loss and robust SVMs. Fi-
nally, we remark that the coherent loss approach has favor-
able statistical properties and the simulation results show
that it can outperform the standard SVM when additional
constraints are imposed.
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