
1

Sparse Algorithms are not Stable:
A No-free-lunch Theorem

Huan Xu, Constantine Caramanis, Member, IEEE and Shie Mannor, Senior Member, IEEE

✦

Abstract—We consider two desired properties of learning algo-
rithms: sparsity and algorithmic stability. Both properties are believed
to lead to good generalization ability. We show that these two
properties contradict each other. That is, a sparse algorithm can
not be stable and vice versa. Thus, one has to trade off sparsity
and stability in designing a learning algorithm. In particular, our
general result implies that ℓ1-regularized regression (Lasso) cannot
be stable, while ℓ2-regularized regression is known to have strong
stability properties and is therefore not sparse.

Index Terms—Stability, Sparsity, Lasso, Regularization

1 INTRODUCTION

Regression and classification are important problems
in a broad range of applications. Given data points
encoded by the rows of a matrix A, and observa-
tions or labels b, the basic goal is to find a (linear)
relationship between A and b. Various objectives are
possible, for example in regression, one may consider
minimizing the least squared error, ||Aw − b||2, or
perhaps in case of a generative model assumption,
minimizing the generalization error, i.e., the expected
error of the regressor w on the next sample generated:
E||a⊤

w − b||. In addition to such objectives, one may
ask for solutions, w, that have additional structural
properties. In the machine learning literature, much
work has focused on developing methodologies with
special properties.

Two properties of particular interest are sparsity of
the solution, and the stability of the algorithm. In a
broad sense, stability means that an algorithm is well-
posed, so that given two very similar data sets, an
algorithm’s output varies little. More specifically, an
algorithm is stable if its output changes very little
when given two data sets differing on only one sam-
ple (this is known as the leave-one-out error). Stability
is by now a standard approach for establishing the
generalization ability of learning algorithms following

• H. Xu and C. Caramanis are with the Department of Electrical and
Computer Engineering, The University of Texas at Austin, Austin,
TX.
E-mail: huan.xu@mail.utexas.edu; caramanis@mail.utexas.edu.

• S. Mannor is with the Department of Electrical Engineering, Technion,
Haifa, ISRAEL.
E-mail: shie@ee.technion.ac.il

the landmark work of [1]. For example, in [2] the
author uses stability properties of ℓ2-regularized Sup-
port Vector Machine (SVM) to establish its consistency.
Also see [3], [4], [5] and many others.

Similarly, numerous algorithms that encourage
sparse solutions have been proposed in signal pro-
cessing and virtually all fields in machine learning. A
partial list includes: Lasso, 1-norm SVM, Deep Belief
Network, Sparse PCA [6], [7], [8], [9], [10], [11] and
many others. The popularity of algorithms that in-
duce sparse solutions is due to the following reasons:
(i) a sparse solution is less complicated and hence
generalizes well [12]; (ii) a sparse solution has good
interpretability [13], [14], [15], [16]; and (iii) sparse
algorithms may be computationally much easier to
implement, store, compress, etc.

In this paper, we investigate the mutual relation-
ship of these two concepts. In particular, we show
that sparse algorithms are not stable: if an algorithm
“encourages sparsity” (in a sense defined precisely
below) then its sensitivity to small perturbations of
the input data remains bounded away from zero, i.e.,
it has no uniform stability properties. We define these
notions formally in Section 2. We prove this “no-free-
lunch” theorem by constructing an instance where the
leave-one-out error of the algorithm is bounded away
from zero by exploiting the property that a sparse
algorithm can have non-unique optimal solutions, and
is therefore ill-posed.

This paper is organized as follows. We start with
the necessary definitions in Section 2 and provide the
no-free-lunch theorem based on these definitions in
Section 3. Sections 2 and 3 are devoted to regression
algorithms; and in Section 4 we generalize the theo-
rem to arbitrary loss functions. In Section 5 we discuss
the justification of the particular notions of stability
and sparsity considered in this paper. Brief concluding
remarks are given in Section 6.

Notations: Capital letters (e.g., A) and boldface
letters (e.g., w) are used to denote matrices and col-
umn vectors, respectively. We use the transpose of a
column vector to represent a row vector. Unless oth-
erwise specified, the same letter is used to represent
a part of an object. For example, the ith column of a
matrix A is denoted by ai. Similarly, the ith element

2

of a vector d is denoted by di.

2 SETUP AND ASSUMPTIONS

We consider regression algorithms that find a weight
vector, w

∗ in the input space. The goal of any algo-
rithm we consider is to minimize the loss given a
new observation (b̂, â). Initially we consider the loss
function l(w∗, (b̂, â)) = |b̂ − â

⊤
w

∗|. Here, a is the
vector of input values of the observation and b̂ is
the output . In the standard regression problem, the
learning algorithm L obtains the candidate solution
w

∗ by minimizing the empirical loss ||Aw − b||2, or
the regularized empirical loss. For a given objective
function, we can compare two solutions w

1,w2 by
considering their empirical loss. We adopt a some-
what more general framework, considering only the
partial ordering induced by any learning algorithm L

and training set (b, A). That is, given two candidate
solutions, w

1,w2, we write

w
1 �(b,A) w

2,

if on input (b, A), the algorithm L would select w
2

before w
1. In short, given an algorithm L, each sample

set (b, A) defines an order relationship �(b,A) among
all candidate solutions w. This order relationship
defines a family of “best” solutions, and one of these,
w

∗ is the output of the algorithm. We denote this by
writing w

∗ ∈ L(b,A).
Thus, by defining a data-dependent partial order

on the space of solutions, we can talk more generally
about algorithms, their stability, and their sparsity. As
we define below, an algorithm L is sparse if the set
L(b,A) of optimal solutions contains a sparse solution,
and an algorithm is stable if the sets L(b,A) and L(b̂,Â)

do not contain solutions that are very far apart, when
(b, A) and (b̂, Â) differ on only one point.

We make a few assumptions on the preference
order:

Assumption 1: (i) Given j, b, A, w
1 and w

2,
suppose that

w
1 �(b,A) w

2,

and

w1
j = w2

j = 0.

Then for any â,

w
1 �(b,Â) w

2,

where

Â = (a1, · · · ,aj−1, â,aj+1, · · · ,am) .

(ii) Given b, A, w
1, w

2, b′ and z, suppose that

w
1 �(b,A) w

2,

and

b′ = z
⊤
w

2.

Then
w

1 �(b,A) w
2,

where

b =

(

b

b′

)

; A =

(

A
z
⊤

)

.

(iii) Given j, b, A, w
1 and w

2, suppose that

w
1 �(b,A) w

2.

Then
ŵ

1 �(b,Ã) ŵ
2,

where

ŵ
i =

(

w
i

0

)

, i = 1, 2; Ã = (A,0) .

(iv) Given b, A, w
1, w

2 and P ∈ R
m×m a permu-

tation matrix, if

w
1 �(b,A) w

2,

then
P⊤

w
1 �(b,AP) P⊤

w
2.

Part (i) of the assumption says that the value of a
column corresponding to a non-selected feature has
no effect on the ordering. Part (ii) says that adding a
sample that is perfectly predicted by a particular solu-
tion, cannot decrease its place in the partial ordering.
Part (iii) says the order relationship is preserved when
a trivial (all zeros) feature is added. Part (iv) says
that the partial ordering and hence the algorithm, is
feature-wise symmetric. These assumptions are intu-
itively appealing and satisfied by algorithms includ-
ing, for instance, standard regression, and regularized
regression. See Section 5 for additional examples that
satisfy such assumptions.

In what follows, we will define precisely what we
mean by stability and sparsity. We recall the definition
of uniform (algorithmic) stability first, as given in
[1]. We let Z denote the space of points and labels
(typically this will either be R

m+1 or a closed subset
of it) so that S ∈ Zn denotes a collection of n labelled
training points. For regression problems, therefore,
we have S = (b, A) ∈ Zn. We let L denote a
learning algorithm, and for (b, A) ∈ Zn, we let L(b,A)

denote the output of the learning algorithm (i.e., the
regression function it has learned from the training
data). Then given a loss function l, and a labelled
point s = (b, z) ∈ Z , l(L(b,A), s) denotes the loss of
the algorithm that has been trained on the set (b, A),
on the data point s. Thus in the regression setup, we
would have l(L(b,A), s) = |L(b,A)(z) − b|.

Definition 1: [1] An algorithm L has uniform sta-
bility βn with respect to the loss function l if the
following holds:

∀(b, A) ∈ Zn, ∀i ∈ {1, · · · , n} :

max
z′∈Z

|l(L(b,A), z
′) − l(L(b,A)\i, z′)| ≤ βn.

3

Here L(b,A)\i stands for the learned solution with the

ith sample removed from (b, A), i.e., with the ith row
of A and the ith element of b removed.

At first glance, this definition may seem too stringent
for any reasonable algorithm to exhibit good stability
properties. However, as shown in [1], many algo-
rithms have uniform stability with βn going to zero.
In particular, Tikhonov regularized regression (i.e., ℓ2-
regularized regression) has stability that goes to zero
as 1/n. Indeed, a recent work [17] shows that for
p > 1, ℓp regularization has uniform stability with βn

going to zero as 1/n. Stability can be used to establish
strong PAC bounds. For example, [1] show that if we
have n samples, βn denotes the uniform stability, and
M a bound on the loss, then with probability at least
1 − δ the following hold,

R ≤ Remp + 2βn + (4nβn + M)

√

ln 1/δ

2n
,

where R denotes the expected loss, and Remp the
empirical (i.e., training) loss.

Since Lasso is an example of an algorithm that
yields sparse solutions, one implication of the results
of this paper is that while ℓp-regularized (p > 1) re-
gression yields stable solutions, ℓ1-regularized regres-
sion does not. We show that the stability parameter
of Lasso does not decrease in the number of samples
(compared to the O(1/n) decay for ℓp-regularized
regression). In fact, we show that Lasso’s stability is,
in the following sense, the worst possible stability. To
this end, we define the notion of the Pseudo Maximal
Error (PME), which is the worst possible error a
training algorithm can have for arbitrary training set
and testing sample labelled by zero.

Definition 2: Given the sample space Z = Y × X
where Y ⊆ R, X ⊆ R

m, and 0 ∈ Y . The pseudo
maximal error for a learning algorithm L w.r.t. Z is

bn(L,Z) , max
(b,A)∈Zn,z∈X

l
(

L(b,A), (0, z)
)

.

As above, l(·, ·) is a given loss function.

As an example, if X is the unit ball, and W (L)
is the set of vectors w that are optimal with re-
spect to at least one training set, then bn(L,Z) =
maxw∈W (L) ‖w‖. Thus, unless L is a trivial algorithm
which always outputs 0, the PME is bounded away
from zero.

Observe that bn(L,Z) ≥ b1(L,Z), since by repeat-
edly choosing the worst sample (for b1), the algorithm
will yield the same solution. Hence the PME does not
diminish as the number of samples, n, increases.

We next define the notion of sparsity of an algo-
rithm which we use.

Definition 3: A weight vector w
∗ Identifies Redundant

Features of A if

∀i 6= j, ai = aj ⇒ w∗
i w∗

j = 0.

An algorithm L is said to be able to Identify Redundant
Features (IRF for short) if ∀(b, A) there exists w

∗ ∈
L(b,A) that identifies redundant features of A.
Being IRF means that at least one solution of the
algorithm does not select both features if they are
identical. We note that this is a quite weak notion
of sparsity. An algorithm that achieves reasonable
sparsity (such as Lasso) should be IRF. Notice that
IRF is a property that is typically easy to check.

Before concluding this section, we comment on
the two definitions that we considered, namely, the
uniform stability and IRF.

The notion of uniform stability is arguably the most
widely applied stability notion. More importantly, it
does not involve the unknown generating distribution
and is thus easy to evaluate, which makes it con-
venient to derive generalization bounds of learning
algorithms. There are other notions of stability pro-
posed in literature [3], [5]. Although these notions are
less restrictive than the uniform stability, they often
require knowledge of the distribution that generates
samples. For example, [5] proposed a stability notion
termed all-i-LOO stable, which requires that

∀i ∈ {1, · · · , n} : ES∼µn |l(LS , si) − l(LS\i , si)| ≤ βn,

where µ is the generating distribution. Because of
the explicit dependence on µ, the all-i-LOO stability
seems hard to evaluate.

The notion of IRF is proposed as an easily verifiable
property that sparse algorithms should satisfy. While
there are different notions of sparsity proposed in
literature, the most widely applied notion of sparsity,
recently popularized in the compressed sensing liter-
ature (and around in many, many other places) says
that the sparsity of a vector is the number of non-
zero elements, and an algorithm is sparse if it tends
to find the most-sparse solution satisfying required
performance (e.g., the regression error is sufficiently
small). Under this definition, it is clear that IRF is a
necessary property for an algorithm to be sparse.

3 THE MAIN THEOREM

The next theorem is the main contribution of this
paper. It says that if an algorithm is sparse, in the
sense that it identifies redundant features as in the
definition above, then that algorithm is not stable. One
notable example that satisfies this theorem is Lasso.

Theorem 1: Let Z = Y × X be the sample space
with m features, where Y ⊆ R, X ⊆ R

m, 0 ∈ Y and
0 ∈ X . Let Ẑ = Y × X × X be the sample space
with 2m features. If a learning algorithm L (trained
on points in Ẑ) satisfies Assumption 1 and identifies
redundant features, its uniform stability bound β is
lower bounded by bn(L,Z), and in particular does
not go to zero with n.

Proof: Note that in light of the definition of uni-
form stability, it suffices to provide one example that

4

algorithm L fails to achieve a small stability bound.
We construct such an (somewhat extreme) example as
follows.

Let (b, A) and (0, z⊤) be the sample set and the new
observation such that they jointly achieve bn(L,Z),
i.e., for some w

∗ ∈ L(b, A), we have

bn(L,Z) = l
(

w
∗, (0, z)

)

. (1)

Let 0n×m be the n×m 0-matrix, and 0 stand for the
zero vector of length m. We denote

ẑ , (0⊤, z
⊤); Â , (A, A);

b̃ ,

(

b

0

)

; Ã ,

(

A, A
0
⊤, z

⊤

)

.

Observe that (b, Â) ∈ Ẑn and (b̃, Ã) ∈ Ẑn+1. We first
show that

(

0

w
∗

)

∈ L(b,Â);

(

w
∗

0

)

∈ L(b̃,Ã). (2)

Notice that L is feature-wise symmetric (Assump-
tion 1(iv)) and I.R.F., hence there exists a w

′ such that
(

0

w
′

)

∈ L(b,Â).

Since w
∗ ∈ L(b,A), we have

w
′ �(b,A) w

∗

⇒

(

0

w
′

)

�(b,(0n×m,A))

(

0

w
∗

)

⇒

(

0

w
′

)

�(b,Â)

(

0

w
∗

)

⇒

(

0

w
∗

)

∈ L(b,Â).

The first implication follows from Assumption 1(iii),
and the second from (i).

By Assumption 1(iv) (i.e., feature-wise symmetry),
we have

(

w
∗

0

)

∈ L(b,Â).

Furthermore,

0 = (0⊤, z⊤)

(

w
∗

0

)

,

and thus by Assumption 1(ii) we have
(

w
∗

0

)

∈ L(b̃,Ã).

Hence (2) holds. This leads to (recall that
l(w∗, (b̂, â)) = |b̂ − â

⊤
w

∗|)

l
(

L(b,Â), (0, ẑ)
)

= l(w∗, (0, z)); l
(

L(b̃,Ã), (0, ẑ)
)

= 0.

By definition of the uniform bound, we have

β ≥ l
(

L(b,Â), (0, ẑ)
)

− l
(

L(b̃,Ã), (0, ẑ)
)

.

Hence by (1) we have β ≥ bn(L,Z), which establishes
the theorem.

Theorem 1 not only means that a sparse algorithm
is not stable, it also states that, if an algorithm is
stable, there is no hope that it will be sparse, since it
cannot even identify redundant features. For instance,
ℓ2 regularized regression is stable (see Example 3
with a linear kernel), and does not identify redundant
features.

4 GENERALIZATION TO ARBITRARY LOSS

So far our focus has been on the regression problem,
i.e., the loss function is l(w∗, (b̂, â)) = |b̂ − â

⊤
w

∗|. Of
course, other loss functions may be of interest. For
example, one may be interested in the ǫ-insensitive
loss function l(w∗, (b̂, â)) = max

(

|b̂ − â
⊤
w

∗| − ǫ, 0
)

or the classification error l(w∗, (b̂, â)) = 1b̂6=sign(â⊤w∗).
Indeed, the results derived can easily be generalized
to algorithms with arbitrary loss function having the
form l(w∗, (b̂, â)) = fm(b̂, â1w

∗
i , · · · , âmw∗

m) for some
fm (here, âi and w∗

i denote the ith component of
â ∈ R

m and w
∗ ∈ R

m, respectively) that satisfies the
following conditions:

(a) fm(b, v1, · · · , vi, · · · , vj , · · · vm)

= fm(b, v1, · · · , vj , · · · , vi, · · · vm); ∀b,v, i, j.

(b) fm(b, v1, · · · , vm) = fm+1(b, v1, · · · , vm, 0); ∀b,v.
(3)

In words, (a) means that the loss function is feature-
wise symmetric, and (b) means that a dummy fea-
ture does not change the loss. Observe that both the
ǫ−insensitive loss and the classification error satisfy
these conditions.

In contrast to the regression setup, under an arbi-
trary loss function, there may not exist a sample that
can be perfectly predicted by the zero vector, which
implies that Definition 2 can be overly stringent. We
require following modification of Definition 2. The
new definition thus also applies to the case where the
sample domain does not contain examples with zero
label.

Definition 4: Given Z = Y × X where Y ⊆ R and
X ⊆ R

m, the pseudo maximal error for a learning
algorithm L w.r.t. Z

b̂n(L,Z) , max
(b,A)∈Zn,(b,z)∈Z

{

l
(

L(b,A), (b, z)
)

−l
(

0, (b, z)
)

}

.

The PME in the arbitrary loss case is thus defined as
the largest (w.r.t. all possible testing samples) perfor-
mance gap of outputs of a learning algorithm and the
zero vector. Observe that Definition 4 is a relaxation
of Definition 2 in the sense that if the loss function
is indeed the regression error, then the PME defined
by Definition 4 is larger than or equal to (i.e., more
unstable) that of Definition 2.

To account for the modification of Definition 2, we
need to make Assumption 1 slightly stronger: we
replace Assumption 1(ii) with the following one.

5

Assumption 2: (ii) Given b, A, w
1, w

2, b′ and z if

w
1 �(b,A) w

2, l(w2, (b′, z)) ≤ l(w1, (b′, z))

then

w
1 �(b,A) w

2, where b =

(

b

b′

)

; A =

(

A
z
⊤

)

.

Assumption 2(ii) means that adding a sample that
is better predicted (i.e., smaller loss) can not make a
candidate solution less preferred.

With these modifications, we have a generalization
of Theorem 1. The proof is similar to that of Theorem 1
and hence deferred to Appendix A.

Theorem 2: Let Z = Y×X be the sample space with
m features, where Y ⊆ R, X ⊆ R

m, and 0 ∈ X .
Let Ẑ = Y × X × X be the sample space with
2m features. If a learning algorithm L (trained on
points in Ẑ) satisfies Assumption 2 and identifies
redundant features, its uniform stability bound β is
lower bounded by b̂n(L,Z), and in particular does
not go to zero with n.

While this paper focuses on the case where a
learned solution takes a vector form, it is straight-
forward to generalize the setup to the matrix case
and show that a similar no-free-lunch theorem be-
tween stability and group sparsity holds. As an exam-
ple, consider the following group-sparse algorithm:
Minimize:W ‖B−AW‖F +‖W‖1,2; where ‖W‖1,2 is the
summation of the ℓ2 norm of each row of W . Then,
treating each row of W as the value of a feature of
the solution and following a similar argument as the
proof of Theorem 1, one can show that such a group
sparse algorithm is not stable. Due to space constraint,
we do not elaborate.

5 DISCUSSION

To see that the two notions of stability and sparsity
that we consider are not too restrictive, we list in this
section some algorithms that either admit a dimin-
ishing uniform stability bound or identify redundant
features. Thus, by applying Theorem 2 we conclude
that they are either non-sparse or non-stable.

5.1 Stable algorithms

All algorithms listed in this section have a uniform
stability bound that decreases as O(1

n), and are hence
stable. Examples 1 to 5 and adapted from [1].

Example 1 (Bounded SVM regression): Assume k is a
bounded kernel, that is k(x,x) ≤ κ2. Let F denote
the RKHS space of k. Consider Y = [0, B] and the
loss function

l(f, (y,x)) = |f(x) − y|ǫ

=

{

0 if |f(x) − y| ≤ ǫ;
|f(x) − y| − ǫ otherwise.

The SVM regression algorithm with kernel k is de-
fined as

LS = arg min
g∈F

{

n
∑

i=1

l(g, (yi,xi)) + λn‖g‖2
κ

}

;

where, S = ((y1,x1), · · · , (yn,xn)). Then, its uniform
stability satisfies

βn ≤
κ2

2λn
.

Example 2 (Soft-margin SVM classification): Assume
k is a bounded kernel, that is k(x,x) ≤ κ2. Let F
denote the RKHS space of k. Consider Y = {0, 1}1

and the loss function

l(f, (y,x)) = (1 − (2y − 1)f(x))+

=

{

1 − (2y − 1)f(x) if 1 − (2y − 1)f(x) > 0;
0 otherwise.

The soft-margin SVM (without bias) algorithm with
kernel k is defined as

LS = arg min
g∈F

{

n
∑

i=1

l(g, (yi,xi)) + λn‖g‖2
κ

}

;

where S = ((y1,x1), · · · , (yn,xn)). Then, its uniform
stability satisfies

βn ≤
κ2

2λn
.

Example 3 (RKHS regularized least square regression):
Assume k is a bounded kernel, that is k(x,x) ≤ κ2.
Let F denote the RKHS space of k. Consider
Y = [0, B] and the loss function

l(f, (y,x)) = (f(x) − y)2.

The regularized least square regression algorithm
with kernel k is defined as

LS = arg min
g∈F

{

n
∑

i=1

l(g, (yi,xi)) + λn‖g‖2
κ

}

;

where: S = ((y1,x1), · · · , (yn,xn)). Then, its uniform
stability satisfies

βn ≤
2κ2B2

λn
.

The next example is relative entropy regularization.
In this case, we are given a class of base hypotheses,
and the output of the algorithm is a mixture of them,
or more precisely a probability distribution over the
class of base hypotheses.

Example 4 (Relative Entropy Regularization): Let H =
{hθ : θ ∈ Θ} be the class of base hypotheses, where
Θ is a measurable space with a reference measure.
Let F denote the set of probability distributions over
Θ dominated by the reference measure. Consider the
loss function for f ∈ F

l(f, z) =

∫

Θ

r(hθ, z)f(θ)dθ;

1. This is slightly different from but equivalent to the standard
setup where Y = {−1, 1}.

6

where r(·, ·) is a loss function bounded by M . Further,
let f0 be a fixed element of F and K(·, ·) denote
the Kullback-Leibler divergence. The relative entropy
regularized algorithm is defined as

LS = argmin
g∈F

{

n
∑

i=1

l(g, zi) + λnK(g, f0)
}

;

where S = (z1, · · · , zn). Then, its uniform stability
satisfies

βn ≤
M2

λn
.

A special case of relative entropy regularization
is the following maximum entropy discrimination pro-
posed in [18].

Example 5 (Maximum entropy discrimination): Let
H = {hθ,γ : θ ∈ Θ, γ ∈ R}. Let F denote the set of
probability distributions over Θ × R dominated by
the reference measure. Consider Y = {0, 1} and the
loss function

l(f, z) =

(
∫

Θ,R

[γ − (2y − 1)hθ,γ(x)]f(θ, γ)dθdγ

)

+

;

where [γ−(2y−1)hθ,γ(x)] is bounded by M . The maxi-
mum entropy discrimination is a real-valued classifier
defined as

LS = argmin
g∈F

{

n
∑

i=1

l(g, zi) + λnK(g, f0)
}

;

where S = (z1, · · · , zn). Then, its uniform stability
satisfies

βn ≤
M

λn
.

If an algorithm is not stable, one way to stabilize it
is to average its solutions trained on small bootstrap
subsets of the training set, a process called subbag-
ging [19], which we recall in the following example.

Example 6 (Subbagging, see Theorem 5.2 of [19].): Let
L be a learning algorithm with a stability βn, and
consider the following algorithm

L̂
k
D(x) , ES (LS(x)) .

where ES is the expectation with respect to k points
sampled in D uniformly without replacement. Then L̂

k

has a stability β̂n satisfying

β̂n ≤
k

n
βk.

In a recent work, [17] consider the uniform stability
of ℓp regularization for 1 < p ≤ 2 and elastic net
proposed in [20]. Their results imply the following
examples.

Example 7 (ℓp regularization): Consider a collection
of feature functions (ϕγ(·))γ∈Γ, where Γ is a countable
set, such that for every x ∈ X ,

∑

γ∈Γ

|ϕγ(x)|2 ≤ κ.

Let F denote the linear span of the feature functions,
i.e.,

F = {
∑

γ∈Γ

αγϕγ(·) : α ∈ ℓ2(Γ)}.

Further assume that the loss function is such that
l(f, (y,x)) = V (f(x), y), for some V (·, ·) that is convex,
bounded, and Lipschitz continuous. That is, V (·, ·)
satisfies

1) V is convex.
2) For all y, y′ we have 0 ≤ V (y′, y) ≤ B.
3) For all y1, y2, y, we have |V (y1, y) − V (y2, y)| ≤

L|y1 − y2|.

Then, the ℓp regularization algorithm, defined as

LS = arg min
α∈ℓ2(Γ)

{

n
∑

i=1

l(
∑

γ∈Γ

αγϕγ(·), (yi,xi))

+λn
∑

γ∈Γ

|αγ |
p
}

;

where S = ((y1,x1), · · · , (yn,xn)), is uniformly stable
with

βn =
1

p(p − 1)

(

B

λ

)(2−p)/p
4L2κ

nλ
.

Observe that up to a constant, Example 1 to 3 are
special cases of Example 7 with p = 2. One interesting
observation is that when p = 1 the stability bound
breaks. As we know from previous sections, this is
due to the sparsity of ℓ1 regularization.

Example 8 (Elastic Net): Under the same assump-
tions as Example 7, the elastic-net regularization al-
gorithm, defined as

LS = arg min
α∈ℓ2(Γ)

{

n
∑

i=1

l(
∑

γ∈Γ

αγϕγ(·), (yi,xi))

+λn
∑

γ∈Γ

(wγ |αγ | + ǫα2
γ)

}

;

where S = ((y1,x1), · · · , (yn,xn)), for some wγ ≥ 0, is
uniformly stable with

βn =
2L2κ

ǫnλ
.

Note that the weights (wγ)γ∈Γ have no effect in the
stability bound. This is easily expected as ℓ1 reg-
ularization itself is not stable. Indeed, the stability
bound of the elastic net coincides with that of a ℓ2

regularization algorithm. One may easily check that
because of the extra ℓ2 norm, elastic nets do not enjoy
the property of IRF.

We briefly comment on the last example, the elastic
net. In [20] the authors proposed elastic net and used
the terminology “sparsity,” but the meaning seems to
be quite different than ours. Motivated by biomedical
applications, the authors of [20] are not interested in
not spreading weight to multiple features if those
features are similar or identical, indeed, they are
aiming at the exact opposite: to spread out weight

7

to multiple similar features. Clearly this is not the
notion of “sparsity” we have (and many other papers
are interested). The notion of sparsity we consider
means ability to find the solution with fewest non-
zero coefficients. 2 Therefore, this example does not
contradict to our claim that sparse algorithms are not
stable.

5.2 Sparse Algorithms

Next we list some algorithms that identify redundant
features.

Example 9 (ℓ0 Minimization): Subset selection algo-
rithms based on minimizing ℓ0 norm identify redun-
dant features. One example of such an algorithm is
the canonical selection procedure [21], which is defined
as

w
∗ = arg min

w∈Rm

{‖Aw − b‖2 + λ‖w‖0} . (4)

Proof: Note that if a solution w
∗ achieves the

minimum of (4) and has non-zero weights on two
redundant features i and i′, then by constructing a
ŵ such that ŵi = w∗

i + w∗
i′ and ŵi′ = 0 we get a

strictly better solution, which is a contradiction. Hence
ℓ0 minimizing algorithms is IRF.

It is known that in general finding the minimum
of (4) is NP-hard [22]. Therefore, a convex relaxation,
the ℓ1 norm, is used instead to find a sparse solution.
These algorithms either minimize the ℓ1 norm of the
solution under the constraint of a regression error, or
minimize the convex combination of some regression
error and the ℓ1 norm of the solution.

Example 10 (ℓ1 Minimization): The following subset
selection algorithms based on minimizing the ℓ1 norm
to identify redundant features. These algorithms in-
clude:

1) Lasso [6] defined as

w
∗ = arg min

w∈Rm

{

‖Aw − b‖2
2 + λ‖w‖1

}

.

And equivalently, the LARS algorithm [23] that
solves Lasso.

2) Basis Pursuit [24] defined as the solution of the
following optimization problem on w ∈ R

m:

min : ‖w‖1

s.t.: Aw = b.

3) Dantzig Selector [25] defined as

Minimize: ‖w‖1

Subject to: ‖A∗(Aw − b)‖∞ ≤ c.

Here, A∗ is the complex conjugate of A, and c is
some positive constant.

2. Indeed, because of the extra ℓ2 term, in almost all instances, the
elastic net would output a solution with at least the same number of
non-zero coefficients as the ℓ1 regularization, and sometimes output
a much denser solution.

4) 1-norm SVM [7], [8] defined as the solution of
the following optimization problem on α, ξ, γ.

min : ‖α‖1 + C
n

∑

i=1

ξi

s.t.: yi

{

n
∑

j=1

αik(xi,xj) + γ
}

≥ 1 − ξi; ∀i;

ξi ≥ 0; ∀i.

5) ℓ1 norm SVM regression [26] defined as the so-
lution of the following optimization problem on
α, ξ and γ:

min : ‖α‖1 + C

n
∑

i=1

ξi

s.t.:
{

n
∑

j=1

αik(xi,xj) + γ
}

− yi ≤ ε + ξi; ∀i;

yi −
{

n
∑

j=1

αik(xi,xj) + γ
}

≤ ε + ξi; ∀i;

ξi ≥ 0; ∀i,

where ε > 0 is a fixed constant.

Proof: Given an optimal w
∗ we construct a new

solution ŵ such that for any subset of redundant fea-
tures I ,

∑

i∈I 1(ŵi 6= 0) ≤ 1 and
∑

i∈I ŵi =
∑

i∈I w∗
i .

Thus, ŵ and w
∗ are equally good, which implies that

any ℓ1 minimizing algorithm has at least one optimal
solution that is IRF. Hence such algorithm is IRF by
definition.

6 CONCLUSION

In this paper, we prove that sparsity and stability
are at odds with each other. We show that if an
algorithm is sparse, then its uniform stability is lower
bounded by a nonzero constant. This also shows that
any algorithmically stable algorithm cannot be sparse.
Thus, we show that these two widely used concepts,
namely sparsity and algorithmic stability contradict each
other. At a high level, this theorem provides us with
additional insight into these concepts and their inter-
relation, and it furthermore implies that a tradeoff
between these two concepts is unavoidable in de-
signing learning algorithms. Given that both sparsity
and stability are desirable properties, one interesting
direction is to understand the full implications of
having one of them. That is, what other properties
must a sparse solution have? Given that sparse algo-
rithms often perform well, one may further ask for
meaningful and computable notions of stability that
are not in conflict with sparsity.

APPENDIX A
PROOF OF THEOREM 2:

Proof: This proof follows a similar line of rea-
soning as the proof of Theorem 1. Let (b, A) and

8

(b′, z⊤) be the sample set and the new observation
such that they jointly achieve b̂n(L,Z), i.e., there exists
w

∗ ∈ L(b, A) such that:

b̂n(L,Z) = l
(

w
∗, (b′, z)

)

− l
(

0, (b′, z)
)

= fm(b′, w∗
1z1, · · · , w∗

mzm) − f(b′, 0, · · · , 0).

Let 0n×m be the n×m 0-matrix, and 0 stand for the
zero vector of length m. We denote

ẑ , (0⊤, z
⊤); Â , (A, A);

b̃ ,

(

b

b′

)

; Ã ,

(

A, A
0
⊤, z

⊤

)

.

Observe that (b, Â) ∈ Ẑn and (b̃, Ã) ∈ Ẑn+1. To prove
the theorem, it suffices to show that there exist w

1, w2

such that

w
1 ∈ L(b,Â), w

2 ∈ L(b̃,Ã),

and

l
(

w
1, (b′, ẑ)

)

− l
(

w
2, (b′, ẑ)

)

≥ b̂n(L,Z)

where again,

b̂n(L,Z) = fm(b′, w∗
1z1, · · · , w∗

mzm) − fm(b′, 0, · · · , 0).

By an identical argument to the proof of Theorem 1,
Assumption 1(i), (iii) and (iv) imply that:

(

0

w
∗

)

∈ L(b,Â).

Hence there exists w
1 ∈ L(b,Â) such that

l
(

w
1, (b′, ẑ)

)

= l

((

0

w
∗

)

, (b′, ẑ)

)

(5)

= fm(b′, w∗
1z1, · · · , w∗

mzm).

The last equality follows from Equation (3) easily.
By feature-wise symmetry (Assumption 1(iv)), we
have

(

w
∗

0

)

∈ L(b,Â). (6)

Hence there exists w
2 ∈ L(b̃,Ã) such that

l
(

w
2, (b′, ẑ)

)

≤ l

((

w
∗

0

)

, (b′, ẑ)

)

(7)

= fm(b′, 0, · · · , 0).

The last equality follows from Equation (3). The in-
equality here holds because by Assumption 2(ii), if
there is no w

2 ∈ L(b̃,Ã) that satisfies the inequality,

then by (6) and definition of b̃ and Ã we have

w
2 �(b̃,Ã)

(

w
∗

0

)

which implies that
(

w
∗

0

)

∈ L(b̃,Ã),

from the optimality of w
2. However, this is a contra-

diction of the assumption that there is no w
2 ∈ L(b̃,Ã)

that satisfies the inequality of (7).
Combining (5) and (7) proves the theorem.

REFERENCES

[1] O. Bousquet and A. Elisseeff. Stability and generalization.
Journal of Machine Learning Research, 2:499–526, 2002.

[2] I. Steinwart. Consistency of support vector machines and other
regularized kernel classifiers. IEEE Transactions on Information
Theory, 51(1):128–142, 2005.

[3] T. Poggio, R. Rifkin, S. Mukherjee, and P. Niyogi. Gen-
eral conditions for predictivity in learning theory. Nature,
428(6981):419–422, 2004.

[4] S. Mukherjee, P. Niyogi, T. Poggio, and R. Rifkin. Learning
theory: Stability is sufficient for generalization and necessary
and sufficient for consistency of empirical risk minimization.
Advances in Computational Mathematics, 25(1-3):161–193, 2006.

[5] S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan.
Learnability and stability in the general learning setting. In
Proceedings of 22nd Annual Conference of Learning Theory, 2009.

[6] R. Tibshirani. Regression shrinkage and selection via the
Lasso. Journal of the Royal Statistical Society, Series B, 58(1):267–
288, 1996.

[7] O. L. Mangasarian. Generalized support vector machines. In
A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans,
editors, Advances in Large Margin Classifiers, pages 135–146.
MIT Press, 2000.

[8] J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani. 1-norm support
vector machines. In Advances in Neural Information Processing
Systems 16, 2003.

[9] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimen-
sionality of data with nerual networks. Science, 313, 2006.

[10] A. d’Aspremont, L El Ghaoui, M. I. Jordan, and G. R. Lanck-
riet. A direct formulation for sparse PCA using semidefinite
programming. SIAM Review, 49(3):434–448, 2007.

[11] A. d’Aspremont, F. Bach, and L. El Ghaoui. Full regularization
path for sparse principal component analysis. In Proceedings
of International Conference on Machine Learning, 2007.

[12] F. Girosi. An equivalence between sparse approximation and
support vector machines. Neural Computation, 10(6):1445–1480,
1998.

[13] R. R. Coifman and M. V. Wickerhauser. Entropy-based algo-
rithms for best basis selection. IEEE Transactions on Information
Theory, 38(2):713–718, 1992.

[14] S. Mallat and Z. Zhang. Matching pursuits with time-
frequency dictionaries. IEEE Transactions on Signal Processing,
41(12):3397–3415, 1993.

[15] E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty
principles: Exact signal reconstruction from highly incomplete
frequency information. IEEE Transactions on Information Theory,
52(2):489–509, 2006.

[16] D. L. Donoho. Compressed sensing. IEEE Transactions on
Information Theory, 52(4):1289–1306, 2006.

[17] A. Wibisono, L. Rosasco, and T. Poggio. Sufficient conditions
for uniform stability of regularization algorithms. Technical
Report MIT-CSAIL-TR-2009-060, Massachusetts Institute of
Technology, 2009.

[18] T. Jaakkola, M. Meila, and T. Jebara. Maximum entropy
discrimination. In Advances in Neural Information Processing
Systems 12, pages 470–476. MIT Press, 1999.

[19] T. Evgeniou, M. Pontil, and A. Elisseeff. Leave one out
error, stability, and generalization of voting combinations of
classifiers. Machine Learning, 55(1):71–97, 2004.

[20] H. Zou and T. Hastie. Regularization and variable selection
via the elastic net. Journal of the Royal Statistical Society Series
B, 67(2):301–320, 2005.

[21] D. P. Foster and E. I. George. The risk inflation criterion for
multiple regression. The Annals of Statistics, 22:1947–1975, 1994.

[22] B. K. Natarajan. Sparse approximate solutions to linear sys-
tems. SIAM Journal of Computation, 24:227–234, 1995.

[23] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle
regression. The Annals of Statistics, 32(2):407–499, 2004.

[24] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic
decomposition by basis pursuit. SIAM Journal on Scientific
Computing, 20(1):33–61, 1999.

[25] E. J. Candès and T. Tao. The Dantzig selector: Statistical
estimation when p is much larger than n. The Annals of
Statistics, 35(6):2313–2351, 2007.

[26] B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press,
2002.

