
Clustering Sparse Graphs

Yudong Chen
Department of Electrical and Computer Engineering

The University of Texas at Austin
Austin, TX 78712

ydchen@utexas.edu

Sujay Sanghavi
Department of Electrical and Computer Engineering

The University of Texas at Austin
Austin, TX 78712

sanghavi@mail.utexas.edu

Huan Xu
Mechanical Engineering Department

National University of Singapore
Singapore 117575, Singapore
mpexuh@nus.edu.sg

Abstract

We develop a new algorithm to cluster sparse unweighted graphs – i.e. partition
the nodes into disjoint clusters so that there is higher density within clusters, and
low across clusters. By sparsity we mean the setting where both the in-cluster and
across cluster edge densities are very small, possibly vanishing in the size of the
graph. Sparsity makes the problem noisier, and hence more difficult to solve.
Any clustering involves a tradeoff between minimizing two kinds of errors: miss-
ing edges within clusters and present edges across clusters. Our insight is that in
the sparse case, these must be penalized differently. We analyze our algorithm’s
performance on the natural, classical and widely studied “planted partition” model
(also called the stochastic block model); we show that our algorithm can cluster
sparser graphs, and with smaller clusters, than all previous methods. This is seen
empirically as well.

1 Introduction

This paper proposes a new algorithm for the following task: given a sparse undirected unweighted
graph, partition the nodes into disjoint clusters so that the density of edges within clusters is higher
than the edges across clusters. In particular, we are interested in settings where even within clus-
ters the edge density is low, and the density across clusters is an additive (or small multiplicative)
constant lower.

Several large modern datasets and graphs are sparse; examples include the web graph, social graphs
of various social networks, etc. Clustering naturally arises in these settings as a means/tool for
community detection, user profiling, link prediction, collaborative filtering etc. More generally,
there are several clustering applications where one is given as input a set of similarity relationships,
but this set is quite sparse. Unweighted sparse graph clustering corresponds to a special case in
which all similarities are either “1” or “0”.

As has been well-recognized, sparsity complicates clustering, because it makes the problem noisier.
Just for intuition, imagine a random graph where every edge has a (potentially different) probability
pij (which can be reflective of an underlying clustering structure) of appearing in the graph. Consider
now the edge random variable, which is 1 if there is an edge, and 0 else. Then, in the sparse graph
setting of small pij → 0, the mean of this variable is pij but its standard deviation is √pij , which

1

can be much larger. This problem gets worse as pij gets smaller. Another parameter governing
problem difficulty is the size of the clusters; smaller clusters are easier to lose in the noise.

Our contribution: We propose a new algorithm for sparse unweighted graph clustering. Clearly,
there will be two kinds of deviations (i.e. errors) between the given graph and any candidate cluster-
ing: missing edges within clusters, and present edges across clusters. Our key realization is that for
sparse graph clustering, these two types of error should be penalized differently. Doing so gives as
a combinatorial optimization problem; our algorithm is a particular convex relaxation of the same,
based on the fact that the cluster matrix is low-rank (we elaborate below). Our main analytical
result in this paper is theoretical guarantees on its performance for the classical planted partition
model [10], also called the stochastic block-model [1, 22], for random clustered graphs. While this
model has a rich literature (e.g., [4, 7, 10, 20]), we show that our algorithm out-performs (upto
at most log factors) every existing method in this setting (i.e. it recovers the true clustering for a
bigger range of sparsity and cluster sizes). Both the level of sparsity and the number and sizes of
the clusters are allowed to be functions of n, the total number of nodes. In fact, we show that in a
sense we are close to the boundary at which “any” spectral algorithm can be expected to work. Our
simulation study confirms our theoretic finding, that the proposed method is effective in clustering
sparse graphs and outperforms existing methods.

The rest of the paper is organized as follows: Section 1.1 provides an overview of related work;
Section 2 presents both the precise algorithm, and the idea behind it; Section 3 presents the main
results – analytical results on the planted partition / stochastic block model – which are shown to
outperform existing methods; Section 4 provides simulation results; and finally, the proof of main
theoretic results is outlined in Section 5.

1.1 Related Work

The general field of clustering, or even graph clustering, is too vast for a detailed survey here; we
focus on the most related threads, and therein too primarily on work which provides theoretical
“cluster recovery” guarantees on the resulting algorithms.

Correlation clustering: As mentioned above, every candidate clustering will have two kinds of er-
rors; correlation clustering [2] weighs them equally, thus the objective is to find the clustering which
minimizes just the total number of errors. This is an NP-hard problem, and [2] develops approxi-
mation algorithms. Subsequently, there has been much work on devising alternative approximation
algorithms for both the weighted and unweighted cases, and for both agreement and disagreement
objectives [12, 13, 3, 9]. Approximations based on LP relaxation [11] and SDP relaxation [25, 19],
followed by rounding, have also been developed. All of this line of work is on worst-case guaran-
tees. We emphasize that while we do convex relaxation as well, we do not do rounding; rather, our
convex program itself yields an optimal clustering.

Planted partition model / Stochastic block model: This is a natural and classic model for studying
graph clustering in the average case, and is also the setting for our performance guarantees. Our
results are directly comparable to work here; we formally define this setting in section 3 and present
a detailed comparison, after some notation and our theorem, in section 3 below.

Sparse and low-rank matrix decomposition: It has recently been shown [8, 6] that, under certain
conditions, it is possible to recover a low-rank matrix from sparse errors of arbitrary magnitude; this
has even been applied to graph clustering [17]. Our algorithm turns out to be a weighted version
of sparse and low-rank matrix decomposition, with different elements of the sparse part penalized
differently, based on the given input. To our knowledge, ours is the first paper to study any weighted
version; in that sense, while our weights have a natural motivation in our setting, our results are
likely to have broader implications, for example robust versions of PCA when not all errors are
created equal, but have a corresponding prior.

2 Algorithm

Idea: Our algorithm is a convex relaxation of a natural combinatorial objective for the sparse clus-
tering problem. We now briefly motivate this objective, and then formally describe our algorithm.
Recall that we want to find a clustering (i.e. a partition of the nodes) such that in-cluster connectiv-

2

ity is denser than across-cluster connectivity. Said differently, we want a clustering that has a small
number of errors, where an error is either (a) an edge between two nodes in different clusters, or
(b) a missing edge between two nodes in the same cluster. A natural (combinatorial) objective is to
minimize a weighted combination of the two types of errors.

The correlation clustering setup [2] gives equal weights to the two types of errors. However, for
sparse graphs, this will yield clusters with a very small number of nodes. This is because there is
sparsity both within clusters and across clusters; grouping nodes in the same cluster will result in a
lot of errors of type (b) above, without yielding corresponding gains in errors of type (a) – even when
they may actually be in the same cluster. This can be very easily seen: suppose, for example, the
“true” clustering has two clusters with equal size, and the in-cluster and across-cluster edge density
are both less than 1/4. Then, when both errors are weighted equally, the clustering which puts every
node in a separate cluster will have lower cost than the true clustering.

To get more meaningful solutions, we penalize the two types of errors differently. In particular,
sparsity means that we can expect many more errors of type (b) in any solution, and hence we
should give this (potentially much) smaller weight than errors of type (a). Our crucial insight is that
we can know what kind of error will (potentially) occur on any given edge from the given adjacency
matrix itself. In particular, if aij = 1 for some pair i, j, when in any clustering it will either have no
error, or an error of type (a); it will never be an error of type (b). Similarly if aij = 0 then it can only
be an error of type (b), if at all. Our algorithm is a convex relaxation of the combinatorial problem of
finding the minimum cost clustering, with the cost for an error on edge i, j determined based on the
value of aij . Perhaps surprisingly, this simple idea yields better results than the extensive literature
already in place for planted partitions.

We proceed by representing the given adjacency matrix A as the sum of two matrices A = Y + S,
where we would like Y to be a cluster matrix, with yij = 1 if and only if i, j are in the same cluster,
and 0 otherwise12. S is the corresponding error matrix as compared to the given A, and has values
of +1, -1 and 0.

We now make a cost matrix C ∈ Rn×n based on the insight above; we choose two values cA and
cAc and set cij = cA if the corresponding aij = 1, and cij = cAc if aij = 0. However, diagonal
cii = 0. With this setup, we have

Combinatorial Objective: min
Y,S

‖C ◦ S‖1 (1)

s.t Y + S = A

Y is a cluster matrix

Here C ◦ S denotes the matrix obtained via element-wise product between the two matrices C, S,
i.e. (C ◦S)ij = cijsij . Also ‖ · ‖1 denotes the element-wise `1 norm (i.e. sum of absolute values of
elements).

Algorithm: Our algorithm involves solving a convex relaxation of this combinatorial objective, by
replacing the “Y is a cluster matrix” constraint with (i) constraints 0 ≤ yij ≤ 1 for all elements i, j,
and (ii) a nuclear norm3 penalty ‖Y ‖∗ in the objective. The latter encourages Y to be low-rank, and
is based on the well-established insight that the cluster matrix (being a block-diagonal collection of
1’s) is low-rank. Thus we have our algorithm:

Sparse Graph Clustering: min
Y,S

‖Y ‖∗ + ‖C ◦ S‖1 (2)

s.t. 0 ≤ yij ≤ 1,∀i, j (3)
Y + S = A,

Once Ŷ is obtained, check if it is a cluster matrix (say e.g. via an SVD, which will also reveal
cluster membership if it is). If it is not, any one of several rounding/aggregration ideas can be
used empirically. Our theoretical results provide sufficient conditions under which the optimum
of the convex program is integral and a clustering, with no rounding required. Section 3 in the
supplementary material provides details on fast implementation for large matrices; this is one reason

1In this paper we will assume the convention that aii = 1 and yii = 1 for all nodes i.
2In other words, Y is the adjacency matrix of a graph consisting of disjoint cliques.
3The nuclear norm of a matrix is the sum of its singular values.

3

we did not include a semidefinite constraint on Y in our algorithm. Our algorithm has two positive
parameters: cA, cAc . We defer discussion on how to choose them until after our main result.

Comments: Based on the given A and these values, the optimal Ŷ may or may not be a cluster ma-
trix. If Ŷ is a cluster matrix, then clearly it minimizes the combinatorial objective above. Addition-
ally, it is not hard to see (proof in the supplementary material) that its performance is “monotone”,
in the sense that adding edges “aligned with” Ŷ cannot result in a different optimum, as summarized
in the following lemma. This shows that, in the terminology of [19, 4, 14], our method is robust
under a classical semi-random model where an adversary can add edge within clusters and remove
edges between clusters.

Lemma 1. Suppose Ŷ is the optimum of Formulation (2) for a given A. Suppose now we arbitrarily
change some edges of A to obtain Ã, by (a) choosing some edges such that ŷij = 1 but aij = 0,
and making ãij = 1, and (b) choosing some edges where ŷij = 0 but aij = 1, and making ãij = 0.

Then, Ŷ is also an optimum of Formulation (2) with Ã as the input.

Our theoretical guarantees characterize when the optimal Ŷ will be a cluster matrix, and recover
the clustering, in a natural classical problem setting called the planted partition model [10]. These
theoretical guarantees also provide guidance on how one would pick parameter values in practice;
we thus defer discussion on parameter picking until after we present our main theorem.

3 Performance Guarantees

In this section we provide analytical performance guarantees for our algorithm under a natural and
classical graph clustering setting: (a generalization of) the planted partition model [10]. We first
describe the model, and then our results.

(Generalized) Planted partition model: Consider a random graph generated as follows: the n
nodes are partitioned into r disjoint clusters, which we will refer to as the “true” clusters. Let K be
the minimum cluster size. For every pair of nodes i, j that belong to the same cluster, edge (i, j) is
present in the graph with probability that is at least p̄, while for every pair where the nodes are in
different clusters the edge is present with probability at most q̄. We call this model the “generalized”
planted partition because we allow for clusters to be different sizes, and the edge probabilities also
to be different (but uniformly bounded as mentioned). The objective is to find the partition, given
the random graph generated from it.

Recall that A is the given adjacency matrix, and let Y ∗ be the matrix corresponding to the true
clusters as above – i.e. y∗ij = 1 if and only if i, j are in the same true cluster, and 0 otherwise..
Our result below establishes conditions under which our algorithm, specifically the convex program
(2)-(3), yields this Y ∗ as the unique optimum (without any further need for rounding etc.) with high
probability (w.h.p.). Throughout the paper, with high probability means with probability at least
1− c0n−10 for some absolute constant c0

Theorem 1. Suppose we choose cA = 1
16
√
n logn

min

{√
1−q̄
q̄ ,
√

n
log4 n

}
, and cAc =

1
16
√
n logn

min
{√

p̄
1−p̄ , 1

}
. Then (Y ∗, A − Y ∗) is the unique optimal solution to Formulation (2)

w.h.p. provided q̄ ≤ 1
4 , and

p̄− q̄√
p̄
≥ c1

√
n

K
log2 n.

where c1 is an absolute positive constant.

Our theorem quantifies the tradeoff between the two quantities governing the hardness of a planted
partition problem – the difference in edge densities p−q, and the minimum cluster sizeK – required
for our algorithm to succeed, i.e. to recover the planted partition without any error. Note that here
p, q and K are allowed to scale with n. We now discuss and remark on our result, and then compare
its performance to past approaches and theoretical results in Table 1.

Note that we need K to be Ω(
√
n log2 n). This will be achieved only when p̄ − q̄ is a constant

that does not change with n; indeed in this extreme our theorem becomes a “dense graph” result,

4

matching e.g. the scaling in [17, 19]. If p̄−q̄√
p̄

decreases with n, corresponding to a sparser regime,
then the minimum size of K required will increase.

A nice feature of our work is that we only need p̄ − q̄ to be large only as compared to
√
p̄; several

other existing results (see Table 1) require a lower bound (as a function only of n, or n,K) on
p̄ − q̄ itself. This allows us to guarantee recovery for much sparser graphs than all existing results.
For example, when K is Θ(n), p̄ and p̄ − q̄ can be as small as Θ(log4 n

n). This scaling is close to
optimal: if p̄ < logn

n then each cluster will be almost surely disconnected, and if p̄ − q̄ = o(1
n),

then on average a node has equally many neighbours in its own cluster and in another cluster –
both are ill-posed situations in which one can not hope to recover the underlying clustering. When
K = Ω

(√
n log2 n

)
, p̄ and p̄− q̄ can be Θ

(
n log4 n
K2

)
, while the previous best result for this regime

requires at least Θ
(
n2

K3

)
[20].

Parameters: Our algorithm has two parameters: cA and cAc . The theorem provides a way to choose
their values, assuming we know the values of the bounds p̄, q̄. To estimate these from data, we can
use the following rule of thumb; our empirical results are based on this rule. If all the clusters have
equal size K, it is easy to verify that the first eigenvalue of E [A− I] is K(p − q) − p + nq with
multiplicity 1, the second eigenvalue isK(p−q)−pwith multiplicity n

K−1, and the third eigenvalue
is −p with multiplicities (n− n

K) [16]. We thus have the following rule of thumb:

1. Compute the eigenvalues of A− I , denoted as λ1, . . . , λn.

2. Let r = arg maxi=1,...,n−1(λi − λi−1). Set K = n/r.

3. Solve for p and q from the equations{
K(p− q)− p+ nq = λ1

K(p− q)− p = λ2

Table 1: Comparison with literature. This table shows the lower-bound requirements on K and
p−q that existing literature needs for exact recovery of the planted partitions/clusters. Note that this
table is under the assumption that every cluster is of size K, and the edge densities are uniformly
p and q (for within and across clusters respectively). As can be seen, our algorithm achieves a
better p − q scaling than every other result. And, we achieve a better K scaling than every other
result except Shamir [23], Oymak & Hassibi [21] and Giesen & Mitsche[15]; we are off by a at
most log2 n factor from each of these. Perhaps more importantly, we use a completely different
algorithmic approach from all of the others.

Paper Min. cluster size K Density difference p− q
Boppana [5] n/2 Ω(

√
p logn√
n

)

Jerrum & Sorkin [18] n/2 Ω(1
n1/6−ε)

Condon & Karp [10] Ω(n) Ω(1
n1/2−ε)

Carson & Impaglizzo [7] n/2 ω(
√
p√
n

log n)

Feige & Kilian [14] n/2 Ω(1
n log n)

Shamir [23] Ω(
√
n log n) Ω(

√
n logn
K)

McSherry [20] Ω(n2/3) Ω(
√

pn2

K3)

Oymak & Hassibi [21] Ω(
√
n) Ω(max{

√
n
K ,
√

logn
K })

Giesen & Mitsche[15] Ω(
√
n) Ω(

√
n
K)

Bollobas [4] Ω(n
log1/8 n

) Ω(max{
√

q logn
n , logn

n })

This paper Ω(
√
n log2 n) Ω(

√
pn log2 n

K)

5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

q

p

Our method

SLINK

Spectral

L+S

0 0.02 0.04 0.06 0.08 0.1
0

0.05

0.1

0.15

0.2

0.25

q

p

Our method

SLINK

Spectral

L+S

(a) (b)

Figure 1: (a) Comparison of our method with Single-Linkage clustering (SLINK), spectral cluster-
ing, and low-rank-plus-sparse (L+S) approach. The area above each curve is the values of (p, q) for
which a method successfully recovers the underlying true clustering. (b) More detailed results for
the area in the box in (a). The experiments are conducted on synthetic data with n = 1000 nodes
and r = 5 clusters with equal size K = 200.

4 Empirical Results

We perform experiments on synthetic data, and compare with other methods. We generate a graph
using the planted partition model with n = 1000 nodes, r = 5 clusters with equal size K = 200,
and p, q ∈ [0, 1]. We apply our method to the data, where we use the fast solver described in the
supplementary material. We estimate p and q using the heuristic described in Section 3, and choose
the weights cA and cAc according to the main theorem4. Due to numerical accuracy, the output Ŷ
of our algorithm may not be integer, so we do the following simple rounding: compute the mean
ȳ of the entries of Ŷ , and round each entry of Ŷ to 1 if it is greater than ȳ, and 0 otherwise. We
measure the error by ‖Y ∗ − round(Ŷ)‖1, which is simply the number of misclassifed pairs. We say
our method succeeds if it misclassifies less than 0.1% of the pairs.

For comparison, we consider three alternative methods: (1) Single-Linkage clustering (SLINK) [24],
which is a hierarchical clustering method that merge the most similar clusters in each iteration. We
use the difference of neighbours, namely ‖Ai·−Aj·‖1, as the distance measure of node i and j, and
output when SLINK finds a clustering with r = 5 clusters. (2) A spectral clustering method [26],
where we run SLINK on the top r = 5 singular vectors of A. (3) Low-rank-plus-sparse approach
[17, 21], followed by the same rounding scheme. Note the first two methods assume knowledge of
r, which is not available to our method. Success is measured in the same way as above.

For each q, we find the smallest p for which a method succeeds, and average over 20 trials. The
results are shown in Figure 1(a), where the area above each curves corresponds to the range of
feasible (p, q) for each method. It can been seen that our method subsumes all others, in that we
succeed for a strictly larger range of (p, q). Figure 1(b) shows more detailed results for sparse graphs
(p ≤ 0.3, q ≤ 0.1), for which SLINK and trace-norm-plus unweighted `1 completely fail, while our
method significantly outperforms the spectral method, the only alternative method that works in this
regime.

5 Proof of Theorem 1

Overview: Let S∗ , A− Y ∗. The proof consists of two main steps: (a) developing a new approxi-
mate dual certificate condition, i.e. a set of stipulations which, if satisfied by any matrix W , would

4we point out that searching for the best cA and cAc while keeping cA/cAc fixed might lead to better
performance, which we do not pursue here

6

guarantee the optimality of (Y ∗, S∗), and (b) constructing a W that satisfies these stipulations with
high probability. While at a high level these two steps have been employed in several papers on
sparse and low-rank matrix decomposition, our analysis is different because it relies critically on
the specific clustering setting we are in. Thus, even though we are looking at a potentially more
involved setting with input-dependent weights on the sparse matrix regularizer, our proof is much
simpler than several others in this space. Also, existing proofs do not cover our setting.

Preliminaries: Define support sets Ω , support(S∗), and R , support(Y ∗). Their complements
are Ωc and Rc respectively. Due to the constraints (3) in our convex program, if (Y ∗ + ∆, S∗ −∆)
is a feasible solution to the convex program (2), then it has to be that ∆ ∈ D, where

D , {M ∈ Rn×n | ∀(i, j) ∈ R : −1 ≤ mij ≤ 0; ∀(i, j) ∈ Rc : 1 ≥ mij ≥ 0}.

Thus we only need to execute steps (a),(b) above for optimality over this restricted set of deviations.
Finally, we define the (now standard) projection operators: PΩ(M) is the matrix where the (i, j)th

entry is mij if (i, j) ∈ Ω, and 0 else. Let the SVD of Y ∗ be U0Σ0U
>
0 (notice that Y ∗ is a symmetric

positive semidefinite matrix), and let PT⊥(M) , (I−U0U
>
0)M(I−U0U

>
0) be the projection ofM

onto the space of matrices whose columns and rows are orthogonal to those of Y ∗, and PT (M) ,
M − PT⊥(M).

Step (a) - Dual certificate condition: The following proposition provides a sufficient condition
for the optimality of (Y ∗, S∗).

Proposition 1 (New Dual Certificate Conditions for Clustering). If there exists a matrix W ∈
Rn×n and a positive number ε obeying the following conditions

1. ‖PT⊥W‖ ≤ 1.

2. ‖PT (W)‖∞ ≤
ε
2 min {cAc , cA}

3.
〈
PΩ(U0U

>
0 +W),∆

〉
= (1 + ε) ‖PΩ(C ◦∆)‖1 ,∀∆ ∈ D.

4.
〈
PΩc(U0U

>
0 +W),∆

〉
≥ −(1− ε) ‖PΩc(C ◦∆)‖1 ,∀∆ ∈ D

then (Y ∗, S∗) is the unique optimal solution to the convex program (2).

The proof is in the supplementary material; it also involves several steps unique to our clustering
setup here.

Step (b) - Dual certificate constructions: We now construct a W , and show that it satisfies the
conditions in Proposition 1 w.h.p. (but not always, and this is key to its simple construction). To keep
the notation light, we consider the standard planted partition model, where the edge probabilities are
uniform; that is, for every pair of nodes in the same cluster, there is an edge between them with
probability p ≥ p̄, and for every pair where the nodes are in different clusters, the edge is present
with probability q ≤ q̄. It is straightforward to adapt the proof to the general case with non-uniform
edge probabilities. We define W ,W1 +W2 where

W1 , −PΩ(U0U
>
0) +

r∑
m=1

1− p
p

1

km
1Rm∩Ωc ,

W2 , (1 + ε)

[
C ◦ S∗ +

cAc(1− p)
p

1R∩Ωc −
cAq

1− q
1Rc∩Ωc

]
.

Intuitively speaking, the idea is that W1 and W2 are zero mean random matrices, so they are likely
to have small norms. To prove Theorem 1, it remains to show that W satisfies the desired conditions
w.h.p.; this is done below, with proof in the supplementary, and is much simpler than similar proofs
in the sparse-plus-low-rank literature.

Proposition 2. Under the assumptions of Theorem 1, with high probability, W satisfies the condi-
tions in Proposition 1 with ε = 2 log2 n

K

√
n
p .

7

6 Conclusion

We presented a convex optimization formulation, essentially a weighted version of low-rank matrix
decomposition, to address graph clustering where the graph is sparse. We showed that under a wide
range of problem parameters, the proposed method guarantees to recover the correct clustering. In
fact, our theoretic analysis shows that the proposed method outperforms, i.e., succeeds under less
restrictive conditions, every existing method in this setting. Simulation studies also validates the
efficiency and effectiveness of the proposed method.

This work is motivated by analyzing large-scale social network, where inherently, even actors
(nodes) within one cluster are more than likely not having connections. As such, immediate goals
for future work include faster algorithm implementations, as well as developing effective postpro-
cessing schemes (e.g., rounding) when the obtained solution is not an exact cluster matrix.

Acknowledgments

S. Sanghavi would like to acknowledge NSF grants 0954059 and 1017525, and ARO grant
W911NF1110265. The research of H. Xu is partially supported by the Ministry of Education of
Singapore through NUS startup grant R-265-000-384-133.

References

[1] P. Holland andK.B. Laskey and S. Leinhardt. Stochastic blockmodels: Some first steps. Social
Networks, 5:109–137, 1983.

[2] N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Machine Learning, 56(1):89–113,
2004.

[3] H. Becker. A survey of correlation clustering. Available online at
http://www1.cs.columbia.edu/ hila/clustering.pdf, 2005.

[4] B. Bollobás and AD Scott. Max cut for random graphs with a planted partition. Combinatorics,
Probability and Computing, 13(4-5):451–474, 2004.

[5] R.B. Boppana. Eigenvalues and graph bisection: An average-case analysis. In Foundations of
Computer Science, 1987., 28th Annual Symposium on, pages 280–285. IEEE, 1987.

[6] E.J. Candes, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? Arxiv preprint
arXiv:0912.3599, 2009.

[7] T. Carson and R. Impagliazzo. Hill-climbing finds random planted bisections. In Proceedings
of the twelfth annual ACM-SIAM symposium on Discrete algorithms, pages 903–909. Society
for Industrial and Applied Mathematics, 2001.

[8] V. Chandrasekaran, S. Sanghavi, S. Parrilo, and A. Willsky. Rank-sparsity incoherence for
matrix decomposition. SIAM Journal on Optimization, 21(2):572–596, 2011.

[9] M. Charikar, V. Guruswami, and A. Wirth. Clustering with qualitative information. In Foun-
dations of Computer Science, 2003. Proceedings. 44th Annual IEEE Symposium on, pages
524–533. IEEE, 2003.

[10] A. Condon and R.M. Karp. Algorithms for graph partitioning on the planted partition model.
Random Structures and Algorithms, 18(2):116–140, 2001.

[11] E. Demaine and N. Immorlica. Correlation clustering with partial information. Approximation,
Randomization, and Combinatorial Optimization.. Algorithms and Techniques, pages 71–80,
2003.

[12] E.D. Demaine, D. Emanuel, A. Fiat, and N. Immorlica. Correlation clustering in general
weighted graphs. Theoretical Computer Science, 361(2):172–187, 2006.

[13] D. Emanuel and A. Fiat. Correlation clustering–minimizing disagreements on arbitrary
weighted graphs. Algorithms-ESA 2003, pages 208–220, 2003.

[14] U. Feige and J. Kilian. Heuristics for semirandom graph problems. Journal of Computer and
System Sciences, 63(4):639–671, 2001.

8

[15] J. Giesen and D. Mitsche. Bounding the misclassification error in spectral partitioning in the
planted partition model. In Graph-Theoretic Concepts in Computer Science, pages 409–420.
Springer, 2005.

[16] J. Giesen and D. Mitsche. Reconstructing many partitions using spectral techniques. In Fun-
damentals of Computation Theory, pages 433–444. Springer, 2005.

[17] A. Jalali, Y. Chen, S. Sanghavi, and H. Xu. Clustering partially observed graphs via convex
optimization. Arxiv preprint arXiv:1104.4803, 2011.

[18] M. Jerrum and G.B. Sorkin. The metropolis algorithm for graph bisection. Discrete Applied
Mathematics, 82(1-3):155–175, 1998.

[19] C. Mathieu and W. Schudy. Correlation clustering with noisy input. In Proceedings of the
Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, pages 712–728. Society
for Industrial and Applied Mathematics, 2010.

[20] F. McSherry. Spectral partitioning of random graphs. In Foundations of Computer Science,
2001. Proceedings. 42nd IEEE Symposium on, pages 529–537. IEEE, 2001.

[21] S. Oymak and B. Hassibi. Finding dense clusters via ”low rank+ sparse” decomposition. Arxiv
preprint arXiv:1104.5186, 2011.

[22] K. Rohe, S. Chatterjee, and B. Yu. Spectral clustering and the high-dimensional stochastic
block model. Technical report, Technical Report 791, Statistics Department, UC Berkeley,
2010.

[23] R. Shamir and D. Tsur. Improved algorithms for the random cluster graph model. Random
Structures & Algorithms, 31(4):418–449, 2007.

[24] R. Sibson. Slink: an optimally efficient algorithm for the single-link cluster method. The
Computer Journal, 16(1):30–34, 1973.

[25] C. Swamy. Correlation clustering: maximizing agreements via semidefinite programming.
In Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms, pages
526–527. Society for Industrial and Applied Mathematics, 2004.

[26] U. Von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395–416,
2007.

9

