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Abstract This paper investigates the computational aspects of distributionally ro-
bust chance constrained optimization problems. In contrast to previous research that
mainly focused on the linear case (with a few exceptions discussed in detail below),
we consider the case where the constraints can be non-linear to the decision variable,
and in particular to the uncertain parameters. This formulation is of great interest as
it can model non-linear uncertainties that are ubiquitous in applications. Our main
result shows that distributionally robust chance constrained optimization is tractable,
provided that the uncertainty is characterized by its mean and variance, and the con-
straint function is concave in the decision variables, and quasi-convex in the uncer-
tain parameters. En route, we establish an equivalence relationship between distribu-
tionally robust chance constraint and the robust optimization framework that models
uncertainty in a deterministic manner. This links two broadly applied paradigms in
decision making under uncertainty and extends previous results of the same spirit in
the linear case to more general cases. We then consider probabilistic envelope con-
straints, a generalization of distributionally robust chance constraints first proposed
in Xu et al. [40] for the linear case. We extend this framework to the non-linear case,
and derive sufficient conditions that guarantee its tractability. Finally, we investigate
tractable approximations of joint probabilistic envelope constraints, and provide the
conditions when these approximation formulations are tractable.
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1 Introduction

Many optimization and decision making problems, when facing stochastic parame-
ter uncertainty, can be tackled via the celebrated chance constraint paradigm. Here,
a deterministic constraint is relaxed, and instead is required to hold with a certain
probability (w.r.t. the uncertain parameter). That is, given a constraint f(x, δ) ≥ α
where x denotes the decision variable, α ∈ R denotes the target value, and δ, the
uncertain parameter, follows a distribution µ, one solves:

Pδ∼µ[f(x, δ) ≥ α] ≥ p, (1)

for some value p ∈ (0, 1). Chance constraints were first proposed by Charnes and
Cooper [11], and since then there has been considerable work, e.g., Miller and Wag-
ner [31], Prékopa [34], Delage and Mannor [16], and many others; we refer the reader
to the textbook by Prékopa [35] and references therein for a thorough review.

While the chance constraint formulation is conceptually intuitive, it has two dis-
advantages that limit its practical applications. First, it is usually difficult to obtain
enough samples to accurately estimate the distribution µ. Second, optimization prob-
lems involving chance constraints are notoriously hard to solve, even when f(·, ·) is
bilinear (i.e., linear in either argument) and µ is a uniform distribution (Nemirovski
and Shapiro [32]). Indeed, the only known tractable case of the chance constraint for-
mulation is when f(·, ·) is bilinear and µ follows a radial distribution (Calafiore and
El Ghaoui [10]; Alizadeh and Goldfarb [1]).

A natural extension of the chance constraint paradigm that overcomes the above
mentioned problems is the distributionally robust chance constrained (DRCC) ap-
proach (e.g., Calafiore and El Ghaoui [10], Erdogan and Iyengar [22], Delage and
Ye [17], Zymler et al. [41]). In this paradigm, the distribution of the uncertain pa-
rameter is not precisely known, but instead, it is assumed to belong to a given set P.
Constraint (1) is then replaced with the following constraint

inf
µ∈P

Pδ∼µ[f(x, δ) ≥ α] ≥ p. (2)

In words, (2) requires that for all possible probability distributions of the stochas-
tic uncertainty, the chance constraint must hold. Typically, P is characterized by the
mean, the covariance, and sometimes the support of the distribution as well, all of
which can be readily estimated from finite samples. The DRCC approach also brings
in computational advantages, e.g., Cheung et al. [14] developed safe tractable ap-
proximations of chance constrained affinely perturbed linear matrix inequalities. A
celebrated result by Calafiore and El Ghaoui [10] shows that when f(·, ·) is bilinear
and P is characterized by the mean and the variance, DRCC (2) can be converted
into a tractable second order cone constraint.

Yet, most previous results on the tractability of DRCC are restricted to the case
that f(·, ·) is bilinear, whereas not much has been discussed when f(·, ·) is non-
linear. One exception that we are aware of is Zymler et al. [41], where they showed
that DRCC is tractable when f(x, δ) is linear in the decision variable x and quadratic
or piecewise linear in the uncertainty δ. However, their method is built upon the S-
lemma, and hence it is not clear how to extend the method to more general cases.
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Another one is Cheng et al. [13] where they studied the knapsack problem with dis-
tributionally robust chance constraints when f(x, δ) is piecewise linear in the uncer-
tainty δ and provided its equivalent formulation when the first and second moment
and the support information of δ are known. To the best of our knowledge, the general
non-linear case is largely untouched.

This paper is devoted to analyzing the tractability of DRCC (and its variants)
under general – i.e., non-linear – f(·, ·). This problem is of interest, because in many
applications the uncertainty is inherently non-linear, and cannot be modeled using
a bilinear f(·, ·), e.g., [9,28,42]; see Section 2 for a more detailed discussion. In
particular, we consider the following constraint

inf
δ∼(0,Σ)

P[f(x, δ) ≥ α] ≥ p, (3)

where f(x, δ) is concave in x, and quasi-convex in δ. Here, following the notations
from Xu et al. [40], we use (0,Σ) to denote all distributions with mean zero and
variance Σ, and let δ ∼ (0,Σ) stand for δ follows some unknown distribution µ
that belongs to (0,Σ). Notice that DRCC is a special case of distributionally robust
optimization (e.g., [36,21,33,17]) by setting the utility function to the indicator func-
tion. However, because the indicator function is neither convex nor concave in either
argument, previous results on the tractability of DRO do not apply in our setup.

Our first contribution, presented in Section 3, establishes that Constraint (3), when
f(·, ·) is concave-quasiconvex, is tractable. En route, we derive an equivalence rela-
tionship between (3) and a robust optimization formulation using a deterministic un-
certainty model (e.g., Ben-Tal et al. [6,7,5] Bertsimas and Sim [8]). This result thus
links the two arguably most widely used approaches in optimization under uncer-
tainty, and extends previous results of the same spirit for the linear case (e.g., Delage
and Mannor [16], Shivaswamy et al. [38]).

Our second result, presented in Section 4, establishes the tractability of the prob-
abilistic envelope model in the non-linear case. The probabilistic envelope model is
proposed in Xu et al. [40], based on the following observation: the chance constraint
(1) only guarantees that the given constraint will be satisfied with probability p or
violated with the remaining (1 − p) probability, but no control is provided on the
degree of violation. To overcome this, Xu et al. [40] proposed the probabilistic enve-
lope constraint framework – essentially a set of infinite number of chance constraints
at all levels of potential violation. That is, replace the single DRCC in (3) with the
following

inf
δ∼(0,Σ)

P[f(x, δ) ≥ α− s] ≥ B(s), ∀s ≥ 0, (4)

where B(s) is a given non-decreasing and right-continuous function of s. However,
only the bilinear case has been investigated. In this paper, we extend the probabilis-
tic envelope constraint to non-linear uncertainties. We prove that the optimization
problem involving the probabilistic envelope constraint (4) is tractable when f(·, ·)
is concave-quasiconvex and B(s) satisfies some weak conditions. Similarly as for
the (single) DRCC case, we establish a linkage between probabilistic envelope con-
straints and the comprehensive robust optimization framework using a deterministic
uncertainty model (Ben-tal et al. [3,2]).
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It is worthwhile to note that the probabilistic envelope constraint is closely re-
lated to stochastic dominance constraints in the literature of stochastic programming
(Dentcheva and Ruszczyński [18–20]); see Chapter 4 of the book by Shapiro et
al. [37] for more details. A stochastic dominance constraint refers to a constraint
of the form X �(k) Y where X and Y are random variables and �(k) stands for
k-th order stochastic dominance. Thus, a probabilistic envelop constraint is indeed a
first-order stochastic dominance constraint with the right hand side is a random vari-
able whose cumulative distribution function is B(s). However, most of the literature
in optimization with stochastic dominance constraints does not address this specific
case and instead focuses on the second (or higher) order constraints case, a case that
preserves convexity and is more amenable to analysis. As we restrict our attention to
this specific case, we choose to use the name “probabilistic envelop constraint”.

Finally, we extend our results in two ways, namely, more flexible uncertainty
modeling and joint constraints. In Section 5, we provide tractability results for the
case where the mean and variance themselves are unknown, and the case that the
mean and the support of the distribution of the uncertain parameters are known. For
more general uncertainty models where exact results appear difficult, we provide
a conservative approximation scheme based on CVaR approximation of the chance
constraints. In Section 6, we extend the probabilistic envelope constraint formulation
to its joint chance constraint counterpart. This typically leads to a computationally
challenging problem, and we adopt the CVaR approximation approach proposed by
Zymler et al. [41], and show that the joint probabilistic envelope constraint can be
approximated tractably under some technical conditions.

Notation. We use lower-case boldface letters to denote column vectors, upper-
case boldface letters to denote matrices, and the transpose (superscript >) of the
column vectors to denote row vectors. The all-ones vector is denoted by 1. The
space of symmetric matrices of dimension n is denoted by Sn. For any two matri-
ces X,Y ∈ Sn, 〈X,Y〉 = tr(XY) denotes the trace scalar product, and the relation
X � Y (X � Y) implies that X−Y is positive semi-definite (positive definite). Ran-
dom variables are always represented by δ. Finally, we call an optimization problem
tractable if it can be solved in polynomial time and call a set tractable if it is convex
and a polynomial-time separation oracle can be constructed.

2 Formulation and Motivating Examples

We first propose the distributionally robust chance constraint, the probabilistic enve-
lope constraint and the joint probabilistic envelope constraint discussed in this paper.
For clarity, we repeat some of the definitions given in the introduction. Given a ran-
dom variable δ and a function f(x, δ), a chance constraint places a lower-bound on
the probability that the constraint reaches a certain target, which is defined as

Distributionally Robust Chance Constraint: inf
δ∼(0,Σ)

P[f(x, δ) ≥ α] ≥ p. (5)

As discussed above, the distributionally robust chance constraint provides protection
against noise by bounding the probability of failing to achieve a pre-defined target
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α. It says nothing about what happens when, with probability at most (1 − p), the
target is not met. In particular, there is no control over the magnitude of violation of
the constraint. To overcome this shortcoming, the probabilistic envelope constraint
is proposed, which can enforce all levels of probabilistic guarantees. Given a non-
decreasing function B(s), the probabilistic envelope constraint can be written as

Probabilistic Envelope Constraint: inf
δ∼(0,Σ)

P[f(x, δ) ≥ α− s] ≥ B(s); ∀s ≥ 0.

(6)
For example, if we want the probability of large constraint violation to decrease expo-
nentially, then we can set B(s) = 1−γ exp(−βs). Besides the individual probabilis-
tic envelope constraint discussed above, we propose the following joint probabilistic
envelope constraint (JPEC):

JPEC: inf
δ∼(0,Σ)

P[fi(x, δ) ≥ αi − s, ∀i = 1, · · · ,m] ≥ B(s); ∀s ≥ 0. (7)

Computationally, the joint envelope constraint is more complicated. A common method
to simplify it is to decompose it into m individual envelope constraints by applying
Bonferroni’s inequality. However, since Bonferroni’s inequality is not tight, this ap-
proximation method is usually overly conservative. In this paper, we use the worst-
case CVaR method proposed by Zymler et al. [41] to give a tractable and tighter
approximation for this joint envelope constraint.

Although the three types of constraints (5), (6), and (7) above can be general,
they may not be tractable due to the non-convex feasible sets. To ensure tractability,
we focus on the “concave-quasiconvex” case, i.e., the function f is concave w.r.t. the
decision variable, and quasi-convex w.r.t. the uncertain parameters, see the following
for a precise description:

Assumption 1 Let X and Y be two convex sets, and let f be a function mapping from
X× Y to R,

1. For each x ∈ X, the function f(x, ·) is quasi-convex and continuous on Y. For
each y ∈ Y, the function f(·,y) is concave on X.

2. The uncertainty δ is modeled as a random variable whose mean and variance are
known but its distribution is unknown. Without loss of generality, we assume the
mean is zero.

Notice that Assumption 1 generalizes the case where f(·, ·) is bilinear – a setup
that previous literature mainly focused on – to the non-linear case. In particular, the
uncertainty can be non-linear. Non-linearity of uncertainty arises naturally in a broad
range of applications, as we demonstrate by the following examples.

Example 1: Portfolio Optimization

Consider a stylized portfolio optimization problem, where an amount is to be allo-
cated to n stocks and held for a time period T . Denote the price of the ith stock after
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time T by Si, and our goal is to maximize the Value at Risk (VaR) of the total return
of the portfolio, which leads to the following formulation, for a fixed γ ∈ (0, 1)

Maximize:x≥0,z z

Subject to: P
[∑

i

Sixi ≥ z
]
≥ 1− γ; 1>x = 1,

where xi is the allocation for the ith stock. It is well believed that the true drivers of
the uncertainty in stock price is not the stock return Si itself, but instead the com-
pounded rates of return, i.e., Si = exp(δi) where δi is the random variable to model
and analyze. For example, the celebrated log-normal model, pioneered by Black and
Scholes [9], models Si as Si = exp

(
(µi − σ2

i /2)T +
√
Tξi
)

where the vector ξ is
Normally distributed with mean 0 and covariance matrix Q. This can be rewritten as
Si = exp(δi) where δ ∼ N ((µi − σ2

i /2)T, TQ).
One common criticism of the log-normal model is that it assumes ξ to be Gaus-

sian, whereas empirical evidence suggests that ξ (and hence δ) is fat-tailed (e.g.,
Jansen and deVries [26], Cont [15], Kawas and Thiele [27]). Since the Gaussian as-
sumption ignores the fat tails, it essentially leads the managers to take more risk than
she is willing to accept. On the other hand, it remains controversial about what is the
most appropriate fat-tail distribution to use in modeling returns [23,29,26,15], and
“this controversy has proven hard to resolve” as Jensen and de Vries stated [26]. In
light of this, one possible approach is to not commit to any distribution, but instead
only require that the first two moments match. This leads to the following problem:

Maximize:x≥0,z z

Subject to: inf
δ∼((µi−σ2

i /2)T,TQ)
P
[∑

i

exp(δi)xi ≥ z
]
≥ 1− γ; 1>x = 1,

(8)
Observe that this formulation satisfies Assumption 1, i.e., the constraint is linear to
the decision variable and non-linearly convex to the uncertain parameters, and the
decision variables are non-negative.

In portfolio optimization, options are another cause of non-linearity of the un-
certainty (Kawas and Thiele [28], Zymler et al. [42]). Suppose for each stock, the
investor is allowed to purchase an European call option at the price of ci per unit,
which gives her the right to buy a unit of stock i at time T with the strike price pi.
Thus, denote the stock return as Si, the return of this option is max(Si− pi, 0), since
the investor will execute the option if and only if Si > pi. The portfolio optimization
problem is thus formulated as

Maximize:x≥0,y≥0,z z

Subject to: P
[∑

i

(
Sixi +max(Si − pi, 0)yi

)
≥ z
]
≥ 1− γ;∑

i

(xi + ciyi) = 1,

where y is the investment of the European call options. Notice that the constraints
are non-linear, yet convex to Si. Indeed, following the previous argument, we may
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further model Si = exp(δi), and require that the first two moments of δ are known.
This makes the probabilistic constraint again satisfy Assumption 1.

Example 2: Transportation Problem

Solving multi-stage optimization problems may also result in non-linearity of uncer-
tainty and decision variables. We illustrate this using a transportation decision prob-
lem. Given a directed graph G = (V, E), and let S ⊂ V be the set of source nodes,
and D ⊂ V be the set of destination nodes, with S

⋂
D = ∅. One can think of each

node in S as a supplier, and each node in D as a consumer.
The decision to make contains two stages: in the first stage, the decision maker

needs to decide the required flow of each source node and each destination node, i.e,
s(i) for i ∈ S and d(j) for j ∈ D. One can think of this as deciding how much
amount of good to order from each supplier, and how much to sell to each client.
Certain linear constraints on the required flow are imposed: for example, the total
supply equals to the total demand, and they must be larger than a minimum demand
L, i.e.,

∑
i∈S s(i) =

∑
j∈D d(j) ≥ L.

In the second stage, after all the ordered goods are produced by the suppliers,
the decision maker needs to decide how to transport these goods, i.e., the flow on the
network from sources to destinations, by solving a minimum cost flow problem given
si and dj . This can be formulated as a linear program, where the decision variable
f(u, v) is the flow from node u to node v:

Minimize:
∑

(u→v)∈E

δ(u, v)f(u, v)

Subject to:
∑

(u→v)∈E

f(u, v)−
∑

(v→u)∈E

f(v, u) = 0 ∀u 6∈ S
⋃
D;

∑
(u→v)∈E

f(u, v)−
∑

(v→u)∈E

f(v, u) = s(u) ∀u ∈ S;

∑
(u→v)∈E

f(u, v)−
∑

(v→u)∈E

f(v, u) = −d(u) ∀u ∈ D;

f(u, v) ≥ 0 ∀(u→ v) ∈ E ;
f(u, v) = 0 ∀(u→ v) 6∈ E .

Denote the optimal value by h(s,d, δ). Suppose δ represents uncertain parameters
whose values are only revealed at stage two, then to ensure that the total transportation
cost is low with high probability, the first stage decision can be formulated using
DRCC:

Maximize:s≥0,d≥0,z z

Subject to: inf
δ∼(µ,Σ)

P
[
− h(s,d, δ) ≥ z

]
≥ 1− γ;∑

i∈S
s(i) =

∑
j∈D

d(j) ≥ L.
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It is easy to verify that −h(s,d, δ) is non-linearly concave w.r.t. the decision vari-
ables (s,d) and non-linearly convex w.r.t. δ. Thus, the above transportation problem
satisfies Assumption 1.

3 The Chance Constraint Case

This section is devoted to the (individual) distributionally robust chance constraint
case (5). Our main theorem shows that when function f(x, δ) satisfies Assumption
1, then a DRCC is equivalent to a robust optimization constraint. This bridges the two
main approaches in optimization under uncertainty, namely, stochastic programming,
and robust optimization. We then investigate the tractability of DRCC, providing suf-
ficient conditions for the individual DRCC (5) to be tractable.

3.1 Equivalence to Robust Optimization

In this subsection we show that DRCC is equivalent to robust optimization by ana-
lyzing the feasible set given by the constraint (5), which we denote by

S , {x| inf
δ∼(0,Σ)

P[f(x, δ) ≥ α] ≥ p} = {x| sup
δ∼(0,Σ)

P[f(x, δ) < α] ≤ 1− p}.

Our main tool to analyze S is the following result from Marshall and Olkin [30].

Lemma 1 Let δ = (δ1, · · · , δk) be a random vector with E[δ] = 0, E[δδ>] = Σ,
and T ⊆ Rk be a closed convex set. Then we have

P[δ ∈ T ] ≤ 1

1 + θ2
,

where θ = infy∈T
√

y>Σ−1y, and the equality can always be attained.

Notice that one technical difficulty that we face to apply Lemma 1 is that the set
{δ|f(x, δ) < α} may not be closed. Hence we extend Lemma 1 to the case where T
is not necessarily closed:

Lemma 2 Let T ⊆ Rk be a convex set. Denote θ = infy∈T
√

y>Σ−1y. Then we
have

sup
δ∼(0,Σ)

P[δ ∈ T ] = 1

1 + θ2
.

Proof When T is empty, we have supδ∼(0,Σ) P[δ ∈ T ] = 0. On the other hand,

θ = infy∈T
√

y>Σ−1y = +∞ which implies 1/(1 + θ2) = 0. Hence the lemma
holds.

When T is non-empty, T has a non-empty relative interior. Let x0 be a point in
the relative interior of T . Let T be the closure of T , and for 0 ≤ λ < 1 define T (λ)
by

T (λ) = {λ(x− x0) + x0|x ∈ T}.
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Thus, we have T (λ) is closed, convex, and T (λ) ⊆ T . Define

θ = inf
y∈T

√
y>Σ−1y, θ = inf

y∈T

√
y>Σ−1y, θ(λ) = inf

y∈T (λ)

√
y>Σ−1y,

and hence θ(λ) ≥ θ ≥ θ. On the other hand, for any x ∈ T , one can construct a
sequence xi → x such that xi ∈ θ(λi) for some {λi}∞i=1, by the definition of T (λ).
Thus, since y>Σ−1y is a continuous function of y, we have infλ∈[0,1) θ(λ) ≤ θ,
which implies infλ∈[0,1) θ(λ) = θ. By Lemma 1, the following inequalities hold for
0 ≤ λ < 1 since T (λ) and T are both closed convex sets:

1

1 + θ(λ)2
= sup

δ∼(0,Σ)

P[δ ∈ T (λ)] ≤ sup
δ∼(0,Σ)

P[δ ∈ T ] ≤ sup
δ∼(0,Σ)

P[δ ∈ T ] = 1

1 + θ
2 .

Since supλ∈[0,1)
1

1+θ(λ)2 = 1

1+θ
2 , we have

sup
δ∼(0,Σ)

P[δ ∈ T ] = sup
δ∼(0,Σ)

P[δ ∈ T ]

which establishes the lemma. �

Now we are ready to present the main result of this subsection.

Theorem 1 Suppose f(x, ·) is quasi-convex for every x ∈ X and f(·,y) is concave
for every y ∈ Y, and let p ∈ (0, 1) and set r = p/(1 − p), then the feasible set S of
the DRCC (5) is convex and admits

S = {x|∀y such that y>Σ−1y < r ⇒ f(x,y) ≥ α}.

If f(x, ·) is further assumed to be continuous for every x ∈ X, then the distribution-
ally robust chance constraint infδ∼(0,Σ) P[f(x, δ) ≥ α] ≥ p is equivalent to

f(x,y) ≥ α, ∀y ∈ Ω , {y|y>Σ−1y ≤ r}.
Proof Since f(x, ·) is quasi-convex for each x ∈ X, the set Tx , {y|f(x,y) < α} is
convex for fixed x. Then from Lemma 2, the feasible set of the constraint (5) satisfies

S , {x| inf
δ∼(0,Σ)

P[f(x, δ) ≥ α] ≥ p} = {x| sup
δ∼(0,Σ)

P[f(x, δ) < α] ≤ 1− p}

= {x| sup
δ∼(0,Σ)

P[δ ∈ Tx] ≤ 1− p} (a)
= {x| inf

y∈Tx

y>Σ−1y ≥ r}

= {x| inf
f(x,y)<α

y>Σ−1y ≥ r} = {x|∀y such that f(x,y) < α⇒ y>Σ−1y ≥ r}

= {x|∀y such that y>Σ−1y < r ⇒ f(x,y) ≥ α},

where (a) holds by Lemma 2. Since f(·,y) is concave for every y, we know that S
is convex, as the property is preserved under arbitrary intersection. Hence we proved
the first part: S = {x|∀y such that y>Σ−1y < r ⇒ f(x,y) ≥ α}.

To show the second part, further notice that p ∈ (0, 1) implies r > 0. Thus we
have

S = {x|f(x,y) ≥ α, ∀y such that y>Σ−1y ≤ r},
where the equality holds because for each x ∈ X, f(x,y) and y>Σ−1y are both
continuous in y so that we can replace “<” by “≤” without effect on S. �
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Thus the probabilistic uncertainty model is linked to the deterministic set based
uncertainty model of robust optimization (e.g., Ben-Tal and Nemirovski [6,7], Bert-
simas and Sim [8]). This result is in the spirit of past work that has linked chance
constraints to robust optimization in the linear case (e.g., Delage and Mannor [16],
Shivaswamy et al. [38]).

Interestingly, based on the above theorem, we can establish an equivalence re-
lationship between the distributionally robust chance constraint and the Worst Case
Conditional Value at Risk (WCCVaR) in the convex case, which recovers a result first
shown in [41] using a different proof.

Corollary 1 Suppose f(x, ·) is convex and continuous for every x ∈ X, then for
p ∈ (0, 1),

inf
δ∼(0,Σ)

P[f(x, δ) ≥ α] ≥ p⇔ sup
δ∼(0,Σ)

CVaR1−p(−f(x, δ)) ≤ −α.

Proof See Appendix A. �

In the most general case, i.e., f(x, δ) is quasi-convex, the equivalence shown in
Corollary 1 does not hold. Consider a constraint with a random variable δ:

inf
δ∼(0,σ)

P[f(x, δ) ≥ α] ≥ 0.5.

We now construct a function f(x, δ) that is quasi-convex but not convex w.r.t. δ. In
particular, we construct f(x, δ) that is decreasing (hence quasi-convex) and concave
w.r.t. δ, such that the DRCC above holds but the constraint on the worse-case CVaR
does not hold. For simplicity, denote −f(x, ·) by L(·) and let α = −σ. Define L(·)
as follows:

L(x) =

{
σ, x ≤

√
σ;

x2, x >
√
σ.

It can be easily shown that the constraint infδ∼(0,σ) P[L(δ) ≤ σ] ≥ 0.5 holds. Con-
sider an uniform distribution over the interval [−

√
3σ,
√
3σ] which has mean 0 and

variance σ. By simple computation, we can see that CVaR0.5(L(δ)) > σ w.r.t. this
uniform distribution when σ = 1.

3.2 Tractability of Individual DRCC

In this subsection we investigate the tractability of DRCC. We first provide sufficient
conditions for optimization problems involving chance constraint (5) with function
f(x, δ) being tractable. We then show that for the special case where f(x, δ) =
g(δ)>x and g(δ) is linear or convex quadratic, we can convert (5) to an equivalent
semi-definite constraint.

Theorem 2 If function f(x, δ) satisfies Assumption 1, set Ψ ⊆ X is tractable and
p ∈ (0, 1), then the following optimization problem

Minimize:x∈Ψ cTx

Subject to: inf
δ∼(0,Σ)

P[f(x, δ) ≥ α] ≥ p (9)
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can be solved in polynomial time, if (i) for any fixed δ the super-gradient of f(·, δ)
can be evaluated in polynomial time; and (ii) for any fixed x ∈ Ψ the following
optimization problems on y can be solved in polynomial time,

Minimize:y f(x,y)

Subject to: yTΣ−1y ≤ p

1− p
.

(10)

Proof By Theorem 1, the feasible set S of the constraint (5) is given by

S = {x|f(x,y) ≥ α, ∀y such that y>Σ−1y ≤ p

1− p
}.

To establish the theorem, it suffices to construct a polynomial-time separation oracle
for S (Grötschel et al. [25]). A “separation oracle” is a routine such that for x∗, it can
be verified in polynomial time that (a) whether x∗ ∈ S or not; and (b) if x∗ 6∈ S, a
hyperplane that separates x with S.

We now construct such a separation oracle. To verify the feasibility of x∗, notice
that x∗ ∈ S if and only if the optimal value of the optimization problem (10) is
greater than or equal to α, which can be verified by solving Problem (10) directly. By
assumption, this can be done in polynomial time.

If x∗ 6∈ S, then by solving Problem (10), we can find in polynomial time y∗ such
that f(x∗,y∗) < α. Because f(x,y) is concave in x for each y ∈ Y, for any x ∈ S,
the following holds

f(x∗,y∗) +∇xf(x∗,y∗)>(x− x∗) ≥ f(x,y∗) ≥ α.

Thus, the hyperplane separating x∗ from the feasible set S is the following

f(x∗,y∗) +∇xf(x∗,y∗)>(x− x∗) ≥ α,

which can be generated in polynomial time since the super-gradient of x can be ob-
tained in polynomial time. �

We now consider the special case that f(x, δ) = g(δ)>x and each component gi(δ)
of g(δ) is either quadratic convex or linear.

Corollary 2 If f(x, δ) = g(δ)>x and satisfies Assumption 1 and each component of
g(δ) is a convex quadratic or linear function, i.e., it has the form gi(δ) = δ>Giδ +
p>i δ + qi, where pi ∈ Rn, qi ∈ R and Gi ∈ Sn is a symmetric semi-definite matrix
(Gi is zero if gi(δ) is linear), then the following optimization problem

Minimize:x∈Ψ c(x)

Subject to: inf
δ∼(0,Σ)

P[g(δ)>x ≥ α] ≥ p (11)

where p ∈ (0, 1), is equivalent to

Minimize:x∈Ψ,β≥0 c(x)

Subject to:
(
βΣ−1 +G(x) 1

2P (x)
1
2P (x)

> Q(x)− βp
1−p

)
� 0,

(12)

where G(x) ,
∑n
i=1 xiGi, P (x) ,

∑n
i=1 xipi, and Q(x) ,

∑n
i=1 xiqi − α.
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Proof See Appendix B. �

Notice that G(x), P (x) and Q(x) are all linear functions of x, and hence the semi-
definite constraint in Problem (12) is a linear matrix inequality. Compare to the result
by Calafiore and El Ghaoui [10] which only considers the case where f(·, ·) is bi-
linear, the result above holds when f(x, ·) is convex quadratic. Zymler et al. [41]
showed that DRCC is tractable when f(x, δ) is linear in x and quadratic in δ. How-
ever, their method is built upon S-lemma, and hence it is not clear how to extend the
method to more general cases. Our formulation needs stronger conditions – f(x, ·) is
convex quadratic – than [41], but the equivalent formulation is simpler than [41].

4 Probabilistic Envelope Constraint

Recall that the probabilistic envelope constraint refers to the following:

inf
δ∼(0,Σ)

P[f(x, δ) ≥ α− s] ≥ B(s); ∀s ≥ 0. (13)

Here, s represents allowed magnitude of constraint violation, and B(s) is the prob-
abilistic guarantee associated with a constraint violation no more than s. Hence,
B(s) ∈ (0, 1) for all s ≥ 0, and is assumed to be non-decreasing without loss of
generality.

When f(x, δ) is bilinear, the envelope constraint (13) is shown to be equivalent
to a comprehensive robust constraint, and proved to be tractable under mild technical
conditions in Xu et al. [40]. We consider in this section the tractability of (13) where
f(x, δ) satisfies Assumption 1. For convenience of exposition, we rewrite (13) to an
equivalent formulation as shown in the following lemma.

Lemma 3 If B(s) : R+ 7→ (0, 1) is a non-decreasing function that is continuous
from the right, then the probabilistic envelope constraint (13) is equivalent to

inf
δ∼(0,Σ)

P[f(x, δ) ≥ α− t(r)] ≥ r

1 + r
; ∀r ≥ 0. (14)

Here t(r) , B−1( r
1+r ) and B−1(x) is defined as

B−1(x) ,

{
inf{y ≥ 0|B(y) ≥ x} if ∃y such that B(y) ≥ x;
+∞ otherwise.

Furthermore, t(·) is non-decreasing, t(0) = 0, limr↑+∞ t(r) = +∞, and t(·) is
continuous at the neighborhood of 0.

Proof See Appendix C. �

Hence in the sequel, we analyze the probabilistic envelope constraint (14) in-
stead of (13). The following theorem shows that a probabilistic envelope constraint is
equivalent to a comprehensive robust constraint proposed in Ben-Tal et al. [3], Ben-
Tal et al. [4] and Ben-Tal et al. [2]. This thus extends previous results for affine cases
in Xu et al. [40] to general f(·, ·) satisfying Assumption 1.
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Theorem 3 Suppose t : R+ 7→ [0,+∞) is non-decreasing, t(0) = 0, limr↑+∞ t(r) =
+∞ and continuous at the neighborhood of 0. Then if function f(x, δ) satisfies As-
sumption 1, the probabilistic envelope constraint

inf
δ∼(0,Σ)

P[f(x, δ) ≥ α− t(r)] ≥ r

1 + r
; ∀r ≥ 0 (15)

is equivalent to the comprehensive robust constraint

f(x,y) ≥ α− t(‖y‖2Σ−1), ∀y ∈ Rn. (16)

Proof Define the feasible set of (15) as S. For any fixed r ≥ 0, we have

S(r) =

{
x| inf

δ∼(0,Σ)
P[f(x, δ) ≥ α− t(r)] ≥ r

1 + r

}
= {x|∀y such that y>Σ−1y < r ⇒ f(x,y) + t(r) ≥ α}.

by Lemma 3 and Theorem 1. Thus, we have

S =

{
x| inf

δ∼(0,Σ)
P[f(x, δ) ≥ α− t(r)] ≥ r

1 + r
; ∀r ≥ 0

}
= {x|∀y such that y>Σ−1y < r ⇒ f(x,y) + t(r) ≥ α; ∀r ≥ 0}.

Notice that without loss of generality, we can neglect the case r = 0 in the right hand
side, as {y|y>Σ−1y < 0} = ∅. Thus we have

S = {x|∀y such that y>Σ−1y ≤ r ⇒ f(x,y) + t(r) ≥ α; ∀r ≥ 0},

where in the last equality we use the fact that ∀x ∈ X, f(x,y) and y>Σ−1y are
both continuous in y, we can replace “<” by “≤” without effect on S as long as
{y>Σ−1y < r} is non-empty. By continuity of t(r) at r = 0, we further have

S = {x|∀(y, r) such that y>Σ−1y ≤ r ⇒ f(x,y) + t(r) ≥ α}.

The second equality holds because there exists no y such that y>Σ−1y ≤ r when
r < 0 so that the constraint r ≥ 0 can be removed. Hence the probabilistic envelope
constraint is equivalent to

f(x,y) + t(r) ≥ α, ∀(y, r) such that ‖y‖2Σ−1 ≤ r. (17)

Notice that (17) is equivalent to constraint (16) by monotonicity of t(·). �

It is known that comprehensive robust optimization generalizes robust optimiza-
tion (e.g., Ben-Tal et al. [3], Ben-Tal et al. [4] and Ben-Tal et al. [2]). Indeed, if t(·)
is taken to be an indicator function, i.e., t(r) = 0 for r ∈ [0, c] and +∞ for r > c,
the formulation (16) recovers the standard robust optimization formulation with the
ellipsoidal uncertainty set Ω = {y|y>Σ−1y ≤ c}. On the other hand, while robust
optimization guarantees that the constraint is not violated for any realization of the
uncertain parameters in the set Ω, it makes no guarantees for realizations outside
that set. In contrast, the comprehensive robust optimization formulation allows us to
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choose different functions t(·), in order to provide different levels of protection for
different parameter realizations, as opposed to the “all-or-nothing” view of standard
robust optimization.

We now investigate the tractability of probabilistic envelope chance constraints.
We first consider the general case where f(x, δ) is an arbitrary “concave-quasiconvex”
function. The following theorem is essentially an envelope constraint counterpart of
Theorem 2.

Theorem 4 If t(·) satisfies the conditions in Theorem 3, f(x, δ) satisfies Assumption
1 and set Ψ ⊆ X is tractable, then the optimization problem with a linear objective
function and the probabilistic envelope constraint (13):

Minimize:x∈Ψ c>x

Subject to: inf
δ∼(0,Σ)

P[f(x, δ) ≥ α− t(r)] ≥ r

1 + r
; ∀r ≥ 0

(18)

can be solved in polynomial time if (1) one can provide the super-gradient of f(x, δ)
at x for fixed δ in polynomial time, and (2) for any fixed x the following optimization
problems can be solved in polynomial time:

Minimize:y,r f(x,y) + t(r)

Subject to: y>Σ−1y ≤ r.
(19)

Proof By Theorem 3, the feasible set S can be rewritten as

S = {x|∀(y, r) such that y>Σ−1y ≤ r ⇒ f(x,y) + t(r) ≥ α}.

Similar to the proof of Theorem 2, we construct a separation oracle to prove tractabil-
ity. In order to verify the feasibility of a given x∗, notice that x∗ ∈ S if and only if
the optimal objective value of the optimization problem (19) is greater than or equal
to α, which can be verified by directly solving Problem (19). By assumption, this can
be done in polynomial time.

If x∗ 6∈ S, then by solving Problem (19), we can find in polynomial time (y∗, r∗)
such that f(x∗,y∗) + t(r∗) < α. Because f(x,y) is concave in x for each y ∈ Y,
for any x ∈ S, we have

f(x∗,y∗) +∇f(x∗,y∗)>(x− x∗) + t(r∗) ≥ f(x,y∗) + t(r∗) ≥ α.

Hence the hyperplane separating x∗ from the feasible set S is the following:

f(x∗,y∗) +∇f(x∗,y∗)>(x− x∗) + t(r∗) ≥ α, (20)

which can be generated in polynomial time since the super-gradient of x can be ob-
tained in polynomial time. This completes the proof. �

Our next result states that when f(x, δ) = g(δ)>x and gi(δ) is quadratic, (14)
can be converted to a semi-definite constraint.
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Corollary 3 Suppose t(·) satisfies the conditions in Theorem 3 and is convex, f(x, δ) =
g(δ)>x satisfies Assumption 1 and Ψ ⊆ X is tractable, then if each component gi(δ)
of g(δ) is linear or convex quadratic as in Corollary 2, the optimization problem (18)
is equivalent to

Minimize:x∈Ψ,β≥0 c>x

Subject to:
(
βΣ−1 +G(x) 1

2P (x)
1
2P (x)

> Q(x)− t∗(β)

)
� 0

(21)

where t∗(β) is the conjugate function of t(r), i.e., t∗(β) , supr≥0 (βr − t(r)); and
P (·), G(·), Q(·) are defined as in Corollary 2. Furthermore, the optimization problem
(18) with a linear objective function and the probabilistic envelope constraint can be
solved in polynomial time if for any β ≥ 0 the following optimization problem on r
can be solved in polynomial time:

Minimize:r≥0 t(r)− βr. (22)

Proof See Appendix C. �

In particular, when t(r) is a convex function, the optimization problems (19) and
(22) are both convex and can be solved efficiently.

5 Chance Constraints: Beyond Mean and Variance

Thus far we have studied the setup that models unknown parameters as following
an ambiguous distribution with known mean and covariance. In this section we ex-
tend our results to some other models of uncertain parameters – this includes the
case where the mean and the covariance themselves are unknown and can only be
estimated from data; and the case where other information of the uncertain param-
eter (e.g., the support) may be available. Specifically, we first show that the chance
constraint (5) and the probabilistic envelope constraint (6) with uncertain mean and
covariance are still tractable. Then we deal with the case where the mean and sup-
port of the uncertain parameter are known. Finally, we apply distributionally robust
optimization to make a conservative approximation for constraints (5) and (6) when
additional information on the uncertain parameter is available.

5.1 Uncertain Mean and Covariance

We first study the uncertain mean and covariance case. This model of ambiguity
was first proposed and studied in [17] for distributionally robust optimization, and
was also investigated for linear chance constraints in [40]. We formulate the robust
counterparts of the distributionally robust chance constraint (5) and the probabilistic
envelope constraint (6) where the mean and covariance themselves are uncertain, and
then show that optimization problems with these constraints are tractable under mild
conditions. Based on Theorem 1 and Theorem 3, we can easily obtain the following
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corollaries. Corollary 4 and Corollary 5 show that the DRCC and the probabilistic
envelope constraint with unknown mean and covariance is equivalent to a set of (in-
finitely many) deterministic constraints. Note that the uncertainty sets U and S can
be arbitrary. Corollary 6 shows the tractability of probabilistic envelope constraints.

Corollary 4 If function f(x, δ) satisfies Assumption 1, then for p ∈ (0, 1) the chance
constraint

inf
δ∼(µ,Σ),µ∈U,Σ∈S

P[f(x, δ) ≥ α] ≥ p, (23)

is equivalent to the constraint f(x,y + µ) ≥ α, ∀y ∈ Rn,µ ∈ U and Σ ∈

S such that
(

Σ y
y> p

1−p

)
� 0, where U and S are the uncertainty sets of mean µ

and covariance Σ, respectively.

Corollary 5 Suppose t : R+ 7→ [0,+∞) is non-decreasing, t(0) = 0, limr↑+∞ t(r) =
+∞ and is continuous at the neighborhood of zero. Then if function f(x, δ) satisfies
Assumption 1, the probabilistic envelope constraint

inf
δ∼(µ,Σ),µ∈U,Σ∈S

P[f(x, δ) ≥ α− t(r)] ≥ r

1 + r
; ∀r ≥ 0, (24)

is equivalent to the constraint

inf
µ∈U

f(x,y + µ) ≥ α− t( inf
Σ∈S
‖y‖2Σ−1), ∀y ∈ Rn, (25)

where U and S are the uncertainty sets of mean µ and covariance Σ, respectively.

Corollary 6 Under the conditions of Corollary 5, an optimization problem with a
linear objective function and the probabilistic envelope constraint (24) can be solved
in polynomial time if one can provide the super-gradient of f(x, δ) at x for fixed δ
in polynomial time, and for any fixed x the following optimization problem can be
solved in polynomial time:

Minimize: f(x,y + µ) + t(r)

Subject to:
(

Σ y
y> r

)
� 0

Σ ∈ S, µ ∈ U .

(26)

Proof See Appendix D. �

From Corollary 6 we see that if t(·) is convex, and U ⊆ Rn and S ∈ Sn×n+ are
both convex sets, then the optimization problem (26) is a SDP problem which can be
solved efficiently. The tractability result of the chance constraint (23) is a special case
of Corollary 6, namely, t(r) = 0 and r = p

1−p .
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5.2 Known Mean and Support

We now investigate the case where the mean and the support of the uncertain pa-
rameter δ are known. We show that the corresponding robust chance constraint can
be reformulated as a set of infinitely many deterministic constraints, and is tractable
under mild technical conditions. Unfortunately, it seems that these results can not be
easily extended to the probabilistic envelope constraint case, which is hence left for
future research.

Theorem 5 Suppose the mean µ and support S of the uncertain parameter δ are
known and S is a closed convex set. If f(x, ·) is continuous and quasi-convex for
every x ∈ X, then for p ∈ (0, 1], the chance constraint

inf
δ∼(µ,S)

P[f(x, δ) ≥ α] ≥ p, (27)

is equivalent to

f(x, δ1) ≥ α, ∀δ1, δ2 such that (1− p)δ1 + pδ2 − µ = 0, δ1 ∈ S, δ2 ∈ S. (28)

Proof See Appendix D. �

Theorem 6 If f(x, ·) is quasi-convex and continuous for every x ∈ X and f(·,y) is
concave for every y ∈ Y, the mean µ and support S of the uncertain parameter δ are
known, and S is a closed convex set, then for 0 < p ≤ 1, the optimization problem
with a linear objective function and a chance constraint (27):

Minimize: c>x

Subject to: inf
δ∼(µ,S)

P[f(x, δ) ≥ α] ≥ p (29)

can be solved in polynomial time if (1) one can provide the super-gradient of f(x,y)
at x for fixed y in polynomial time, and (2) for any fixed x the following optimization
problems can be solved in polynomial time:

Minimize:δ1,δ2
f(x, δ1)

Subject to: (1− p)δ1 + pδ2 − µ = 0

δ1, δ2 ∈ S.
(30)

Proof From Theorem 5 we know that the chance constraint is satisfied if and only
if the optimal value of (30) is greater than or equal to α. Thus, the theorem can be
proved following a similar argument as the proof of Corollary 6. �

5.3 Conservative Approximation

For general sets of ambiguous distributions, optimization problems involving chance
constraints are notoriously hard to solve. Recall that CVaR provides a conservative
approximation of chance constraints (Nemirovski et al. [32]) , which allows us to
apply DRO to approximately solve such problems. For completeness, we give the
following lemma which is an extension of Nemirovski et al. [32]:
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Lemma 4 Suppose that D is the ambiguity set of distributions of the uncertain pa-
rameter δ, then the chance constraint

sup
P∈D

P[f(x, δ) ≥ 0] ≤ p, (31)

can be conservatively approximated by

−tp+ γ ≤ 0, sup
P∈D

EP[[f(x, δ) + t]+] ≤ γ, (32)

where 0 ≤ p ≤ 1, t ∈ R and γ ∈ R are decision variables, and [x]+ = max{x, 0}.
Here, by “conservative approximation” we mean that any solution that satisfies (32)
also satisfies (31).

Wiesemann et al. [39] proposed a unified framework for modeling and solving
distributionally robust optimization problems by introducing standardized ambiguity
sets

D =

{
P ∈ P0(Rm,Rn) :

EP[Aδ + Bµ] = b

P[(δ,µ) ∈ Ci] ∈ [pi, pi],∀i ∈ I

}
, (33)

where P represents a joint probability distribution of the random vector δ ∈ Rm
appearing in the constraint function f(x, δ) and some auxiliary random vector µ ∈
Rn, with A ∈ Rk×m, B ∈ Rk×n, b ∈ Rk, I = {1, · · · , I}, pi, pi ∈ [0, 1] and Ci are
the confidence sets.

Applying Theorem 1 and 5 in [39], the constraint supP∈D EP[[f(x, δ)+ t]+] ≤ γ
can be reformulated as a semi-infinite constraint system. For succinctness, we only
present the conservative approximation of the chance constraints when pi = pi = 1
and |I| = 1 to illustrate our approach.

Theorem 7 If the ambiguity set P can be converted into

D =
{
P ∈ P0(Rm,Rn) : EP[Aδ + Bµ] = b, P[(δ,µ) ∈ C] = 1

}
by the lifting theorem (Theorem 5 in [39]) where g(·) is a convex function, then the
chance constraint infP∈P P[f(x, δ) ≥ α] ≥ p with p ∈ (0, 1) can be conservatively
approximated by

(Aδ + Bµ)>β ≥ max

[
−λ, α− f(x, δ) + b>β

1− p
+

pλ

1− p

]
, ∀(δ,µ) ∈ C (34)

where β, λ,x are decision variables. Furthermore, the optimization problem with a
linear objective function and the constraint (34) can be solved in polynomial time if
(1) one can provide the super-gradient of f(x,y) at x for fixed y in polynomial time,
and (2) for any fixed (x,β, λ) the following optimization problems

Minimize:δ,µ (Aδ + Bµ)>β + λ

Subject to: (δ,µ) ∈ C,
(35)

and
Minimize:δ,µ (Aδ + Bµ− b

1− p
)>β − pλ

1− p
+ f(x, δ)

Subject to: (δ,µ) ∈ C,
(36)

can be solved in polynomial time.
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Proof From Theorem 1 in [39] and Lemma 4, the conservative approximation for-
mulation can be easily obtained. The proof of the tractability result is similar to that
of Corollary 6, and hence omitted. �

We now extend this result to the probabilistic envelope constraint case.

Theorem 8 Suppose t : R+ 7→ [0,+∞) is convex, non-decreasing and continuous
at the neighborhood of zero, and t(0) = 0, limr↑+∞ t(r) = +∞. If the ambigu-
ity set D satisfies the condition in Theorem 7, the probabilistic envelope constraint
infP∈D P[f(x, δ) ≥ α − t(r)] ≥ r/(1 + r), ∀r ≥ 0 can be conservatively approxi-
mated by

(Aδ + Bµ)>β ≥
max

[
−λ, α− f(x, δ)− t(r) + (1 + r)b>β + rλ

]
, ∀(δ,µ) ∈ C, r ≥ 0.

(37)

Furthermore, the optimization problem with a linear objective function and this prob-
abilistic envelope constraint can be solved in polynomial time if one can provide
the super-gradient of f(x,y) at x for fixed y in polynomial time, and for any fixed
(x,β, λ) the following optimization problems:

Minimize:δ,µ,r (Aδ + Bµ)>β + λ

Subject to: (δ,µ) ∈ C, r ≥ 0,
(38)

and

Minimize:δ,µ,r [Aδ + Bµ− (1 + r)b]>β + f(x, δ) + t(r)− rλ
Subject to: (δ,µ) ∈ C, r ≥ 0.

(39)

can be solved in polynomial time.

Proof From Theorem 7, the probabilistic envelope constraint can be conservatively
approximated by

0 ≤ min
r≥0

max
β,λ

min
(δ,µ)∈C

(Aδ + Bµ)>β−

max
[
−λ, α− f(x, δ)− t(r) + (1 + r)b>β + rλ

]
,

(40)

Furthermore, by switching “min” and “max”, this can be conservatively approxi-
mated by (37). Then following a similar proof as that of Corollary 6, we obtain the
tractability result to complete the proof. �

6 Joint Chance Constraint

In this section we investigate the case of joint probabilistic envelope constraint (7)
which can be reformulated as (from Lemma 3)

inf
δ∼(0,Σ)

P[fi(x, δ) ≥ αi − t(r), ∀i = 1, . . . ,m] ≥ r

1 + r
; ∀r ≥ 0, (41)
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where t(r) = B−1(r/(1 + r)). The optimization problem with the constraint (41)
is usually intractable (e.g., Nemirovski and Shapiro [32]; Zymler et al. [41]), even
when f(x, δ) is a bi-linear function, and approximation schemes are often used to
tackle them. The most straightforward method to approximate the constraints (41)
is to decompose them into several individual probabilistic envelope constraints using
Bonferroni’s inequality (see below for details). A notable advantage of the Bonferroni
approximation is that it is easy to implement and requires no assumptions on the
function fi(x, δ).

However, the Bonferroni approximation can be overly conservative. Zymler et
al. [41] proposed a tighter approximation method called worst-case CVaR approxi-
mation that outperforms other methods including the Bonferroni approximation (e.g.
Nemirovski and Shapiro [32] and Chen et al. [12]). In the rest of the section, we
extend both the Bonferroni approximation and worst-case CVaR methods to JPEC.
We also investigate the tractability of the two approximation schemes for fi(x, δ)
satisfying Assumption 1.

6.1 The Bonferroni Approximation

The Bonferroni approximation for the joint probabilistic envelope constraint (41) can
be easily derived from Bonferroni’s inequality. From Theorem 2 and Theorem 4, we
know that the optimization problem with a set of probabilistic envelope constraints
generated by the Bonferroni approximation method is tractable, under mild technical
conditions. More specifically we have the following theorem:

Theorem 9 Let t : R+ 7→ [0,+∞) be a non-decreasing function such that t(0) = 0
and limr↑+∞ t(r) = +∞, and ε be a constant vector such that

∑m
i=1 εi = 1 and

ε ≥ 0. The Bonferroni approximation of the joint probabilistic envelope constraint
(41) which has the form

inf
δ∼(0,Σ)

P[fi(x, δ) ≥ αi − t(r)] ≥ 1− εi
(1 + r)

; ∀r ≥ 0, ∀i = 1, . . . ,m. (42)

is tractable if for each i, (1) one can provide the super-gradient of fi(x, δ) at x for
fixed δ in polynomial time, and (2) for any fixed x the following optimization problem
can be solved in polynomial time:

Minimize:y,r fi(x,y) + t(r)

Subject to: y>Σ−1y ≤ r + 1

εi
− 1.

(43)

Proof Let r′ = (1 + r)/εi − 1, then we have r′/(1 + r′) = 1 − εi/(1 + r). Let
t′(r′) , t(r), then we apply Theorem 4 to complete the proof. �

6.2 The Worst-case CVaR Approximation

Zymler et al. [41] developed a new approximation scheme for robust joint chance
constraints termed Worst-case CVaR approximation. In this subsection we extend the
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worst-case CVaR approximation to JPEC (41). In contrast to the rest of the paper, we
focus on the linear-quadratic uncertainty case, namely, f(x, δ) is linear in x for any
fixed δ and quadratic (possibly non-convex) in δ for each x ∈ X. Then (41) can be
rewritten respectively as:

inf
δ∼(0,Σ)

P[δ>Qi(x)δ+yi(x)>δ+y0i (x)+t(r) ≤ 0, ∀i = 1, . . . ,m] ≥ r

1 + r
; ∀r ≥ 0;

(44)
where Qi(x), y0i (x) and yi(x) are all linear functions for i = 1, · · · ,m. Zymler et
al. [41] provided the Worst-case CVaR approximation for the following robust joint
chance constraint

inf
δ∼(0,Σ)

P[δ>Qi(x)δ + yi(x)
>δ + y0i (x) ≤ 0, ∀i = 1, . . . ,m] ≥ p. (45)

Theorem 10 [41] Let A , {α ∈ Rm|α > 0}. For any fixed x and α ∈ A, the
feasible set of the worst-case CVaR approximation for the constraint (45) is

ZJCC(α) =


x ∈ Rn :

∃(β,M) ∈ R× Sk+1,

β + 1
1−p 〈Ω,M〉 ≤ 0, M � 0

M−

(
αiQi(x)

1
2αiyi(x)

1
2αiyi(x)

> αiy
0
i (x)− β

)
� 0

∀i = 1, . . . ,m


, (46)

where Ω = diag(Σ, 1).

Indeed, Zymler et al. [41] showed that the approximation quality of the worst-case
CVaR is controlled by the parameter α and that the approximation becomes exact if
α is chosen optimally. Notice that ZJCC(α) contains semi-definite constraints, and
hence provides a tractable approximation to robust joint chance constraint. We now
extend this methodology to the joint probabilistic envelope constraints (44). From
Theorem 10, the feasible set of the constraint (44) can be approximated as

ZP (α) =


x ∈ Rn :

For any r ≥ 0 we have

∃(β,M) ∈ R× Sk+1,

β + (r + 1)〈Ω,M〉 ≤ 0, M � 0

M−

(
αiQi(x)

1
2αiyi(x)

1
2αiyi(x)

> αi(y
0
i (x)− t(r))− β

)
� 0

∀i = 1, . . . ,m


. (47)

Notice that in contrast to (46), (47) is defined through uncountably many sets of
constraints, and hence we need the following theorem to establish the tractability of
the set ZP .
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Theorem 11 Fix α ∈ A. The optimization problem with a linear objective function
and the feasible set ZP (α) in (47) can be solved in polynomial time if for any fixed
x, the following optimization problem can be solved in polynomial time:

min
Yi�0,r≥0

− tr(

m∑
i=1

αiYiBi) + t(r)

m∑
i=1

αitr(YiE)

s.t.

m∑
i=0

Yi = (r + 1)Ω, tr(E

m∑
i=1

Yi) = 1,

(48)

where Bi =

(
Qi(x)

1
2yi(x)

1
2yi(x)

> y0i (x)

)
and E =

(
0 0

0 1

)
.

Proof See Appendix E. �

Interestingly, Theorem 11 provides a tractability result for individual probabilistic
envelope constraint.

Corollary 7 If each component fi(·) of f(·) is quadratic (and possibly non-convex),
the optimization problem with a linear objective function and the probabilistic enve-
lope constraint (6) can be solved in polynomial time if for any fixed x, the following
optimization problem can be solved in polynomial time:

min
Y�0,r≥0

− tr(YB) + t(r)

s.t. Y = (r + 1)Ω, tr(EY) = 1,
(49)

where B =

(
Q(x) 1

2y(x)
1
2y(x)

> y0(x)

)
and E =

(
0 0

0 1

)
.

Proof Whenm = 1, α can be chosen as α = 1 without effect on the optimal solution
of (48). Then (48) can be simplified as (49). �

Notice that Corollary 7 does not require that fi(·) is a convex quadratic function,
and hence, subject to the price of a more complex formulation, is more general
than Corollary 3 that investigates the probabilistic envelope constraint under convex
quadratic uncertainty.

7 Simulations

In this section we illustrate two proposed approaches – chance constraint (5) and
probabilistic envelope constraint (6) using the synthetic transportation problem dis-
cussed in Section 2.

We consider the transportation problem where the graph G is a bi-parti graph
between sources and destinations, i.e., V = S

⋃
D and E = {(s → d)|s ∈ S, d ∈
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D}. Let m = |S| and n = |D|, then the unit cost δ is an m × n matrix, and the
transportation problem can be rewritten as

Maximize:s≥0,d≥0 z

Subject to: inf
δ∼P

P
[
− h(s,d, δ) ≥ z

]
≥ 1− γ;

1>ms = 1>nd ≥ L,

where δ ∈ Rm×n, 1m and 1n are the all-one vectors with dimension m and n re-
spectively. The function h(s,d, δ) is defined by

h(s,d, δ) = Minimize:F∈Rm×n tr〈δ,F〉
Subject to: F>1m = d, F1n = s, F ≥ 0.

By Theorem 2, one can solve this transportation problem by MATLAB and CVX [24].
We consider the case where there are 10 suppliers and 3 consumers, and the least de-
mand L = 80. The mean Mij and the variance Σij of the transportation cost δij are
set to 100 + 0.1

√
3(i− 1) + j and 5/

√
3(i− 1) + j, respectively. Then the trans-

portation costs related to suppliers and consumers with lower serial numbers have
smaller means but larger variances, i.e., lower mean cost but more risky.

Our first goal is to minimize the total cost to some fixed confidence parameter γ.
Figure 1 shows the resulting allocations for different γ. As expected, small γ leads to
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Fig. 1 The transportation problem: the resulting allocations for different guarantees γ = 0.1− 0.8.

more conservative allocations which tend to select supplies with higher mean costs
and smaller variances, while large γ leads to less conservative allocations which se-
lect suppliers with lower mean costs and larger variances.

In this example, the algorithm takes about 40 seconds on a desktop PC with Intel
i7 3.4GHz CPU and 8G memory. The computational time for solving the transporta-
tion problems of different numbers of suppliers is reported in Table 1. For a large-
scale problem, i.e. the number of suppliers is 1000, our algorithm finds the result in
about 30 minutes. From the table, it appears that the computation time scales roughly
linearly with respect to the number of suppliers. Note that one can use commercial
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Number of suppliers 10 50 100 200 500 1000
Running time (min) 0.88 3.33 4.01 6.21 15.16 34.78

Table 1 The running time for solving the transportation problem with different numbers of suppliers.

solvers such as CPLEX instead of CVX to implement this algorithm, which is typi-
cally more computationally efficient.

Using the same notations, the transportation problem with probabilistic envelope
constraints can be formulated as

Maximize:s,d z

Subject to: inf
δ∼P

P
[
− f(s,d, δ) ≥ z − s

]
≥ B(s);

1>ms = 1>nd ≥ D;

s,d ≥ 0.

Our second goal is to minimize the total cost subject to a decaying probabilistic en-
velope B(s) = 1−1/(1+ b

√
s+ a/b2) which implies t(r) = max{(r2−a)/b2, 0}

by Lemma 3. We choose a = 1 and b = 0.1, 1.0, 10.0, giving different rates of decay
for the probability the constraint is violated at level s for each s. Based on Theorem
4, we can easily solve this problem. Figure 2 shows the resulting allocations. Clearly,
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Fig. 2 The transportation problem: the resulting allocations for decay rates b = 0.1, 1.0 and 10.0.

larger b corresponds to a more risk averse attitude towards large constraint violation
so that the resulting allocation is more conservative and tends to choose suppliers
with larger mean costs and smaller variances.

8 Conclusion

The distributionally robust chance constraint formulation has been extensively stud-
ied. Yet, most previous work focused on the linear constraint function case. In this
paper, motivated by applications where uncertainty is inherently non-linear, we in-
vestigate the computational aspects of distributionally robust chance constrained op-
timization problems for the general function case. We show that the distribution-
ally robust chance constrained optimization is tractable, provided that the uncertainty
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is characterized by its mean and variance, and the constraint function is concave-
quasiconvex. This significantly expands the range of decision problems that can be
modeled and solved efficiently via the DRCC framework. Along the way, we estab-
lish a relationship between the DRCC framework and robust optimization model,
which links the stochastic model and the deterministic model of uncertainty. We then
consider probabilistic envelope constraints, a generalization of distributionally robust
chance constraint first proposed in Xu et al. [40], and extend this framework to the
non-linear case, and obtain conditions that guarantee its tractability. Finally, we dis-
cuss two extensions of our approach, provide approximation schemes for JPEC, and
establish conditions to ensure these approximation formulations are tractable.

Acknowledgements We thank the associate editor and two anonymous reviewers for their constructive
comments which result in significant improvement of the paper. This work is supported by the Ministry of
Education of Singapore through AcRF Tier Two grant R-265-000-443-112.

Appendices

A Proof of Corollary 1

For clarity, we denote −f(x, δ) and −α by Lx(δ) and β, respectively. Since f(x, δ) is convex w.r.t. δ
for fixed x, Lx(δ) is a concave function. Then the equivalence to establish can be rewritten as

sup
δ∼(0,Σ)

P[Lx(δ) > β] ≤ 1− p⇔ sup
δ∼(0,Σ)

CVaR1−p(Lx(δ)) ≤ β.

It is well known that supδ∼(0,Σ) CVaR1−p(Lx(δ)) ≤ β ⇒ supδ∼(0,Σ) P[Lx(δ) > β] ≤ 1 − p.
Besides, supδ∼(0,Σ) P[Lx(δ) > β] > 1 − p ⇔ supδ∼(0,Σ) VaR1−p(Lx(δ)) > β, hence we only
need to show that supδ∼(0,Σ) CVaR1−p(Lx(δ)) > β ⇒ supδ∼(0,Σ) VaR1−p(Lx(δ)) > β.

Since supδ∼(0,Σ) CVaR1−p(Lx(δ)) > β, then there exists a probability distribution P with zero
mean, covariance Σ, and CVaR1−p(Lx(δ)) > β when δ ∼ P. Decompose P = µ1 + µ2 where the
measure µ1 constitutes a probability of p and the measure µ2 constitutes a probability of 1 − p, and that
Lx(y1) ≤ Lx(y2) for any y1 and y2 that belong to the support of µ1 and µ2 respectively. By the CVaR
constraint, we have (

∫
δ Lx(δ)dµ2)/(1− p) > β.

We now construct a new probability P as follows: let µ′2 be a measure that put a probability mass of
1 − p on

∫
δ δdµ2/(1 − p), i.e., the conditional mean of µ2, and let P = µ1 + µ′2. Observe that P is a

probability measure whose mean is the same as that of P. Moreover, notice that µ2/(1−p) is a probability
measure, by concavity of Lx(·) we have that

Lx(

∫
δ
δdµ2/(1− p)) ≥ (

∫
δ
Lx(δ)dµ2)/(1− p) > β,

which implies that VaR1−p(Lx(δ)) > β for δ ∼ P̄.
We now show that this also implies that supδ∼(0,Σ) VaR1−p(Lx(δ)) > β. Denote the covariance

w.r.t P̄ by Σ̄ and recall that both P and P̄ are zero mean, then

Σ − Σ̄ =

∫
δ
δδ>dP−

∫
δ
δδ>dP̄

=

∫
δ
δδ>dµ1 +

∫
δ
δδ>dµ2 −

∫
δ
δδ>dµ1 −

∫
δ
δδ>dµ′2

=

∫
δ
δδ>dµ2 − (1− p)

[∫
δ δdµ2

1− p

] [∫
δ δdµ2

1− p

]>
=

∫
δ

{
δ −

[∫
δ δdµ2

1− p

]}{
δ −

[∫
δ δdµ2

1− p

]}>
dµ2 � 0,
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where the third equality is due to the definition of µ′2. Note that from the construction of P̄, we have
supδ∼(0,Σ̄) P[Lx(δ) > β] > 1 − p. Denote the set {δ|Lx(δ) > β} by Tx. First, we consider the

case where Σ̄ is full rank. From Lemma 2, we have infy∈Tx y>Σ̄
−1

y < r , p/(1 − p). Since
Σ̄ � Σ and Σ̄ is full rank, infy∈Tx y>Σ−1y ≤ infy∈Tx y>Σ̄

−1
y < r, which implies that

supδ∼(0,Σ) P[Lx(δ) > β] > 1− p, which establishes the theorem.
The case where Σ̄ is not full rank requires additional work, as Lemma 2 or Theorem 1 can not be

applied directly. Consider the spectral decomposition Σ̄ = QΛQ> and denote the pseudo inverse of Σ̄
by Σ̄

+. Suppose that the top d diagonal entries of Λ are non-zero. Let Qd be the submatrix of Q by
selecting the first d columns of Q and Λd be the top d × d submatrix of Λ. Denote the column space of
Σ̄ by C, and letQ , {z|z = Q>d δ, ∀δ ∈ Tx ∩ C}. Since there is no uncertainty in C⊥ w.r.t P̄,

sup
z∼(0,Λd)

P[z ∈ Q] = sup
δ∼(0,Σ̄)

P[δ ∈ Tx ∩ C] = sup
δ∼(0,Σ̄)

P[δ ∈ Tx] > 1− p.

From Lemma 2, we have infz∈Q z>Λ−1
d z < r. In other words, there exists z ∈ Q such that z>Λ−1

d z <

r, which implies that y>Σ̄
+

y < r for y , Qdz. From the Schur complement, since Σ � Σ̄ � 0,

(I − Σ̄Σ̄
+

)y = 0 and r − y>Σ̄
+

y = r − z>Λ−1
d z > 0, we have

(
Σ y
y> r

)
�
(

Σ̄ y
y> r

)
� 0.

Hence infy∈Tx y>Σ−1y < r, which implies that supδ∼(0,Σ) P[Lx(δ) > β] > 1− p. �

B Proofs of Results in Section 3.2

B.1 Proof of Corollary 2:

By Theorem 1, the feasible set S = {x|x>g(y) ≥ α, ∀y>Σ−1y ≤ r} where r = p/(1 − p).
Hence, determining whether x ∈ S is equivalent to determining whether the inner optimization problem
min{y>Σ−1y≤r} x>g(y)− α ≥ 0. Rewrite the left hand side as an optimization problem on y:

Minimize: y>G(x)y + P (x)>y +Q(x)

Subject to: y>Σ−1y ≤ r,
(50)

by substituting gi(δ) = δ>Giδ + p>i δ + qi. To prove Corollary 2, we need the following two results.

Lemma 5 Fix x. The optimal value of the optimization problem (50) equals that of the following SDP:

Maximize:β≥0,t t, subject to:
(
βΣ−1 +G(x) 1

2
P (x)

1
2
P (x)T Q(x)− t− βr

)
� 0. (51)

Proof The dual problem of (50) is: maxβ≥0 miny y>G(x)y +P (x)>y +Q(x)+βy>Σ−1y−βr.
By taking minimum over y and the Schur complement, this can be reformulated as the SDP (51). Notice
that there exists y such that y>Σ−1y < r since r > 0, hence Slater’s condition is satisfied for (50), and
the strong duality holds. �

Thus, x ∈ S if and only if the optimal value of problem (50) is greater than or equal to 0. This means
we can convert the constraint in S into a feasibility problem as follows:

Lemma 6 Under the conditions of Corollary 2, and let r = p/(1− p), we have the constraint

inf
δ∼(0,Σ)

P[g(δ)>x ≥ α] ≥ p, (52)

is equivalent to the following problem

Exist: β ≥ 0, s.t.:
(
βΣ−1 +G(x) 1

2
P (x)

1
2
P (x)> Q(x)− βr

)
� 0. (53)
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Proof 1. Equation (52)⇒ Equation (53): When Inequality (52) holds, the optimal value t of (50) must
be greater than or equal to 0. So from Equation (51), we have(

βΣ−1 +G(x) 1
2
P (x)

1
2
P (x)T Q(x)− βr

)
�
(
βΣ−1 +G(x) 1

2
P (x)

1
2
P (x)T Q(x)− t− βr

)
� 0. (54)

2. Equation (53)⇒ Equation (52): Since the feasibility problem is solvable, t = 0 must be a feasible
solution of (51), which implies Inequality (52). �

Lemma 6 immediately implies Corollary 2. �

C Proofs of Results in Section 4

C.1 Proof of Lemma 3:

We now show that the constraints (13) and (14) are equivalent.

1. (13) ⇒ (14): Since limy→+∞B(y) may not converge to 1, we define B−1(x) = +∞ when
{y ≥ 0|B(y) ≥ x} = ∅. Then if r/(1 + r) is not in the range of B(s), we have t(r) = +∞ so
that the constraint (14) is always satisfied. Otherwise, suppose that y∗ = t(r) = inf{y ≥ 0|B(y) ≥
r/(1 + r)}, then we have

inf
δ∼(0,Σ)

P[f(x, δ) ≥ α− t(r)] = inf
δ∼(0,Σ)

P[f(x, δ) ≥ α− y∗] ≥ B(y∗) ≥
r

1 + r
.

2. (14) ⇒ (13): Since B(y∗) ∈ [0, 1) for any y∗ ≥ 0, there exists r∗ such that B(y∗) = r∗

1+r∗ .
From the definition of t(r), we have y∗ ≥ t(r∗) = inf{y ≥ 0|B(y) ≥ r∗/(1 + r∗)}. Hence the
following inequality holds

inf
δ∼(0,Σ)

P[f(x, δ) ≥ α− y∗] ≥ inf
δ∼(0,Σ)

P[f(x, δ) ≥ α− t(r∗)] ≥
r∗

1 + r∗
= B(y∗).

Furthermore, t(·) is non-decreasing since both r/(1 + r) and B(·) are non-decreasing. By definition
of t, B(0) ≥ 0 leads to t(0) = 0; and B(s) < 1 for all s > 0 leads to B−1(1) = +∞ and hence
limr↑+∞ t(r) = +∞. Also, B(0) > 0 implies for some ε > 0, B(0) ≥ ε, and hence t(ε) = 0. Thus,
t(·) is continuous at a neighborhood of 0. �

C.2 Proof of Corollary 3:

The feasible set S = {x| infδ∼(0,Σ) P[g(δ)>x ≥ α− t(r)] ≥ r
1+r

; ∀r ≥ 0} admits

S
(a)
= {x|∀(y, r) such that y>Σ−1y ≤ r ⇒ g(y)>x ≥ α− t(r)}
= {x| min

{y,r|y>Σ−1y≤r}
g(y)>x + t(r)− α ≥ 0},

where (a) holds by Theorem 3. As each component gi(y) of g(y) is linear or quadratic, i.e., gi(y) =
y>Giy+p>i y+qi, for fixed x the inner optimization problem min{y,r|y>Σ−1y≤r} g(y)>x + t(r)− α
can be rewritten as:

Minimize:r≥0,y y>G(x)y + P (x)>y +Q(x) + t(r)

subject to: y>Σ−1y − r ≤ 0,
(55)

where G(x) ,
∑n
i=1 xiGi, P (x) ,

∑n
i=1 xipi, and Q(x) ,

∑n
i=1 xiqi − α. Thus, in order to

analyze S, we need to analyze the optimization problem (55). We have the following lemma:
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Lemma 7 For any fixed x, the optimal value of problem (55) is equivalent to that of the following:

Maximize:β≥0,η η, subject to:
(
βΣ−1 +G(x) 1

2
P (x)

1
2
P (x)> Q(x)− t∗(β)− η

)
� 0, (56)

where t∗(x) is the conjugate function of t(r) defined as t∗(x) = supr≥0 (xr − t(r)).

Proof By the Schur complement and the strong duality of problem (55) (Slater’s condition holds by pick-
ing r = 1 and y = 0), one can easily obtain this lemma. �

From Lemma 7, the constraint infδ∼(0,Σ) P[g(δ)>x ≥ α − t(r)] ≥ r
1+r

, ∀r ≥ 0, is equivalent
to a constraint that the optimal value of the optimization problem (56) is non-negative. Thus, x belongs to
the feasible set of the envelope constraint if and only if α = 0 is a feasible solution of (56), for the same
x. This means we can remove the−α term from (56). That is, when each component gi(·) of g(·) is linear
or quadratic, the envelope constraint is equivalent to the following feasibility problem:

exist: β ≥ 0, s.t.:
(
βΣ−1 +G(x) 1

2
P (x)

1
2
P (x)> Q(x)− t∗(β)

)
� 0. (57)

Hence the optimization problem (18) is equivalent to (21), which proves the first part of the Theorem.
To prove the second part of the Theorem, it suffices to show that Problem (21) can be solved in

polynomial time. We show this by constructing a polynomial time separation oracle. For any (β,x), if
the optimization problem (22) can be solved in polynomial time, which implies t∗(β) can be computed
in polynomial time, then it can be verified in polynomial time whether the constraint in (21) is satisfied
or not, and hence the feasibility of (β,x) can be determined in polynomial time. Moreover, if (β0,x0)
is infeasible and let r0 be the optimal solution of the problem (22) (by assumption r0 can be found in
polynomial time), then we have(

β0Σ
−1 +G(x0) 1

2
P (x0)

1
2
P (x0)> Q(x0) + t(r0)− β0r0

)
6� 0,

and we can find in polynomial time (e.g., by SVD) a vector (y>0 , 1) such that

(y>0 , 1)

(
β0Σ

−1 +G(x0) 1
2
P (x0)

1
2
P (x0)> Q(x0) + t(r0)− β0r0

)(
y0

1

)
=(y>0 Σ−1y0 − r0)β0 + y>0 G(x0)y0 + P (x0)>y0 +Q(x0) + t(r0) < 0.

Notice that for any feasible solution (β,x), we must have

(y>0 Σ−1y0 − r0)β + y>0 G(x)y0 + P (x)>y0 +Q(x) + t(r0) ≥ 0.

Hence we have a separating hyperplane. �

D Proofs of Results in Section 5

D.1 Proof of Corollary 6:

As before, we construct a separation oracle to prove tractability. In order to verify the feasibility of a given
x∗, from Corollary 5 we know that x∗ is feasible if and only if the optimal value of the optimization
problem (26) is greater than or equal to α, which can be verified by directly solving Problem (26). By
assumption, this can be done in polynomial time.

If x∗ is not feasible, then we can find in polynomial time (y∗, r∗,µ∗,Σ∗) such that f(x∗,y∗ +
µ∗) + t(r∗) < α. Because f(x,y + µ) is concave in x for fixed y and µ, for any feasible x, we have

f(x∗,y∗ + µ∗) +∇f(x∗,y∗ + µ∗)>(x− x∗) + t(r∗) ≥ f(x,y∗ + µ∗) + t(r∗) ≥ α.

Hence the hyperplane separating x∗ from the feasible set is the following:

f(x∗,y∗ + µ∗) +∇f(x∗,y∗ + µ∗)>(x− x∗) + t(r∗) ≥ α, (58)

which can be generated in polynomial time since the super-gradient of x can be obtained in polynomial
time. �
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D.2 Proof of Theorem 5:

If f(x, δ) ≥ α for all δ ∈ S, the constraints (27) and (28) are satisfied, so we only need to consider the
case where there exists δ ∈ S such that f(x, δ) < α. Note that (27) is equivalent to supδ∼(µ,S) P[f(x, δ) <

α] ≤ 1− p, then we can apply the following lemma:

Lemma 8 If the conditions in Theorem 5 hold and {δ : f(x, δ) < α} is nonempty, then

sup
δ∼(µ,S)

P[f(x, δ) < α] ≤ 1− p (59)

is equivalent to

1− p ≥


supθ,δ1,δ2 θ
such that θδ1 + (1− θ)δ2 = µ,

0 ≤ θ ≤ 1,
f(x, δ1) < α,
δ1, δ2 ∈ S.

(60)

Proof Since µ ∈ S and {δ : f(x, δ) < α} is not empty, the optimization problem in (60) is always
feasible. To show the equivalence of (59) and (60), one needs to prove that the optimal objective value θ∗

of the optimization problem in (60) equals ζ = supδ∼(µ,S) P[f(x, δ) < α].
The first step is to show θ∗ ≤ ζ: Since f(x, ·) is continuous for fixed x ∈ X and S is a closed

convex set, for any ε > 0 there exists a feasible solution (δ′1, δ
′
2, θ
′) such that |θ′ − θ∗| < ε. Construct a

probability distribution P′(x) such that δ = δ′1 with probability θ′ and δ = δ′2 with probability 1 − θ′,
then we have P′ ∈ (µ,S). By construction we have θ′ ≤ P′[f(x, δ) < α] ≤ ζ where the second
inequality holds from P′ ∈ (µ,S). Thus we have θ∗ ≤ ζ as ε can be arbitrarily small.

The second step is to prove θ∗ ≥ ζ: Consider any probability distribution P̄ ∈ (µ,S), and define
θ̄ = P̄[f(x, δ) < α], δ̄1 = EP̄[δ|f(x, δ) < α] and δ̄2 = EP̄[δ|f(x, δ) ≥ α]. We then have δ̄1θ̄ +
δ̄2(1 − θ̄) = µ, f(x, δ̄1) < α and δ̄1, δ̄2 ∈ S, or equivalently (δ̄1, δ̄2, θ̄) is a feasible solution of
the optimization problem in (60). Thus, we must have P̄[f(x, δ) < α] = θ̄ ≤ θ∗, which implies that
θ∗ ≥ ζ = supδ∼(µ,S) P[f(x, δ) < α]. Therefore, (59) is equivalent to (60). �

From the equivalence shown in Lemma 8, we consider the following feasibility problem parameter-
ized by θ ∈ [0, 1], denoted Fθ :

exist: δ1, δ2

such that: θδ1 + (1− θ)δ2 = µ,

f(x, δ1) < α,

δ1, δ2 ∈ S.

Then we have that for any 0 ≤ θ1 ≤ θ2 ≤ 1, Fθ2 being feasible implies Fθ1 being feasible. To see this,
let (δ∗1, δ

∗
2) be a feasible solution to Fθ2 . Hence we have θ2δ∗1 + (1− θ2)δ∗2 = µ. Let δ′2 be such that

µ− δ′2 = (µ− δ∗2)×
(1− θ2)θ1

(1− θ1)θ2
.

Since θ2 ≥ θ1, we have that δ′2 is on the line segment between µ and δ∗2 , and hence belongs to S by its
convexity. Furthermore, it is easy to check that (δ∗1, δ

′
2) is feasible to Fθ1 .

Thus, constraint (60) (and equivalently the chance constraint (27)) is equivalent toF1−p+ε infeasible
for all ε > 0, i.e.,

δ2 = −
1− p+ ε

p− ε
(δ1 − µ) + µ 6∈ S, ∀f(x, δ1) < α and δ1 ∈ S.

This further implies F1−p is infeasible, i.e.,

δ2 = −
1− p
p

(δ1 − µ) + µ 6∈ S, ∀f(x, δ1) < α and δ1 ∈ S. (61)
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To see this, we only need to show that F1−p being feasible implies that F1−p+ε is feasible for some
ε > 0. Suppose that there exists δ∗1 ∈ S such that δ∗2 = − 1−p

p
(δ∗1−µ)+µ ∈ S and f(x, δ∗1) < α. By

continuity of f(x, ·), we have that for a sufficiently small η > 0, f(x, δ′1) < α where δ′1 , (1−η)δ∗1 +

ηµ. Note that δ′1 ∈ S and there exists ε > 0 such that − 1−p+ε
p−ε (δ′1 − µ) + µ ∈ S, which implies that

F1−p+ε is feasible.
Finally, the constraint (61) can be rewritten as

0 < min
δ1,δ2

‖(1− p)δ1 + pδ2 − µ‖2 s.t. f(x, δ1) < α, δ1 ∈ S, δ2 ∈ S, (62)

which is equivalent to (28). Therefore, the theorem follows. �

E Proofs of Results in Section 6

E.1 Proof of Theorem 11:

The constraints in ZP (47) requires that for any r ≥ 0, we can find β and M to satisfy β + (r +
1)〈Ω,M〉 ≤ 0 and the other (m + 1) semi-definite constraints. This is equivalent to requiring that the
following optimization problem has an optimal value less than or equal to 0 (notice that for any r ≥ 0,
finding β and M to satisfy the (m+ 1) semi-definite constraints itself is trivial):

max
r≥0

min
M�0,β

β + (r + 1)〈Ω,M〉

s.t. M−

 αiQi(x) 1
2
αiyi(x)

1
2
αiyi(x)> αi(y

0
i (x)− t(r))− β

 � 0 ∀i = 1, . . . ,m.
(63)

We analyze this requirement using duality. In order to find the dual problem of (63), it is more convenient
for us to analyze the following problem:

min
r≥0

max
M�0,β

− β − (r + 1)〈Ω,M〉

s.t. M−

 αiQi(x) 1
2
αiyi(x)

1
2
αiyi(x)> αi(y

0
i (x)− t(r))− β

 � 0 ∀i = 1, . . . ,m.
(64)

Consider the dual problem, the “max” part in (64) is equivalent to

L(r) = min
λi≥0

max
β,M

− β − (r + 1)〈Ω,M〉+
m∑
i=1

λiλmin(M− Si + βE) + λ0λmin(M),

(65)
where the function λmin(X) denotes minimum eigenvalue of matrix X, and Si , αiBi−αit(r)E. Fur-
ther note that the function λmin(X) is equivalent to the following optimization problem: minY�0,tr(Y)=1 tr(YX).
Thus (65) is equivalent to

L(r) = min
λi≥0

max
β,M

min
{Yi|tr(Yi)=1,Yi�0}

−β−(r+1)〈Ω,M〉+tr(λ0Y0M)+
m∑
i=1

tr(λiYi(M− Si + βE)).

Notice that for any fixed λ, the objective function is continuous, convex w.r.t. (Yi)
m
i=0 and concave w.r.t.

(β,M). Moreover, the feasible set of (Yi)
m
i=0 is compact and does not depend on (β,M). Hence Sion’s

minimax theorem applies, and we have

L(r) = min
λi≥0

min
{Yi|tr(Yi)=λi,Yi�0}

max
β,M
−

m∑
i=1

tr(YiSi)+〈M,

m∑
i=0

Yi−(r+1)Ω〉+β(〈E,
m∑
i=1

Yi〉−1).
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Taking maximum over β and M , we have that L(r) is equivalent to the following optimization problem
with variables Yi and λi:

L(r) = min
λi≥0

min
{Yi|tr(Yi)=λi,Yi�0}

−
m∑
i=1

tr(αiYi(Bi − t(r)E))

s.t.

m∑
i=0

Yi = (r + 1)Ω, tr(E

m∑
i=1

Yi) = 1.

By taking minimum over λi, minr≥0 L(r) can be further reformulated as (48). Hence from the analysis
above, we know that (64) is equivalent to (48). To complete the proof, we construct a separation oracle of
ZP based on (48). Given x, if the optimization problem (48) can be solved in polynomial time, then it
can be verified whether x ∈ ZP or not in polynomial time since x is feasible if and only if the optimal
value of (48) is greater than or equal to 0. Furthermore, if x 6∈ ZP , let the optimal solution of (48) be
(r0, {Y0

i }), then we have −
∑m
i=1 tr(αiY

0
iBi) + t(r0)

∑m
i=1 αitr(Y

0
iE) < 0 since x 6∈ ZP . On

the other hand, for any x ∈ ZP , the following inequality must be satisfied

−
m∑
i=1

tr(αiY
0
iBi) + t(r0)

m∑
i=1

αitr(Y
0
iE) ≥ 0,

which implies that a separating hyperplane can be generated in polynomial time. �
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35. Prékopa, A.: Stochastic programming. Kluwer (1995)
36. Scarf, H.: A min-max solution of an inventory problem. In: Studies in Mathematical Theory of

Inventory and Production, pp. 201–209. Stanford University Press (1958)
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