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Abstract— We consider decision making in a Markovian
setup where the reward parameters are not known in advance.
Our performance criterion is the gap between the performance
of the best strategy that is chosen after the true parameter
realization is revealed and the performance of the strategy
that is chosen before the parameter realization is revealed. We
call this gap the parametric regret. We consider two related
problems: minimax regret and mean-variance tradeoff of the
regret. The minimax regret strategy minimizes the worst-case
regret under the most adversarial possible realization. Weshow
that the problem of computing the minimax regret strategy is
NP-hard and propose algorithms to efficiently solve it under
favorable conditions. The mean-variance tradeoff formulation
requires a probabilistic model of the uncertain parametersand
looks for a strategy that minimizes a convex combination of the
mean and the variance of the regret. We prove that computing
such a strategy can be done numerically in an efficient way.

I. I NTRODUCTION

Sequential decision making in stochastic dynamic environ-
ments is often modeled using Markov Decision Processes
(MDP, cf [1], [2]). In the standard setup, each strategy is
evaluated according to itsperformance, i.e., the expected
accumulated reward. The optimal strategy is the one that
achieves maximal performance.

In many real applications, the decision maker evaluates
strategies in a comparative way. That is, given a strategy,
the decision maker is interested in how its performance
competes with other strategies rather than thequantity of
the performance itself. For example, the objective in financial
applications such as portfolio optimizations is often to “beat
the market”, i.e., to perform favorably than a strategy that
holds index stocks. The same percentage of growth can
be regarded as “incredible success” or ”disastrous failure”
purely depending on how others perform in this same market.
A natural measurement of strategies in such setup, which we
termedcompetitive setuphereafter, is the so-calledparamet-
ric regret: the gap between the performance of a strategy and
that of the optimal one.1

When the parameters of a MDP are known, minimizing
the regret is equivalent to maximizing the performance of
a strategy, and hence the competitive setup coincides with
the standard setup. However, the formulation of a problem
is often subject toparameter uncertainty– the deviation
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1We will use “regret” in the following for simplicity of the expression.
However, it should be noted that this is different from the standard notion of
regret in online learning - the gap between the average reward of a learning
algorithm and the optimal strategy [3].

of the modeling parameters from the unknown true ones
(cf [4]–[7]). In this case, both performance and regret of
a strategy are functions of parameter realizations, where in
general there is no strategy that is optimal for all parameter
realizations.

In the standard setup, there are two formulations to find
the “optimal” strategy for MDPs with uncertain parameters.
The first formulation [4]–[7] takes a minimax approach,
i.e., the true parameters can be any element of a known
set, and strategies are evaluated based on the performance
under the (respectively) worst possible parameter realization.
The second one takes a Bayesian approach (e.g. [8]): The
true parameters are regarded as random variables. Thus,
given a strategy, its performance is a random variable whose
probability distribution can be obtained. And the optimal
strategy is the one that maximizes certain risk measure such
as percentile loss [8] or mean-variance tradeoff [9].

In this paper we adapt the aforementioned formulations
into the competitive setup and discuss parametric regret mini-
mizing in uncertain Markov decision processes. In particular,
our contributions include the following:

• In Section II we follow the minimax approach and
propose the Minimal Maximum Regret (MMR) decision
criterion.

• We show in Section III that finding the MMR strategy
is NP-hard in general.

• We investigate the algorithmic aspect of MMR strategy
in Section IV. In particular, we propose in Section IV-
A an algorithm based on mixed integer program that
solves the MMR strategy, and discuss in the rest of
Section IV two special cases where the MMR strategy
can be found in polynomial time.

• We take a Bayesian approach and propose the Op-
timal Mean-Variance Tradeoff of Regret criterion in
Section V. We further show that such formulation can
be converted into a quadratic program on a polytope,
and hence solved efficiently.

We need to point out that in this paper we concentrate
on the case that the system dynamics is known and only
reward parameters are subject to uncertainty, partly due to
the prohibitive computational cost. Indeed, as shown in Sec-
tion III, even in this seemingly simple case finding the MMR
strategy is NP-hard. In addition, the known-dynamics case
can either model or approximate many practical problems.
For instance, a shortest-path problem with uncertain link
lengths is an uncertain MDP with known dynamics (e.g., [1]).
Another example is using state aggregation to solve large
scale MDPs [10]. In such case, states are grouped to a
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small number of hyper-states and a reduced MDP built on
these hyper-states is investigated. Typically, the transition law
between hyper-states are known, but the expected reward
visiting each hyper-state is uncertain due to the transitions
inside each hyper-state.

A. Preliminaries and Notations

Throughout the paper, boldface letters are used for column
vectors, where its elements are represented using the same
but non-boldfaced letter. For example, the first element of
a vector v is denoted asv1. Given a functionf(x) not
necessarily differentiable, we use∇f(x)|x0

to represent the
set of subgradients at pointx0.

An uncertain Markov Decision Process (uMDP) is a 6-
tuple < T, γ, S, A,p,R > where:

• T is the (possibly infinite) decision horizon;
• γ ∈ (0, 1] is the discount factor. We allowγ = 1 only

whenT is finite.
• S is the state set andA is the action set. Both sets are

finite.
• p is the transition probability i.e.,p(s′|s, a) is the

probability to reach states′ from a states when action
a is taken.

• R is the admissible set of reward parameter. To be more
specific, the reward vectorr is unknown to the decision
maker (this is why it is called “uncertain MDP”). To
make such decision problem meaningful, some a priori
information ofr is known: it is an element ofR. In the
literature of robust optimization, R is often called the
uncertainty set(cf [4], [11], [12]).

We assume that the initial state distribution is known to beα.
All history-dependent randomized strategies are admissible,
and we denote that set byΠHR. We useΠS and ΠD to
denote the set of stationary Markovian random strategies and
stationary Markovian deterministic strategies, respectively.
For π ∈ ΠS , we useπ(a|s) to represent the probability of
choosinga ∈ A at states following π. Given a strategy
π ∈ ΠHR and a parameter realizationr ∈ R, its expected
performance (i.e., accumulated discounted reward) is denoted
by P (π, r), that is

P (π, r) , Eπ{
T
∑

i=1

γi−1r(si, ai)}. (1)

We focus on the case when the uncertainty setR is a poly-
tope. Polytopes are probably the most “natural” formulation
of uncertainty set that can model many widely applicable
cases. For example, the interval case, i.e., each reward
parameterr(s, a) belongs to an interval, is a polytope. We
also assume thatR is bounded, to avoid technical problems
such as infinitely large regret.

II. M INI MAX REGRET IN MDPS

In this section we propose the MiniMax Regret criterion,
i.e., minimizing the parametric regret under the most adver-
sarial parameter realization.

Definition 2.1: Given a uMDP< T, γ, S, A,p,R > and
r0 ∈ R, the parametric regretof a strategyπ w.r.t. r0 is
defined as

R̂(π, r0) , max
π′∈ΠHR

{P (π′, r0) − P (π, r0)}.

In words, regret is the performance gap between a strategy
and the optimal strategy. It is thus a natural performance
measure in a competitive environment. Observe that for a
fixed r0, the regret is equivalent to the expected reward up
to adding a constant.

Definition 2.2: Given a uMDP< T, γ, S, A,p,R >, the
Maximum Regretof a strategyπ is defined as

R(π) , max
r∈R

R̂(π, r) = max
r∈R,π′∈ΠHR

{P (π′, r) − P (π, r)}.

(2)
The maximum regret is the regret of a strategy under

the most adversarial parameter realization. It can also be
regarded as the performance gap w.r.t. an “all-mighty” oppo-
nent strategy that can observe the parameter realization and
select the respective optimal solution.

Definition 2.3: Given a uMDP< T, γ, S, A,p,R >, the
MiniMax Regret(MMR) strategy is

π∗ , arg min
π∈ΠHR

R(π). (3)

The minimax regret strategy is not the same as the robust
MDP (i.e., minimax performance) strategy in general, as
shown in the following example: Consider the MDP as
shown in Figure 1, whereR = [0, 3] × [1, 2]. Observe that
the minimax performance strategy is selectinga2, whose
maximum regret equals2. On the other hand, the minimax
regret strategy is selecting either action with probability 50%,
whose maximum regret is1.

Fig. 1. An example where the MMR policy is different than the robust
policy.

A. Existence of stationary optimal solution

Although the definition of MMR considers history depen-
dent strategies, in this subsection we show that without loss
of generality we can concentrate onΠS because there exists
a stationary MMR strategy. We need the following lemma
first.

Lemma 2.4:Given π0 ∈ ΠHR, there existŝπ ∈ ΠS such
that R(π̂) = R(π0).

Proof: It is well known that (e.g., [1]) givenπ0 ∈ ΠHR,
there existŝπ ∈ ΠS such that∀s ∈ S, a ∈ A

Eπ0

∑

i

γi−11(si = s, ai = a) ≡ Eπ̂

∑

i

γi−11(si = s, ai = a).
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Note that the following holds for anyπ ∈ ΠHR,

P (π, r) =
∑

s∈S

∑

a∈A

{r(s, a)Eπ

∑

i

γi−11(si = s, ai = a)}.

Hence,

P (π′, r)−P (π0, r) = P (π′, r)−P (π̂, r), ∀r ∈ R, π′ ∈ ΠHR.

Taking maximization overπ′ and r establishes the lemma.

We now present the main theorem of this subsection: the
existence of a stationary MMR strategy.

Theorem 2.5:There existsπ∗ ∈ ΠS such thatR(π∗) ≤
R(π), ∀π ∈ ΠHR.

Proof: From Lemma 2.4, it suffices to prove that
R(π∗) ≤ R(π), ∀π ∈ ΠS . We define a metricd(π1, π2) ,

maxs∈S,a∈A |π1(a|s) − π2(a|s)| on ΠS and note that since
S and A are finite, the setΠS is compact. Let sequence
{πn} ⊆ ΠS be such thatR(πn) → infπ∈ΠHR R(π). Due to
compactness ofΠS , taking a convergent subsequence{πmn

}
and letπ∗ ∈ ΠS be its limiting point. Let

(π̂′, r̂) = arg max
(π′,r)

{P (π′, r) − P (π∗, r)}.

By definition of maximum regret we have

R(πmn
) ≥ P (π̂′, r̂) − P (πmn

, r̂), ∀n.

Take limits on both sides and note thatP (π̂′, r̂)−P (π, r̂) is
a continuous function ofπ w.r.t. the aforementioned metric,
we have

inf
π∈ΠHR

R(π) ≥ R(π∗),

which establishes the theorem.

III. C OMPUTATIONAL COMPLEXITY

This section investigates the computational complexity of
MMR strategy. We show that the MMR strategy is in general
intractable. In fact, even evaluating the maximum regret for a
given strategy can be NP-hard, as shown in the next theorem.

Theorem 3.1:Let R be a polytope defined by a set ofn
linear inequalities. Then evaluating the maximum regret of
a strategy is NP-complete with respect to|S|, |A| andn.

Proof: We first show that evaluating the maximum
regret can not be computationally more difficult than NP.
This is due to the fact that evaluating the regret of a given
strategy π̂ can be written as the following optimization
problem on(x′, r):

max:
∑

a∈A

∑

s∈S

{

r(s, a)x′(s, a) − r(s, a)x̂(s, a)
}

s.t. :
∑

a∈A

x′(s′, a) −
∑

s∈S

∑

a∈A

γp(s′|s, a)x′(s, a) = α(s′), ∀s′,

x′(s, a) ≥ 0, ∀s, ∀a,

r ∈ R.
(4)

wherex̂(s, a) is given by the
∑T

i=1 γi−1
E(1si=s,ai=a) un-

der π̂. Note that Equation (4) is a (non-convex) quadratic
program which is known to be equivalent to NP. Hence,

evaluating the maximum regret can not be computationally
more difficult than NP.

Next we prove that evaluating the maximum regret is NP-
hard by showing that theinteger feasibility problem, which
is known to be NP hard (e.g., [13]), can be reduced to
evaluating maximum regret for a given strategy.

The integer feasibility problem is to tell forH ∈ R
m×n

andt ∈ R
m, whether there exist a vectorx ∈ {0, 1}n such

that Hx ≤ t. Now consider the following MDP:
Let ra denote the vector form ofrai and letR be defined

by the following linear equalities/inequlities:

rai = −1 − rbi, i = 1, · · ·n

−1 ≤ rai ≤ 0, i = 1, · · ·n

r0 = −1,

−Hra ≤ t.

We claim that the integer feasibility problem is equivalent
to whether the maximum regret of actionb0 is 1. Suppose
the maximum regret is1. Note that all rewards are negative
and the performance ofb0 does not depend on the reward
realization. Hence there exists(π, r) such thatP (π, r) = 0,
which means that the expected reward fromsi must be zero
for all i = 1, · · ·n. Therefore, eitherrai or rbi must equal
to zero, i.e.,−rai ∈ {0, 1}. Thus, letxi = −rai, the integer
feasibility problem has an affirmative answer. Now suppose
that the integer feasibility problem has an affirmative answer,
i.e., there existsx satisfying the integer feasibility, letrai =
−xi. Hence eitherrai or rbi equals to zero, and the maximum
expected reward equals to zero, i.e., the maximum regret of
b0 is 1. Therefore, we reduce the integer feasibility problem
to evaluation of the maximum regret, and hence the latter is
NP hard.

Combining the two steps, we conclude that evaluating the
maximum regret is NP complete.�� ����������

��������� 	
�	
�	
� 	��	��	��	�
��
� �� ����

��
�
�

�

Fig. 2. NP-hard regret evaluation.

IV. A LGORITHMS FOR FINDING THEMMR SOLUTION

Although the MMR solution is generally intractable, we
propose in this section several ways to find the MMR strat-
egy. In Subsection IV-A we propose a subgradient method
to find MMR, where the subgradient in each step is evaluate
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by a Mixed Integer Program (MIP). Due to the NP-hardness
of MIP, such an algorithm is inherently non-polynomial.
We further consider two special cases where polynomial
algorithms are possible. (1) In Section IV-B we show that
when the number of vertices ofR is small, i.e.,R is the
convex hull of a small number of parameter realizations,
we can find MMR in polynomial time by solving a linear
program. (2) In Section IV-C we show that the MMR
has a special property: it is a randomization of “efficient”
(defined subsequently) strategies. Furthermore, the weighting
coefficients of this randomization can be obtained by LP.
Thus we are able to solve MMR in an efficient way if the
set of “efficient” strategy, which can be found using action
elimination methods, contains a small number of elements.

A. Subgradient approach

In this subsection, we propose a subgradient method to
find the MMR solution. The subgradient for each step is
indeed the reward parameter that achieves the maximum
regret. We further provide an “oracle” based on mixed integer
programming that computes this subgradient. This method
is non-polynomial, due to the inherent NP-hardness of the
problem as shown in Section III.

We first show that minimizing the maximum regret is
indeed a convex program (w.r.t. an equivalent form the
the decision variableπ). Thus, the global optimum (i.e.,
the MMR strategy) can be found with a subgradient de-
scent/projection method.

Recall the well-known equivalence between a strategy of
MDP and its expected state-action frequency (cf [1]). We
thus change the decision variableπ ∈ ΠHR to its state-
action frequency vectorx, i.e., the vector form ofx(s, a) =
Eπ

∑∞
i=1 γi−11(si = s, ai = a), and recast finding MMR

strategy as the following minimization problem onx.

min
x∈X

G(x). (5)

Here,X is the state-action polytope:

X :
∑

a∈As′

x(s′, a) −
∑

s∈S

∑

a∈As

γp(s′|s, a)x(s, a) = α(s′), ∀s′;

x(s, a) ≥ 0, ∀s, ∀a;

andG(·) : X → R is defined by

G(x) , max
r∈R,x′∈X

(r⊤x′ − r⊤x).

Theorem 4.1: 1) Problem (5) is a convex program;
2) Givenx0 ∈ X ,

− argmax
r∈R

{

max
x′∈X

(r⊤x′ − r⊤x0)
}

∈ ∇G(x)|x0
.

Proof: Observe thatX is convex. To see that the
objective function (i.e., the part inside the curled bracket)
is convex, we note that for a fixed pair of(r,x′), function
(r⊤x′−r⊤x) is affine. Therefore the objective function is the
maximum over a class of affine functions and hence convex.
The second claim follows from the Envelope Theorem (e.g.,
[14]).

Therefore, we propose here a subgradient descent/project
algorithm.

Algorithm 4.2:
1) Initialize. n := 1; choose r0 ∈ R, x∗ :=

arg maxx∈X r⊤0 x.
2) Oracle. Solver∗ := argmaxr∈R

{

maxx′∈X (r⊤x′ −
r⊤x∗)

}

.
3) Descent.̂x := x∗ + r

∗

n
.

4) Projection. Solvex∗ := arg maxx∈X ‖x− x̂‖.
5) n := n + 1. Go to Step 2.
Note that the Projection step is a convex quadratic pro-

gram over a polytope, which can be solved in polynomial
time. In contrast, Step 2 is NP-hard as shown in Sec-
tion III. We thus propose a MIP formulation that finds
arg maxr∈R

{

maxx′∈X (r⊤x′ − r⊤x∗)
}

.
The formulation is based on a “largeM ” method. Define

rmax , sup
r∈R

max
s∈S,a∈A

r(s, a),

M , rmax

(

T
∑

i=1

γi−1
)

.

Note thatrmax is finite sinceR is bounded, and
∑T

i=1 γi−1

is finite becauseγ = 1 only whenT is finite. Observe that
M is larger than or equal to the reward-to-go for anys ∈ S,
π ∈ ΠHR andr ∈ R.

Theorem 4.3:Given initial state distributionα and x∗,
let r∗ be the optimal solution of the following maximization
problem on(z,v,q, r),

max:
∑

s

α(s)v(s) −
∑

s∈S

∑

a∈A

r(s, a)x∗(s, a)

S.T.:
∑

a∈A

zs,a = 1, ∀s ∈ S,

q(s, a) = r(s, a) + γ
∑

s′∈S p(s′|s, a)v(s′),
v(s) ≥ q(s, a),
v(s) ≤ M(1 − zs,a) + q(s, a),
zs,a ∈ {0, 1},















∀s, a

r ∈ R.
(6)

We haver∗ = argmaxr∈R

{

maxx′∈X (r⊤x′ − r⊤x∗)
}

.
Proof: We establish the following lemma first.

Lemma 4.4:Fix r, the following set of constraints

v(s) = max
a∈A

q(s, a);

q(s, a) = r(s, a) + γ
∑

s′∈S

p(s′|s, a)v(s′).
(7)

is equivalent to
∑

a∈A

zs,a = 1, ∀s ∈ S,

q(s, a) = r(s, a) + γ
∑

s′∈S p(s′|s, a)v(s′),
v(s) ≥ q(s, a),
v(s) ≤ M(1 − zs,a) + q(s, a),
zs,a ∈ {0, 1},















∀s, a.

(8)
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Proof: First note that sinceM is larger than or equal to
the reward to go of anys, π andr, anyv,q that satisfy (7)
also satisfy (8). (Letzs,a∗ = 1 when a∗ maximizesq(s, ·).
If multiple a∗ exist, arbitrarily pick one.)

Now consider anyq,v, z satisfying (8). Fix as. We have
v(s) ≤ q(s, a∗) for somea∗ ∈ A. This is becausez(s, a) ∈
{0, 1} and

∑

a z(s, a) = 1 implies the existence ofa∗ such
that z(s, a∗) = 1. Thus,

v(s) ≤ M(1 − zs,a∗) + q(s, a∗) = q(s, a∗).

Combining this withv(s) ≥ q(s, a) for all a ∈ A implies
that v(s) = maxa∈A q(s, a). Therefore, (q,v) satisfies
Equation (7).
We now prove the theorem. Note that for a fixedr, (7)
uniquely determines the reward-to-gov [1]. Thus, the unique
solution of (8) is the reward-to-go and hence

∑

s α(s)v(s)
is the expected performance underr. This implies thatr∗ =
arg maxr∈R

{

maxx′∈X (r⊤x′ − r⊤x∗)
}

.

B. Vertices approach

We consider a special type of uMDP: the uncertainty set
R has a small number of vertices. That is, there exists
r1, · · · , rt such that

R = conv{r1, · · · , rt} ,

{

t
∑

i=1

ciri|

t
∑

i=1

ci = 1; ci ≥ 0, ∀i
}

.

Theorem 4.5:Given uMDP < T, γ, S, A,p,R >, sup-
poseR = conv{r1, · · · , rt} and the initial state-distribution
is α. Let x̂i(s, a) , Eπ′

i

∑T

i=1 γi−11(si = s, ai = a) where
π′

i = argmaxπ′∈ΠD P (π′, ri); and h∗, x∗ be the optimal
strategy of the following LP,

Min: h

S. T.: h ≥
∑

s∈S

∑

a∈A

[

ri(s, a)x̂i(s, a) − ri(s, a)x(s, a)
]

, ∀i,

∑

a∈A

x(s′, a) −
∑

s∈S

∑

a∈A

γp(s′|s, a)x(s, a) = α(s′), ∀s′,

x(s, a) ≥ 0, ∀s, ∀a.

Then the MMR strategyπ∗ is such that π∗(a|s) =
x(s, a)/

∑

a′∈A x(s, a′) for all s, a. Here, the denominator
is guaranteed to be nonzero.

Proof: We establish the following lemma first.
Lemma 4.6:For anyπ ∈ ΠHR the following holds,

R(π) = max
i=1,··· ,t

{

P (π′
i, ri) − P (π, ri)

}

.

Proof: Fix a strategyπ ∈ ΠHR. Define the following
function ranging overR:

Rπ(r) , max
π′∈ΠHR

{P (π′, r) − P (π, r)}.

It is easy to see thatRπ(·) is convex becauseP (π′, r) −
P (π, r) is a linear function ofr for anyπ′, and henceRπ(·)
is convex as it is the maximum of a class of linear functions.

By convexity ofRπ(·) and definition ofπ′
i we have

R(π) = max
r∈R

{

max
π′∈ΠR

[

P (π′, ri) − P (π, ri)
]

}

= max
r∈R

Rπ(r)

= max
i=1,··· ,t

Rπ(ri) = max
i=1,··· ,t

{

P (π′
i, ri) − P (π, ri)

}

,

which establishes the lemma.
Now we prove the theorem. By Lemma 4.6, we have

R(π) = min
h

{

h|h ≥ P (π′
i, ri) − P (π, ri), i = 1, · · · , t

}

.

Taking minimization overπ ∈ ΠS on both sides, the theorem
follows immediately by writing MDP as its dual LP form,
see [1] for the details.

C. Efficient-strategy approach

Definition 4.7: A strategyπ ∈ ΠD is called efficient if
there is noπ′ ∈ ΠHR such thatP (π, r) < P (π′, r) holds
for all r ∈ R.

Theorem 4.8:Suppose R = {r|Ar ≤ b} and
{π′

1, · · · , π′
t} ⊂ ΠD is a superset of the set of efficient

strategies. Let̂xi(s, a) , Eπ′

i

∑T

i=1 γi−11(si = s, ai = a),
whose vector form is denoted bŷxi. Let c∗ be the optimal
solution of the following LP onh, c andz(i),

min : h

S.T.:
⊤
∑

i=1

ci = 1;

c ≥ 0;

h ≥ b⊤z(i);

A⊤z(i) + X̂c = x̂i;
z(i) ≥ 0;







i = 1, · · · , t,

whereX̂ = (x̂1, · · · , x̂t), then the MMR strategyπ∗ is:

π∗(a|s) =

∑t

i=1 cix̂i(s, a)
∑

a′∈A

∑t
i=1 cix̂i(s, a′)

; ∀s, a.

Here, the denominator is guaranteed to be nonzero.
Proof: We first show that the MMR strategy is aran-

domizationover π′
1, · · · , π′

t, where “randomization” stands
for the following: given a pool of deterministic strategies
pick one according to an exogenous stochastic source and
then follow it forever. It is well known that (cf [1]) for any
stationary strategy, there is an equivalent randomizationover
all deterministic strategies and vice versa. Hence there isa
MMR that is a randomization due to Theorem 2.5. Further
note that the probability of picking a non-efficient strategy
must be zero, or there exists a strategy that performs strictly
better for allr which contradicts the MMR condition. Hence
the MMR strategy is a randomization overπ′

1, · · · , π′
t.

Observe that if the probability of pickingπ′
i is ci, then

the state-action frequency equals
∑t

i=1 cix̂i. Thus, the MMR
strategy is the following optimization problem:

min
c:

P

t
j=1

cj=1;c≥0

{

max
i∈{1,··· ,t},r∈R

[

r⊤x̂i − r⊤
t
∑

j=1

cjx̂j

]}

.
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This can be rewritten as

min : h

S.T.:
⊤
∑

i=1

ci = 1;

c ≥ 0;

h ≥ max
r∈R

(x̂⊤
i − c⊤X⊤)r, i = 1, · · · , t.

(9)

By duality of LP (cf [15], [16]) andR = {r|Ar ≤ b},
maxr∈R(x̂⊤

i − c⊤X⊤)r equals to the following LP onz(i):

Min: b⊤z(i);

S.T.: A⊤z(i) + X̂c = x̂i;

z(i) ≥ 0.

Substituting it into (9) establishes the theorem.
Observe that if a strategy maximizes the performance
P (·, r0) for some parameter realizationr0 ∈ R, then it is
efficient. The following proposition shows that the reverse
also holds. The proof is deferred to Appendix I.

Proposition 4.9:SupposeR is convex and its relative
interior is non-empty2. If a strategyπ ∈ ΠHR is efficient,
then there existsr0 ∈ R such thatvπ(r0) = v∗(r0).
We may thus useaction elimination[1] [18] [19] to find a
“small” superset of efficient strategies: if an action of a state
that can be determined tonotbelong to optimal policy for any
parameter realization, it can be discarded and disregarded.
If only a small number of strategies remains after action
elimination3, then we can solve MMR in a less computational
expensive way.

V. M EAN VARIANCE TRADEOFF OF REGRET

So far we regarded the true parameters as deterministic
but unknown. In this section we take a Bayesian approach:
we treat the true parameters as a random vector following
distribution µ known a-priori. Thus, given a strategy, its
regret is a random variable whose probability distributioncan
be evaluated. We use the mean-variance tradeoff criterion to
compare such random variables. That is, the strategy that
minimizes the tradeoff (i.e., the convex combination) of the
mean and variance of the regret is considered optimal.

Definition 5.1: Suppose the true reward parameterrt fol-
lows a distributionµ supported by a compactR. For a
strategyπ ∈ ΠHR:

1) the regret meanis

ER(π) , Ert

{

max
π′∈ΠHR

P (π′, rt) − P (π, rt)
}

=

∫

[

max
π′∈ΠHR

P (π′, r) − P (π, r)
]

µ(dr);
(10)

2) the regret varianceis

VarR(π) ,Ert

[

max
π′∈ΠHR

P (π′, rt) − P (π, rt)
]2

− (ER(π))2.

(11)

2See page23 of [17] for for the definition of relative interior. In particular,
all polytopes have non-empty relative interior.

3Of course this is not guaranteed due to the NP-hardness of MMR.

Definition 5.2: Suppose the true reward parameterrt

follows a distributionµ supported by a compactR. Fix
λ ∈ [0, 1], the Optimal Mean-Variance Tradeoff of Regret
(OMVTR) strategy is

πλ , arg min
π∈ΠHR

[

λER(π) + (1 − λ)VarR(π)
]

.

To simplify notations, define functionP ∗(·) : R → R as

P ∗(r) , max
π∈ΠHR

P (π, r),

i.e., the optimal reward-to-go givenr. Note thatP ∗(r) is
easy to compute, using for example dynamic programming.
Observe that OMVTR strategy is trivial whenλ = 1.

Theorem 5.3:For λ ∈ [0, 1), let xλ be the optimal
solution to the following convex quadratic program

min:(1 − λ)x⊤
E(rr⊤)x

+
{

[(1 − λ)E(P ∗(r)) − λ]E(r) − (1 − λ)E[P ∗(r)r]
}⊤

x

S.T.:
∑

a∈A

x(s′, a) −
∑

s∈S

∑

a∈A

γp(s′|s, a)x(s, a) = α(s′), ∀s′

x(s, a) ≥ 0, ∀s, a.
(12)

The OMVTR strategy πλ is such that πλ(a|s) =
xλ(s, a)/

∑

a′∈A xλ(s, a′) for all s, a. Here, the denominator
is guaranteed to be nonzero.

Proof: We again use the equivalence betweenΠHR and
state-action frequency polytope. Letx(π) be the state-action
vector of a a strategyπ. Observe that

ER(π) = E(P ∗(rt)) − E(rt)⊤x(π);

VarR(π) = E

[

max
π′∈ΠHR

P (π′, rt) − P (π, rt) − ER(π)
]2

= E

[

P ∗(rt) − rt⊤x(π) − E(P ∗(rt)) + E(rt)⊤x(π)
]2

.

Thus algebra yields

λER(π) + (1 − λ)VarR

=λE(P ∗(r)t) − λE(rt)⊤x(π) − (1 − λ)[E(rt)⊤x(π)]2

+ (1 − λ)E
{

P ∗(rt)2 − 2P ∗(rt)rt⊤x(π) + (rt⊤x(π))2
}

− (1 − λ)[E(P ∗(rt))]2 + 2(1 − λ)E[P ∗(rt)]E(rt)⊤x(π).

The r.h.s. is equivalent to the minimizing objective in (12)
up to adding a constant, which establishes the theorem.
We can use Monte Carlo methods to solve Problem (12).
Denote the objective function byO(x). Note that it is a
convex quadratic program. Further note that all its coeffi-
cients are expectations of random variables. Thus we can
generate independent samplesr(1), · · · , r(n) according toµ,
and use the corresponding empirical average to approximate
each coefficient. The following theorem establishes an error
bound of the solution to the approximated problemO(x).

Theorem 5.4:Let π∗ and π be the OMVTR and the
solution to the approximated problem usingn i.i.d. samples
respectively. DenoteT̂ ,

∑T

i=1 γi−1; V , |S| × |A|
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and R̂ , supr∈R maxs∈S,a∈A |r(s, a)|. Then, the following
holds:

Pr
{

λER(π) + (1 − λ)VarR(π)

≥ λER(π∗) + (1 − λ)VarR(π∗) + 2ǫ
}

≤(2V 2 + 4V + 2) exp

(

−nǫ2

2R̂2(4T̂ 2R̂ + T̂ )2

)

.

Proof: We use overline to represent the empirical aver-
age of a quantity fromn iid sampling. Note that each element
of theV ×V random matrixr(i)r(i)⊤ belongs to[−R̂2, R̂2];
P ∗(r(i)) ∈ [−T̂ R̂, T̂ R̂]; each element of theV dimension
random vectorr(i) belongs to[−R̂, R̂]; each element of
the V dimension random vectorP ∗(r(i))r(i) belongs to
[−T̂ R̂2, T̂ R̂2]. Let ǫ0 = ǫ/(4T̂ 2R̂ + T̂ ). By Hoeffding’s
inequality, the followings hold:

Pr
(

∥

∥rr⊤ − E(rr⊤)
∥

∥

max
≥ Rǫ0

)

≤ 2V 2 exp

(

−
nǫ20

2R̂2

)

.

(13)

Pr
(

∣

∣P ∗(r) − E(P ∗(r))
∣

∣ ≥ T̂ ǫ0

)

≤ 2 exp

(

−
nǫ20

2R̂2

)

. (14)

Pr
(

∥

∥r− E(r)
∥

∥

∞
≥ ǫ0

)

≤ 2V exp

(

−
nǫ20

2R̂2

)

. (15)

Pr
(

∥

∥P ∗(r)r−E(P ∗(r)r)
∥

∥

∞
≥ T̂ R̂ǫ0

)

≤ 2V exp

(

−
nǫ20

2R̂2

)

.

(16)
Here‖‖max stands for the largest absolute value of elements
of a matrix. Now note thatx ∈ X implies ‖x‖∞ ≤ T̂ .
Algebraic manipulations easily yield that forx ∈ X :

O(x) − O(x)

≤(1 − λ)T̂ 2
∥

∥

∥
rr⊤ − E(rr⊤)

∥

∥

∥

max

+ (1 − λ)T̂
∥

∥

∥
P ∗(r)r − E(P ∗(r)r)

∥

∥

∥

∞

+ (1 − λ)T̂ R̂|P ∗(r) − E(P ∗(r))|

+ T̂ [(1 − λ)T̂ R̂ + λ]‖r − E(r)‖∞.

Combining this with Inequalities (13) to (16), we have:

Pr
{

max
x∈X

|O(x) − O(x)| ≥ ǫ
}

≤(2V 2 + 4V + 2) exp

(

−nǫ2

2R̂2(4T̂ 2R̂ + T̂ )2

)

,

which implies the theorem.

VI. CONCLUSION

In this paper we investigated decision making in a Marko-
vian setup where the reward parameters are not known in
advance. In contrast to the standard setup where a strategy
is evaluated by its accumulated reward-to-go, we focused
on the so-called competitive setup where the criterion is
the parametric regret, i.e., the gap between the performance
of the best strategy that is chosen after the true parameter
realization is revealed and the performance of the strategy
that is chosen before the parameter realization is revealed.

We considered two related formulations: minimax regret
and mean-variance tradeoff of the regret. In the minimax
regret formulation, the true parameters are regarded as de-
terministic but unknown, and the optimal strategy is the
one that minimizes the worst-case regret under the most
adversarial possible realization. We showed that the problem
of computing the minimax regret strategy is NP-hard and
proposed algorithms to efficiently solve it under favorable
conditions. The mean-variance tradeoff formulation requires
a probabilistic model of the uncertain parameters and looks
for a strategy that minimizes a convex combination of
the mean and the variance of the regret. We proved that
computing such a strategy can be done numerically in an
efficient way.

MDPs in a competitive setup can model many real appli-
cations. However, unlike the standard setup, robust decision
making in such a setup has not been thoroughly investigated.
This paper aims to address this absence by recasting solution
concepts that were successfully implemented for standard
setup to the competitive setup and solve them efficiently.

APPENDIX I
PROOF OFPROPOSITION4.9:

We define the following to simplify the expression:

vπ(r) , P (π, r); π ∈ ΠHR.

v∗(r) , max
π∈ΠHR

vπ(r).

Before proving the proposition, we establish the following
lemma.

Lemma 1.1:Let R be convex, then
1) for anyπ ∈ ΠS , vπ(·) is an affine function;
2) v∗(·) is a convex, piecewise affine function.

Proof: Note that given strategyπ ∈ ΠS , we have

vπ(r) =
∑

s∈S

∑

a∈A

{r(s, a)Eπ

∑

i

γi−11(si = s, ai = a)}.

The right-hand side is affine ofr, which implies the first
claim.

To prove the second claim, recall that (e.g., [1]) for a fixed
r, the optimal strategy is determined and stationary, i.e.,

v∗(r) = max
π∈ΠHR

P (π, r) = max
π∈ΠD

P (π, r).

Further note thatΠD is a finite set, andvπ(r) is affine. Thus
v∗(·) is convex and piecewise affine, since it is a pointwise
maximum over a finite number of affine functions.
We now prove the proposition by contradiction. Assume
there exists an efficient strategyπ∗ which does not maximize
the expect reward for any realization. Notevπ∗

(·) is affine.
We construct a functionv′(·) such thatv′(r) > vπ∗

(r) for
all r ∈ R, and show that there exists a strategyπ′ ∈ ΠHR

such thatvπ′

(r) ≥ v′(r) for all r ∈ R.
Step 1: To construct v′(·), note that by assumption

vπ∗

(r) < v∗(r) for all r ∈ R. Hence let c0 ,

minr∈R

[

v∗(r) − vπ∗

(r)
]

and r0 ∈ arg minr∈R

[

v∗(r) −

vπ∗

(r)
]

. These two definition is valid sincev∗(·) andvπ∗

(·)

are continuous functions andR is compact. Letv′(r) ,

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 48th IEEE Conference on Decision and Control.
Received March 6, 2009.



vπ∗

(r) + c0, observe thatvπ∗

(r) < v′(r) ≤ v∗(r) holds for
all r ∈ R, and we also havev′(r0) = v∗(r0). Note that,
vπ∗

(r) is an affine function, so isv′(r) by definition, and
we can rewrite

v′(r) = g⊤r +
[

v∗(r0) − g⊤r0

]

.

Step 2:To show there existsπ′ ∈ ΠHR such thatvπ′

(r) ≥
v′(r) for all r ∈ R. Let R ⊆ R

m and we extendv∗(·) into
the whole space, i.e., forr ∈ R

m, define

v∗f (r) , max
π∈ΠD

P (π, r);

v∗o(r) ,

{

0 if r ∈ R;
+∞ otherwise.

Note thatv′(r) ≤ v∗(r) holds for allr ∈ R implies g⊤r +
[

v∗(r0)−g⊤r0

]

≤ v∗f (r)+v∗o(r) holds for allr ∈ R
m. Hence

g is a subgradient to convex functionv∗f (r) + v∗o(r) at r0,
denote asg ∈ ∂

[

v∗f (r0) + v∗o(r0)
]

. Hence there existsgf ,
go such thatgf ∈ ∂v∗f (r0), go ∈ ∂v∗o(r0) andg = gf + go

(cf Theorem23.8 of [14]).
Step 2.1 To prove there existsπ′ such thatvπ′

(r) =
g⊤

f r +
[

v∗(r0) − g⊤
f r0

]

for all r ∈ R. Let set Π0 ,

arg maxπ∈ΠD vπ(r0), i.e., the set of strategies that achieves
maximal atr0. Note thatΠ0 is a finite set sinceΠD is a
finite set. Hence denoteΠ0 = {π1, · · · , πh}. Note that by
definition of Π0, vπi(r0) = v∗(r0). Hence we can rewrite

vπi(r) = d⊤
i r + [v∗(r0) − d⊤

i r0],

for somedi sincevπi(·) is a linear function.
Recall gf ∈ ∂v∗f (r0), hence by a standard continuity

argument we have in a sufficiently small open ball around
r0, g⊤

f r+
[

v∗(r0)−g⊤
f r0

]

≤ maxπ∈Π0
vπi(r). Note that the

left-hand side is affine, and the right-hand side is piecewise
affine, hence this inequality holds for allr ∈ R

m. That is

g⊤
f (r − r0) ≤ max

i∈{1,··· ,h}
d⊤

i (r − r0), ∀r ∈ R
m.

This implies there exists noy ∈ R
m+1 such that[g⊤

f , 1]y ≥

maxi∈{1,··· ,h}[d
⊤
i , 1]y, hence noy satisfy the following

conditions
[

gf

1

]⊤

y > 0;

[

di

1

]⊤

y ≤ 0; i = 1, · · · , h.

By Farkas Lemma, this means there existsλ1, · · · , λh such
that λi ≥ 0 and

[

gf

1

]

=
h
∑

i=1

λi

[

di

1

]

.

This implies
∑h

i=1 λi = 1 and
∑h

i=1 λidi = gf . Now
construct a strategyπ′ as taking strategyπi with probability
λi, and we have

vπ′

(r) =

h
∑

i=1

λiv
πi(r)

=
h
∑

i=1

λi

{

d⊤
i r + [v∗(r0) − d⊤

i r0]
}

=g⊤
f r +

[

v∗(r0) − g⊤
f r0

]

.

Step 2.2:To show thatvπ′

(r) ≥ v′(r) for all r ∈ R. By
definition of v∗o(·) andgo ∈ ∂v∗o(r0) we have

g⊤
o r + [v∗o(r0) − g⊤

o r0] ≤ 0, ∀r ∈ R.

Recallr0 ∈ R, which impliesv∗o(r0) = 0. Hence substitute
this into g = gf + go leads to

v′(r) = g⊤r + [v∗(r0) − g⊤r0]

=g⊤
o r + [v∗o(r0) − g⊤

o r0] + g⊤
f r + [v∗f (r0) − g⊤

f r0]

≤g⊤
f r + [v∗f (r0) − g⊤

f r0]

=vπ′

(r). ∀r ∈ R.

Hence we proved Step 2. Combining two steps, we establish
the proposition.
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