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Parametric Regret in Uncertain Markov Decision Processes
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Abstract—We consider decision making in a Markovian
setup where the reward parameters are not known in advance.
Our performance criterion is the gap between the performane
of the best strategy that is chosen after the true parameter
realization is revealed and the performance of the strategy
that is chosen before the parameter realization is revealedVe
call this gap the parametric regret. We consider two related
problems: minimax regret and mean-variance tradeoff of the
regret. The minimax regret strategy minimizes the worst-cae
regret under the most adversarial possible realization. Weshow
that the problem of computing the minimax regret strategy is
NP-hard and propose algorithms to efficiently solve it under
favorable conditions. The mean-variance tradeoff formuldion
requires a probabilistic model of the uncertain parametersand
looks for a strategy that minimizes a convex combination oftie
mean and the variance of the regret. We prove that computing
such a strategy can be done numerically in an efficient way.

I. INTRODUCTION

of the modeling parameters from the unknown true ones
(cf [4]-[7]). In this case, both performance and regret of
a strategy are functions of parameter realizations, where i
general there is no strategy that is optimal for all paramete
realizations.

In the standard setup, there are two formulations to find
the “optimal” strategy for MDPs with uncertain parameters.
The first formulation [4]-[7] takes a minimax approach,
i.e., the true parameters can be any element of a known
set, and strategies are evaluated based on the performance
under the (respectively) worst possible parameter raadiza
The second one takes a Bayesian approach (e.g. [8]): The
true parameters are regarded as random variables. Thus,
given a strategy, its performance is a random variable whose
probability distribution can be obtained. And the optimal
strategy is the one that maximizes certain risk measure such

Sequential decision making in stochastic dynamic envirors percentile loss [8] or mean-variance tradeoff [9].
ments is often modeled using Markov Decision ProcessesIn this paper we adapt the aforementioned formulations

(MDP, cf [1], [2]). In the standard setupeach strategy is
evaluated according to itperformance i.e., the expected

into the competitive setup and discuss parametric regmat mi
mizing in uncertain Markov decision processes. In parégul

accumulated reward. The optimal strategy is the one thatr contributions include the following:

achieves maximal performance.

In many real applications, the decision maker evaluates
strategies in a comparative way. That is, given a strategy,
the decision maker is interested in how its performance

competes with other strategies rather than dguantity of

the performance itself. For example, the objective in fimgnc

applications such as portfolio optimizations is often tedb

the market”, i.e., to perform favorably than a strategy that
holds index stocks. The same percentage of growth can
be regarded as “incredible success” or "disastrous fdilure
purely depending on how others perform in this same market.
A natural measurement of strategies in such setup, which we

termedcompetitive setupereafter, is the so-callgghramet-

ric regret the gap between the performance of a strategy and

that of the optimal onet

When the parameters of a MDP are known, minimizing

In Section Il we follow the minimax approach and
propose the Minimal Maximum Regret (MMR) decision
criterion.

We show in Section Il that finding the MMR strategy
is NP-hard in general.

« We investigate the algorithmic aspect of MMR strategy
in Section IV. In particular, we propose in Section IV-
A an algorithm based on mixed integer program that
solves the MMR strategy, and discuss in the rest of
Section IV two special cases where the MMR strategy
can be found in polynomial time.

We take a Bayesian approach and propose the Op-
timal Mean-Variance Tradeoff of Regret criterion in
Section V. We further show that such formulation can
be converted into a quadratic program on a polytope,
and hence solved efficiently.

the regret is equivalent to maximizing the performance of ) ) )
a strategy, and hence the competitive setup coincides withV& neéed to point out that in this paper we concentrate
the standard setup. However, the formulation of a proble@ the case that the system dynamics is known and only

is often subject toparameter uncertainty- the deviation
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1We will use “regret” in the following for simplicity of the eression.
However, it should be noted that this is different from thensfard notion of
regret in online learning - the gap between the average deofaa learning
algorithm and the optimal strategy [3].

reward parameters are subject to uncertainty, partly due to
the prohibitive computational cost. Indeed, as shown in Sec
tion Ill, even in this seemingly simple case finding the MMR
strategy is NP-hard. In addition, the known-dynamics case
can either model or approximate many practical problems.
For instance, a shortest-path problem with uncertain link
lengths is an uncertain MDP with known dynamics (e.g., [1]).
Another example is using state aggregation to solve large
scale MDPs [10]. In such case, states are grouped to a
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small number of hyper-states and a reduced MDP built on Definition 2.1: Given a uMDP< T',v,S, A,p,R > and
these hyper-states is investigated. Typically, the ttenmslaw  ro € R, the parametric regretof a strategyr w.r.t. rg is
between hyper-states are known, but the expected rewatdfined as

visiting each hyper-state is uncertain due to the tramsstio .

A / _
inside each hyper-state. R(m,ro) = ﬂgﬁﬁR{P(ﬂ o) = P(m,ro)}.

In words, regret is the performance gap between a strategy
A. Preliminaries and Notations and the optimal strategy. It is thus a natural performance

easure in a competitive environment. Observe that for a

Throughout the paper, boldface letters are used for colu X _
8d ro, the regret is equivalent to the expected reward up

vectors, where its elements are represented using the sa ;

but non-boldfaced letter. For example, the first element 3P ado_ilr_lg a con.stgnt.

a vectorv is denoted as;. Given a functionf(x) not Dgfmmon 2:2:Given a UMDF.)< T’.%S’A’p’R >, the

necessarily differentiable, we uséf(x)|x, to represent the Maximum Regredf a strategyr is defined as

set of subgradients at poist. R(7) £ max f{(mr) = max {P(r',r) — P(m,r)}.
An uncertain Markov Decision ProcessMDP) is a 6- reR reR,m’ elH R @

tuple <_T’7’S’A’p_’R > Yvhere. . _ The maximum regret is the regret of a strategy under
« T'is the (possibly infinite) decision horizon; the most adversarial parameter realization. It can also be
o 7 € (0,1] is the discount factor. We allow = 1 only  regarded as the performance gap w.r.t. an “all-mighty” eppo
whenT" is finite. nent strategy that can observe the parameter realization an
« Sis the state set and is the action set. Both sets aregg|ect the respective optimal solution.

finite. - o _ Definition 2.3: Given a uMDP< T+, S, A,p, R >, the

o p is the transition probability i.e.p(s’|s,a) is the \iniMax Regret(MMR) strategy is
probability to reach state’ from a states when action
a is taken. ™ £ arg Q%ER R(m). (3)

. R is the admissible set of reward parameter. To be morehe minimax regret strategy is not the same as the robust
specific, the reward vectaris unknown to the decision MDP (i.e., minimax performance) strategy in general, as
maker (this is why it is called “uncertain MDP"). To shown in the following example: Consider the MDP as
make such decision problem meaningful, some a prioghown in Figure 1, wher® = [0, 3] x [1, 2]. Observe that
information ofr is known: it is an element oR. In the  the minimax performance strategy is selectin®, whose
literature ofrobust optimizationR is often called the maximum regret equal®. On the other hand, the minimax
uncertainty se(cf [4], [11], [12]). regret strategy is selecting either action with probablit%,

We assume that the initial state distribution is known tabe Whose maximum regret is.

All history-dependent randomized strategies are adméssib

and we denote that set bf”%. We usell® and II” to

denote the set of stationary Markovian random strategids an al

stationary Markovian deterministic strategies, respebti

For 7 € II°, we user(a|s) to represent the probability of °

choosinga € A at states following . Given a strategy

7 € II7E and a parameter realizatiane R, its expected a2 °
performance (i.e., accumulated discounted reward) istéeino

by P(m,r), that is

Fig. 1. An example where the MMR policy is different than tlabust
policy.

T
P(m,r) 2 EA{D v r(si,ai)}- 1)
1=1

We focus on the case when the uncertainty@et a poly- A EXistence of stationary optimal solution

tope. Polytopes are probably the most “natural” formulatio  Although the definition of MMR considers history depen-
of uncertainty set that can model many widely applicabléent strategies, in this subsection we show that withowg los
cases. For example, the interval case, i.e., each rewasfigenerality we can concentrate 8if because there exists
parameter-(s,a) belongs to an interval, is a polytope. Wea stationary MMR strategy. We need the following lemma
also assume th&® is bounded, to avoid technical problemsfirst.

such as infinitely large regret. Lemma 2.4:Given my € I 7, there existst € 11° such
that R(7) = R(mo).
Il. MINIMAX REGRET INMDPs Proof: Itis well known that (e.g., [1]) givem, € ITH 7,

i -~ S
In this section we propose the MiniMax Regret criteriontN€re existst € II” such thatvs € S,a € A

i.e., minimizing the parametric regret under the most advef; _ § :71"11(51- =s,a;,=a)=Ex E :'yi_ll(si =s,a; =a)
. . . 0 ? - ? *
sarial parameter realization. . -
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Note that the following holds for any € 117 %, evaluating the maximum regret can not be computationally
B i o more difficult than NP.
P(mx) =3 > {r(s,a)Ex 27 L(si = 5,0 = a)}. Next we prove that evaluating the maximum regret is NP-
seSacA ¢ hard by showing that thteger feasibility problemwhich
Hence, is known to be NP hard (e.g., [13]), can be reduced to

P(x',t)—P(r0,x) = P(x,x)— P(#,1), Vr € R, € TR, evaluat_lng maxmurn-r.egret for a given strategy.
The integer feasibility problem is to tell folf € R™*"
Taking maximization over’ andr establishes the lemma. andt € R™, whether there exist a vectarc {0,1}" such
B that Hx < t. Now consider the following MDP:
We now present the main theorem of this subsection: the Let r, denote the vector form of,; and letR be defined

existence of a stationary MMR strategy. by the following linear equalities/inequlities:
Theorem 2.5:There existst* € ITI° such thatR(r*) < ,
R(m), Vr € THE, Tai = =Ll =71, t=1,---n
Proof: From Lemma 2.4, it suffices to prove that —1<r,; <0,i=1,---n
R(m*) < R(m), V& € TI°. We define a metriel(my, m2) = ro = —1,

maxses.aea|m(als) — ma(als)| on II° and note that since
S and A are finite, the sefl® is compact. Let sequence
{m,} C II° be such that?(r,) — inf,cqur R(7). Due to We claim that the integer feasibility problem is equivalent
compactness dfl®, taking a convergent subsequer{eg,,}  to whether the maximum regret of actiép is 1. Suppose
and letm* € II° be its limiting point. Let the maximum regret i$. Note that all rewards are negative
and the performance df, does not depend on the reward
realization. Hence there exists, r) such thatP(r,r) = 0,
which means that the expected reward frepmust be zero
for all i = 1,---n. Therefore, either,; or r,; must equal
R(mtp, ) > P(7',¢) — P(mp,,,T), Vn. to zero, i.e..—r,; € {0,1}. Thus, letz; = —r,;, the integer
feasibility problem has an affirmative answer. Now suppose
that the integer feasibility problem has an affirmative agrsw
i.e., there existx satisfying the integer feasibility, let,; =

—Hr, <t.

(ﬁlaf) = arggnm;{P(w’,r) - P(ﬂ-*ar)}'
w’'r

By definition of maximum regret we have

Take limits on both sides and note that#’, ) — P(m, ) is
a continuous function of w.r.t. the aforementioned metric,

we have ) . —x;. Hence either,, orry; equals to zero, and the maximum
ﬂggﬁm R(m) = R(m"), expected reward equals to zero, i.e., the maximum regret of
which establishes the theorem. - by is 1. Th.erefore, we reQuce the integer feasibility problem
to evaluation of the maximum regret, and hence the latter is
[1l. COMPUTATIONAL COMPLEXITY NP hard.
This section investigates the computational complexity of €Ombining the two steps, we conclude that evaluating the
MMR strategy. We show that the MMR strategy is in generd"@ximum regret is NP complete. u

intractable. In fact, even evaluating the maximum regreafo

given strategy can be NP-hard, as shown in the next theorem.
Theorem 3.1:Let R be a polytope defined by a set of

linear inequalities. Then evaluating the maximum regret of s

a strategy is NP-complete with respect|&], |A| andn.

Proof: We first show that evaluating the maximum
regret can not be computationally more difficult than NP.
This is due to the fact that evaluating the regret of a given
strategy © can be written as the following optimization
problem on(x’, r):

max: Z Z {r(s,a)a’(s,a) — r(s,a)z(s,a)}

1/n

Se

a€AscsS
s.t.: Z x/(s/, a) - Z Z 7p(s’|s, a):v/(s, a) = a(s’), Vs’, Fig. 2. NP-hard regret evaluation.
a€A s€SacA
2'(s,a) >0, Vs,Va,
reR. 4 IV. ALGORITHMS FOR FINDING THEMMR SOLUTION

Although the MMR solution is generally intractable, we
wherei(s,a) is given by theZZ.T:1 ¥ E(1s,25,0,—a) UN-  propose in this section several ways to find the MMR strat-
der 7. Note that Equation (4) is a (non-convex) quadratiegy. In Subsection IV-A we propose a subgradient method
program which is known to be equivalent to NP. Henceto find MMR, where the subgradient in each step is evaluate
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by a Mixed Integer Program (MIP). Due to the NP-hardnesgherefore, we propose here a subgradient descent/project
of MIP, such an algorithm is inherently non-polynomial.algorithm.
We further consider two special cases where polynomial Algorithm 4.2:

algorithms are possible. (1) In Section IV-B we show that 1) Initialize. n := 1; choosery, € R, x* =
when the number of vertices 6% is small, i.e.,R is the arg maXxe x er.
convex hull of a small number of parameter realizations, 2) Oracle. Solver* := argmaxren{maxx/ex(rTx’ —

we can find MMR in polynomial time by solving a linear r'x*)}.

program. (2) In Section IV-C we show that the MMR 3) Descentx := x*+%_

has a special property: it is a randomization of “efficient” 4) Projection. Solvex* := arg maxycx [|x — X/

(defined subsequently) strategies. Furthermore, the @Wirggh 5) n :=n + 1. Go to Step 2.

coefficients of this randomization can be obtained by LP. Note that the Projection step is a convex quadratic pro-
Thus we are able to solve MMR in an efficient way if thegram over a polytope, which can be solved in polynomial
set of “efficient” strategy, which can be found using actionime. In contrast, Step 2 is NP-hard as shown in Sec-
elimination methods, contains a small number of elementgion Ill. We thus propose a MIP formulation that finds
] arg maxyer { maxyex(r'x —r'x*)}.

A. Subgradient approach The formulation is based on a “large’”” method. Define

In this subsection, we propose a subgradient method to A
Tmax = Sup max 7r(s,a),

find the MMR solution. The subgradient for each step is reR SES,a€A
indeed the reward parameter that achieves the maximum T
regret. We further provide an “oracle” based on mixed intege M £ rax( Z 71"1).
programming that computes this subgradient. This method i=1

is non-polynomial, due to the inherent NP-hardness of t

problem as shown in Section IIl. is finite becausey = 1 only whenT is finite. Observe that

We first show that minimizing the maximum regret is; , .
. : M is larger than or equal to the reward-to-go for ang .S,
indeed a convex program (w.r.t. an equivalent form the

= . . . elHE andr € R.
the decision variabler). Thus, the g!obal ophmum (-e., Theorem 4.3:Given initial state distributionre and x*
the MMR. str_ategy) can be found with a subgradient deI_et r* be the optimal solution of the following maximization
scent/projection method.

Recall the well-known equivalence between a strategy &roblem on(z, v, q,r),
MDP and its expected state-action frequency (cf [1]). Wenax: Za(s)v(s) _ Z Z r(s,a)z* (s, a)
thus change the decision variabte € 17 to its state- s sESacA
action frequency vecta, i.e., the vector form of(s,a) = g 7. s —1. Vse S
E, >, 7" "1(s; = s,a; = a), and recast finding MMR e ’

hlglote thatr,,.x is finite sinceR is bounded, an(EiT:1 il

acA
strategy as the following minimization problem an
¥ J P a(s,a) = r(s,0) +7 s p(s']s, a)o(s),
min G(x). (5) v(s) = q(s,a),
xeX v(s) < M(1— zs,4) + q(s,a), Vs, a
Here, X is the state-action polytope: 25,0 € {0,1},
renR.
X Z x(s',a) — Z Z yp(s'|s,a)z(s,a) = a(s'), Vs'; 6)
ac€A s€SacA;
z(s,a) >0, Vs,Va; We haver* = arg max,cnr { max, ey (r' x — rTx*)}.
N . . Proof: We establish the following lemma first.
andG(-) : X — R is defined by Lemma 4.4:Fix r, the following set of constraints
a T T _ .
G(x) = rE%i?(GX(r x' —r x). v(s) Igleaji(J(Sﬂl)v
| (s,0) = r(s,0) +7 3 p(s'ls ap(s). )
Theorem 4.1: 1) Problem (5) is a convex program; q\s,a) =T\s,a) 7 Pis]s, ajuis ).
2) Givenxg € X, s'es

T, T vo is equivalent to
—argrglez%%({ir/laﬁ(r x'—r'xo)} € (%) | -

Proof: Observe thatX is convex. To see that the sz =1, Vs€s,

objective function (i.e., the part inside the curled bragke <4 . .
is convex, we note that for a fixed pair ¢f, x’), function q(s,a) = r(s,a) + 72y esp(s']s, a)v(s"),
(r"x'—r"x) is affine. Therefore the objective function is the v(s) > q(s,a), Vs, a.

maximum over a class of affine functions and hence convex. v(s) < M(1 = z5.0) + q(s,a),
The second claim follows from the Envelope Theorem (e.g., ?s«a € {0,1},
[14]). ] (8)
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Proof: First note that sincé/ is larger than or equalto By convexity of R™(-) and definition ofr, we have
the reward to go of any, = andr, anyv, q that satisfy (7)
also satisfy (8). (Let, .- = 1 whena* maximizesq(s,-). L(m) = maX{
If multiple o* exist, arbitrarily pick one.)
Now consider anyy, v, z satisfying (8). Fix as. We have
v(s) < ¢(s,a*) for somea* € A. This is because(s,a) €

{0,1} and¥, z(s,a) = 1 implies the existence af* such Which establishes the lemma. u
that z(s,a*) = 1. Thus Now we prove the theorem. By Lemma 4.6, we have

/ V) . _ 1y
max [P(x',0) = P(m,)] | = max R™(r)

= _ElllaX tRTr(ri) = -EIllaXt {P(ﬂ.évri) - P(T{', ri)}v

U(S) S M(l - Zs.a*) + q(S, a*) = q(S, CL*). R(T{') = Hlén {h|h’ Z P(Wz{7ri) - P(ﬂ-vri)v 1= 1a e 7t}-
Combining this withu(s) > ¢(s,a) for all a € A implies  Taking minimization overr € 11 on both sides, the theorem
that v(s) = maxuecaq(s,a). Therefore, (q,v) satisfies follows immediately by writing MDP as its dual LP form,
Equation (7). m see [1] for the details. [

We now prove the theorem. Note that for a fixed (7)

uniquely determines the reward-to-gq1]. Thus, the unique C. Efficient-strategy approach

solution of (8) is the reward-to-go and henge, a(s)v(s) Definition 4.7: A strategyn € II” is called efficientif
is the expected performance undefThis implies that* =  there is nor’ € I such thatP(w,r) < P(«’,r) holds
arg maxrer { maxyex(r'x —r'x*)}. m foralreR.

Theorem 4.8:Suppose R = {r|A&r < b} and
B. Vertices approach {m},---,m} c TP is a superset of the set of efficient

. . _ strategies. Leti;(s,a) 2 B Y- v 11(s; = s,a; = a),
We consider a special type of uMDP: the uncertainty sgtnose vector form is denoted by Let c* be the optimal
R has a small number of vertices. That is, there eXiS§qution of the following LP om, ¢ andz(i)

ry,---,r; such that

. . min: h

_ N . AT ; T

R = conv{ry, - ,rt}—{quJZq—l, c; >0, Vz}. ST Zci:1§
i=1 i=1 —

Theorem 4.5:Given uMDP < T,~,S, A,p,R >, sup- c > 0;
poseR = conv{ry,---,r;} and the initial state-distribution h>bTz(i);
is . Let &;(s,a) 2 Eq Z?:l ¥~ 11 (s; = s,a; = a) where AT_Z(Z') +Xe=%: Si=1---t
7! = argmax, cqo P(7',1;); and h*, x* be the optimal 2(i) > 0; v T

strategy of the following LP,
where X = (X1, ,%¢), then the MMR strategyr™ is:

Min: h
. ; S cidi(s, a)
S.T.h> Z Z [7i(s,a)Zi(s,a) — (s, a)z(s,a)], Vi, ™ (als) = i=1 CiTi (S, . Vs q
t N n’ ) W
s€SacA Za’GA Zizl Cixi(sv a )
> a(s',a) =Y > p(s']s,a)z(s,a) = a(s'), Vs',  Here, the denominator is guaranteed to be nonzero.
acA s€SacA Proof: We first show that the MMR strategy isran-
x(s,a) > 0, Vs, Va. domizationover 7}, - - - ,m;, where “randomization” stands
. . for the following: given a pool of deterministic strategies
Then the MMR strategyn™ is such thatw"(als) = pick one according to an exogenous stochastic source and

x(s,a)/ > cq2(s,a’) for all s, a. Here, the denominator

: then follow it forever. It is well known that (cf [1]) for any
is guaranteed to be nonzero.

stationary strategy, there is an equivalent randomizatian

Proof: We establish the following lemma first. all deterministic strategies and vice versa. Hence theee is
Lemma 4.6:For anyr € I1"# the following holds, MMR that is a randomization due to Theorem 2.5. Further
, note that the probability of picking a non-efficient strateg
R(m) = ,Jmax {P(Wivri) - P(eri)}- must be zero, or there exists a strategy that performslgtrict
Proof: Fix a stréte'gyﬂ € IR Define the following better for allr which contradicts the MMR condition. Hence
function ranging overR: the MMR strategy is a randomization ovef, - - - , ;.
Observe that if the probability of picking! is ¢;, then
R™(r) 2 %%ER{P(#, r) — P(m,r)}. the state-action frequency equﬁljézl ¢iX;. Thus, the MMR

strategy is the following optimization problem:

It is easy to see thaR™ () is convex becaus®(r',r) —

P(m,r) is a linear function of for any«’, and henceR™(-) min max [rT;@i _r’ Z ijcj] }
is convex as it is the maximum of a class of linear functions. ¢Xj—1 ¢;=1;¢20 ~éc{l, - t},reR =
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This can be rewritten as Definition 5.2: Suppose the true reward parameter
min : h follows a distribution, supported by a compadR. Fix
T A € [0, 1], the Optimal Mean-Variance Tradeoff of Regret

ST- Z ¢ =1; (OMVTR) strategy is

i=1 (9) A . R R

c>0: ™ Sarg min [AE™ () + (1 = A)Var™(r)].

h>max(x] —c X, i=1,---,t. To simplify notations, define functio®*(-) : R — R as

rerR - ¢ ’ B

* L
By duality of LP (cf [15], [16]) andR = {r|Ar < b}, P*(r) = max P(m,r),

maxyer (X, —c' X T)r equals to the following LP om(i): _ _ _
i.e., the optimal reward-to-go givenn Note thatP*(r) is

Min: b "z (i); easy to compute, using for example dynamic programming.
ST:A"z(i) + Xe = x;; Observe that OMVTR strategy is trivial when= 1.
z(i) > 0. Theorem 5.3:For A € [0, 1), let x, be the optimal

o ) solution to the following convex quadratic program
Substituting it into (9) establishes the theorem. [ ]

Observe that if a strategy maximizes the performanaain:(1 — \)x' E(rr')x

P(-,rg) for some parameter realizatian € R, then it is . . T

efficient. The following proposition shows that the reverse ~ + {[(1 — ME(P*(r)) — AJE(r) — (1 = ME[P (r)r]} X

also holds. The proof is deferred to Appendix I. ST oy / — als). Vs
Proposition 4.9: SupposeR is convex and its relative "%x(s @) ;gw(s I5,0)2(s, a) = a(s'), Vs

interior is non-empty. If a strategyr € 1177 is efficient, 2(s,0) > 0, Vs,a

then there existg, € R such that™(rg) = v*(ro). = e (12)

We may thus usaction elimination[1] [18] [19] to find a

“small” superset of efficient strategies: if an action ofatst The OMVTR strategy w, is such that m(als) =

that can be determined twtbelong to optimal policy forany 4, (s,a)/S" .. 4 #a(s,a’) for all s, a. Here, the denominator
parameter realization, it can be discarded and d|sregard<p§iguaranteed to be nonzero.

If only a small number of strategies remains after action  proof: We again use the equivalence betw&EA? and
eIiminaFior?, then we can solve MMR in a less computationakiate-action frequency polytope. Letr) be the state-action
expensive way. vector of a a strategy. Observe that

V. MEAN VARIANCE TRADEOFF OF REGRET .
Ef(r) = E(P*(r")) — E(r") "x();

So far we regarded the true parameters as deterministic
but unknown. In this section we take a Bayesian approacNar’(r) = E[ max P(r',r") — P(m,r") — ER(W)]
we treat the true parameters as a random vector following " 5
distribution ;2 known a-priori. Thus, given a strategy, its = E[P*(rt) — ' x(n) — E(P*(x})) + ]E(rt)Tx(w)} :
regret is a random variable whose probability distributan
be evaluated. We use the mean-variance tradeoff critevion Thus algebra yields
compare such random variables. That is, the strategy that . R
minimizes the tradeoff (i.e., the convex combination) o th AET(m) + (1 = A)Var

mean and variance of the regret is considered optimal. =AE(P*(r)") — AE(r') "x(7) — (1 — A)[E(r") " x(7)]?
Def|n|t|(_)n _5.1:_Suppose the true reward paramatéefol- (1 )\)E{P*(I‘t)Q _ QP*(rt)rth(w) " (rth(w))Q}
lows a distributiony supported by a compadk. For a . a1 Lo o
strategyr e I117%: — (1= N[EP* (")) +2(1 = NE[P" (") ][E(c") ' x(7).
1) theregret mearis The r.h.s. is equivalent to the minimizing objective in (12)
ER(m) 2 E t{ max_P(,rt) — P(n rt)} up to adding a constant, which establishes the theoreamn.
" Laennr ’ ’ (10) We can use Monte Carlo methods to solve Problem (12).
_ / . Denote the objective function b®(x). Note that it is a
= [ [ max P(«',r)— P(m,1)|p(dr); . . '
r/ €IHR convex quadratic program. Further note that all its coeffi-
2) theregret varianceis cients are expectations of random variables. Thus we can
9 generate independent sampi¢s), - - - , r(n) according tqu,
Var® (1) 2K, { max P(7',r") — P(m, rt)} and use the corresponding empirical average to approximate
€L (11)  each coefficient. The following th tablish
R oo - Tl g theorem establishes anrerro
— (B™(m))*. bound of the solution to the approximated probiérx).
2See page@3 of [17] for for the definition of relative interior. In partiar, Th.eorem S4lLet W*. and 7 be the O.M\./.TR and the
all polytopes have non-empty relative interior. solution to the approximated problem using.i.d. samples

30f course this is not guaranteed due to the NP-hardness of MMR  respectively. Denotel’ £ 23;1 yiTh Vo2 S| x |A|
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and R £ sup,.x maxscs.qca|7(s, a)|. Then, the following We considered two related formulations: minimax regret

holds: and mean-variance tradeoff of the regret. In the minimax
Pr{/\ER(ﬁ) 4 (1= \)Var®(m) regrgt .fo_rmulatlon, the true parameter; are regarded_ as de-

R R terministic but unknown, and the optimal strategy is the

> AB"(r") + (1 — \)Var ™ (n) + 2¢} one that minimizes the worst-case regret under the most

—ne2 adversarial possible realization. We showed that the probl
2R2(4T2R+T)2 : of computing the minimax regret strategy is NP-hard and

Proof: We use overline to represent the empirical averproposed algorithms to efficiently solve it under favorable

age of a quantity from iid sampling. Note that each e|ememcondition§_. The mean-variance tradeoff formulation rezpui
of the V x V random matrixe:()r (i) | beIongstq—RQ,RQ]; a probabilistic model of the uncertain parameters and looks

P*(r()) € [-TR,TR]; each element of th&’ dimension for a strategy that mi_nimizes a convex combination of
random vectorr(i) belongs to[— R, R]; each element of the mean and the variance of the regret. We proveo_i that
the V dimension random vectoP*(r(i))r(i) belongs to computing such a strategy can be done numerically in an
[TR?, TR?. Let ¢¢ = ¢/(4T2R + T). By Hoeffding's ©fficient way. y _
inequality, the followings hold: MDPS ina competlfuve setup can model many real ap_p_ll-
cations. However, unlike the standard setup, robust detisi
Pr(Hrr—T CE@)| > REO) < 2V2exp (_ nf% ) _ making in such a setup has not been thoroughly investigated.
max = - 2 This paper aims to address this absence by recasting solutio
(13) concepts that were successfully implemented for standard

—— » ne tup to th titi t d solve them efficient
Pr ‘P* (I‘) _ E(P* (I‘))‘ Z T60 S 2exp — . (14) se Up (0] e Compe Iltive se Up and solve em eftrcien y
( o

<(2V? +4V + 2) exp

APPENDIX |
PROOF OFPROPOSITION4.9:

We define the following to simplify the expression:

2
Pr(Hf— E(r)HOO > eo) < 2V exp <—;;02) . (15)

Pr(HP*(r)r—IE(P*(r)r)H > TREO) <2V exp <— neg ) v"(r) £ P(mr); e IHE.
) (0 Vi) S g, 070

Here||[|max stands for the largest absolute value of elemenisefore proving the proposition, we establish the following
of a matrix. Now note thatkk € X implies |||« < 7. |emma.

Algebraic manipulations easily yield that fare X’ Lemma 1.1:Let R be convex, then

O(x) — O(x) 1) for anyw € I1%, v™(-) is an affine function;
2) v*(-) is a convex, piecewise affine function.
Proof: Note that given strategy € I1°, we have

<(1 - \7? Hrr_T - IE(rrT)’

max

+(1-NT Hm - E(P*(r)r)Hoo v (r) = Z Z{r(s, a)E, Zvifll(si =s,a;,=a)}.

+ (1= NTRIP(x) — E(P* (1)) The right EGSZEA'd is affine of, which implies the first
~ A A _ e rignt-nana siae Is atiine , which implies e Tirs
F T = NTR + A|IF - E()] o claim.

Combining this with Inequalities (13) to (16), we have: To prove the second claim, recall that (e.g., [1]) for a fixed
. r, the optimal strategy is determined and stationary, i.e.,
Pr{ Inea)){( |O(x) — O(x)| > e}

v*(r) =  max P(m,r) = max P(m,r).

—neQ
<(2V? +4V + 2) exp <2R2(4T2R " T)2> ; Further note thafI” is a finite set, and™ (r) is affine. Thus
v*(+) is convex and piecewise affine, since it is a pointwise
which implies the theorem. B maximum over a finite number of affine functions. =
We now prove the proposition by contradiction. Assume
VI. CONCLUSION there exists an efficient strategy which does not maximize

In this paper we investigated decision making in a Markothe expect reward for any realization. Nat& (-) is affine.
vian setup where the reward parameters are not known We construct a function’(-) such thatv’(r) > v™ (r) for
advance. In contrast to the standard setup where a strategjyr € R, and show that there exists a strategye AR
is evaluated by its accumulated reward-to-go, we focuseaich that™ (r) > +/(r) for all r € R.
on the so-called competitive setup where the criterion is Step 1: To construct’(-), note that by assumption
the parametric regret, i.e., the gap between the performan@”*(r) < wo*(r) for all r € R. Hence letcy, £
of the best strategy that is chosen after the true parameteiner [v*(r) — v™ (r)] andro € argminger [v*(r) —
realization is revealed and the performance of the strategy (r)]. These two definition is valid since(-) andv™ (-)
that is chosen before the parameter realization is revealecare continuous functions an® is compact. Let'(r) £
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v™ (r) + ¢o, observe thav™ (r) < v/'(r) < v*(r) holds for
all r € R, and we also have’(r,) = v*(rg). Note that,
v™ (r) is an affine function, so is’(r) by definition, and
we can rewrite

V'(r) =g'r+ [v*(ro) — g o).
Step 2:To show there exists’ € 117 such thav™ (r) >

v'(r) forallr € R. Let R C R™ and we extend*(-) into
the whole space, i.e., far € R™, define

v} (r) &

P
max (m,r);

’U*(I') A 0 |f r e R,
o371 400 otherwise.

Note thatv’(r) < v*(r) holds for allr € R impliesg'r +
[v*(ro)—g ' ro] < wj(r)+v;(r)holdsforallr € R™. Hence
g is a subgradient to convex functiarf(r) + v} (r) at ro,
denote agy € 9[v}(ro) + v} (ro)]. Hence there existgy,
g0 such thatg; € dv}(ro), 8o € Jv;(ro) andg = gy + g
(cf Theorem23.8 of [14]).

Step 2.1To prove there exists’ such thatv™ (r)
g}rr + [v*(ro) — g}rro] for all r € R. Let setll,

1>l

argmax, <o V" (ro), i.€., the set of strategies that achieves

maximal atr,. Note thatIl, is a finite set sincdI? is a
finite set. Hence denotHy = {my,---,m,}. Note that by
definition of Iy, v™ (rg) = v*(rp). Hence we can rewrite

v (r) = d r + [v* (r0) — d] xo),

for somed, sincev™ (+) is a linear function.

Recall gy € 0v}(ro), hence by a standard continuity
argument we have in a sufficiently small open ball aroun

ro, g}rr—i— [v* (ro) —g}rro] < maxrem, v™ (r). Note that the

left-hand side is affine, and the right-hand side is piecewis

affine, hence this inequality holds for alle R™. That is

g}(r—ro)g max d; (r—rp), VreR™.

i€{1,--,h}
This implies there exists ng € R™*! such that[ng, 1y >

maxie{17,,,7h}[dj, 1]y, hence noy satisfy the following
conditions
T d T
[glf ] y > 0; [ X } y<0;i=1,--,h.

By Farkas Lemma, this means there exists--- , \;, such
h
= Z i

that \; > 0 and
[ I }
; 1|
=1

gf
1
This implies " A = 1 and ", \id; = g;. Now
construct a strategy’ as taking strategy; with probability

i, and we have

h
v (r) = Z Aiv™ (r)
i=1
h
}: Xi{dl e+ o (ro) — dl'wo] |
;r + [v*(ro) — g/ o).

Step 2.2:To show thatv™ (r) > ¢/(r) for all r € R. By
definition of v¥(-) andg, € dv}(ro) we have

glr+[vi(ro) —glrg) <0, VreR.

Recallry € R, which impliesv}(ro) = 0. Hence substitute
this intog = gy + g, leads to
v'(r)=g'r+ [v*(rg) — g ro]
=g, r +[v;(ro) — g5 ro] + g/ r + [v}(ro) —
<gjr+ [v}(ro) — g} ro]
=" (r). VreR.

Hence we proved Step 2. Combining two steps, we establish
the proposition.

g/ o)
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