Programmable Logic Controllers

1

- microcomputer-based controllers
- can be programmed for sequence control purposes
- •other powerful features: counting and timing, arithmetic processing, process control, etc.
- •provides flexible automation; *reprogrammable*. Ladder diagrams can be programmed into the PLC
- cost-effective for medium- or large-sized applications
- •takes up less space; can often replace several hundred relays.

Programmable Logic Controllers

•generally more reliable than relay circuits. Relays have lifecycles of the order of hundreds of thousands while that for the PLC are in millions.

•eliminates the often appreciable cost of wiring a relay panel.

Basic Architecture of PLC

Basic Operation of the PLC

Basic Operation of the PLC

A typical commercial PLC

Typical PLC Specifications

ltem	Specification	
Step Execution Time	3.6 microsecs max	
Program Capacity	1.6K (800 program steps)	
Size of Instruction Set	20 basic, 2 step ladder, 35 applied (57 total)	
Power Supply	100-240 VAC, 12 VDC depending on model	
Maximum Service Supply	200 mA at 24 VDC	
Maximum Number of I/O	16 inputs, 14 outputs (depends on model; numbered in octal)	
Input Rating	24 VDC or 120 V (85-132 VAC) depending on model	
Max. Output Relay Current	2.5 A/point 8A/4 point common (250 VAC/30 VDC)	
Max. Transistor O/P Current	nt 0.5 A/point, 0.8 A/4 point common (30 VDC)	
	512 general purpose internal flags (auxiliary relays)	
	56 special purpose internal flags (auxiliary relays)	
	64 states (for use in Step Ladder programs)	
	56 timers (minimum delay 0.01 sec)	
Device Table	15 counters	
	4 single-phase high speed counters (maximum frequency 7kHz) or;	
	1 quadrature high speed counter (maximum frequency 2kHz)	
	32 data registers (including 2 non-volatile)	
	27 special purpose data registers	

Typical Input Interface Circuit

To detect state of sensors, switches, etc.

Typical Output Interface Circuit

To translate low voltage/current signals to large current, high voltage outputs.

IA- Programmable Logic Controllers

Various methods available.

Varies from manufacturer to manufacturer.

Done directly through a programming unit or through a connection to a PC, depending upon the PLC used.

Actual programming is a relatively easy process. The difficult part is deriving the logic, or ladder diagram, required.

Programming the PLC

• ladder-diagram based

- carry-over from the popular ladder diagram approach used in the past and familiar to many automation engineers
- ladder diagram or Boolean expressions of all logic function first derived and "program" input via graphical means of text editor.
- Instruction List (mnemonics)
 - Low level language similar to assembly language codes.
- **Others:** sequential function chart (SFC), function block diagram (FBD), structured text (ST).

Programming the PLC(based on Mitsubishi)

Basic Devices

Xn:

- Reserved for physical input devices, e.g. limit switches, pushbuttons, sensors, connected directly to inputs of PLC.
- Number **n** available limited depending upon PLC used.
- State of contacts corresponds directly to the physical input connection to the PLC.
- Any number of contacts available for program.
- Yn:
 - Reserved for physical output device, e.g. relays, solenoids, motors, connected directly to outputs of PLC.
 - Number **n** available is limited depending upon PLC used.
 - These are also implemented as "software" relays with many contacts.

Programming the PLC(based on Mitsubishi)

Basic Devices

Tn:

- internal "software" timers used for generating time delays. Number n almost unlimited.
- Mn:
 - internal auxiliary "software" relays which comprises a coil and contacts. Number n almost unlimited.
- Cn:
 - internal "software" counters for counting events.
 Number n almost unlimited.

Preparing for the Program

Preparing for the Program

Input Module	Output Module	Connected to
X7		START
X8		STOP
Х9		Temperature Switch
	Y3	Sol a

A Sample Programming Language

IA- Programmable Logic Controllers

Mnemonic Instructions (based on Mitsubishi)

Mnemonic	Function	Figure	Devices	Example
LD (Load)	Initial logical operation – NO contacts		X,Y,T,M,C	LD X3
LDI (Load Inverse)	Initial logical operation – NC contacts		X,Y,T,M,C	LDI X3
OUT (Out)	Final logical operation - connects to right rail		Y,T,M,C	OUT Y3

The LD and LDI instruction initiates a new logical block. Y,T,M,C would be contacts associated with the respective devices.

OUT connects output device to right hand rail or bus bar. Cannot be used with X input devices. Multiple parallel connections allowed.

Mnemonic Instructions (LD, LDI, OUT)

Mnemonic Instructions (AND, ANI, OR, ORI)

Mnemonic	Function	Figure	Devices	Example
AND (AND)	Serial connection – NO contacts		X,Y,T,M,C	AND X 3
ANI (AND Inverse)	Serial connection – NC contacts		X,Y,T,M,C	ANI Y 3
OR (OR)	Parallel connection – NO contacts		X,Y,T,M,C	OR M 3
ORI (OR Inverse)	Parallel connection – NC contacts		X,Y,T,M,C	ORI X 3

20

Mnemonic Instructions (AND, ANI, OR, ORI)

Mnemonic Instructions (ORB,ANB)

Mnemonic	Function	Figure	Example
ORB (OR block)	Parallel connection of multiple serial circuits		ORB
ANB (AND block)	Serial connection of multiple parallel circuits		ANB

Mnemonic Instructions (ORB,ANB)

Mnemonic Instructions (MPS,MRD,MPP)

Mnemonic	Function	Figure	Example
MPS (Point Store)	Stores current result	MPS	MPS
MRD (Read)	Reads current result		MRD
MPP (Pop)	Pops (reads and removes) currently stored result		MPP

Mnemonic Instructions (MPS,MRD,MPP)

Mnemonic Instructions (END)

• Useful for debugging purposes as instructions after END are ignored.

Timers

- "Software" timers are normally available in PLCs. In the Mitsubishi PLC, there are 1msec, 10msec and 100msec timers. These have timer "Coils" and "Contacts".
 - Ld X1 OUT T100 K235 Ld T1 OUT Y1
- If T1 is a 10msec timer, then relay Y1 will turn on after 2.35 sec after X1 closes and remains closed. At any time X1 opens, T1 resets.

Counters

Ld	X1	
RST	C0	
Ld 2	K2	
OUT	C0	K5
Ld	C0	
OUT	Y1	

Closure of X1 resets the counter C0. C0 counts up each time its coil is turned ON by X2. Its output contacts are activated when its coil is turned ON for the fifth time. Thereafter its count value does not change and its outputs remain ON until it is reset to zero X1 closing.

Program Scan:

A single processing of the loaded program from start to END. The process is continuous and once one scan ends, a new one is started.

Scan Time:

Time period for one scan, dependent upon program length and complexity.

Input/Output updating:

In some PLCs, all <u>physical</u> inputs are updated at the beginning of the scan and all <u>physical</u> outputs updated at the end of the scan.

Program Scan – Double coiling

Relay circuit

Contacts cannot be placed vertically, with crossover lines.

Relay circuit. Will need to be modified for PLC.

For PLC

Ladder diagrams are strictly two-dimensional and there can be no crossover lines.

Equivalent PLC circuit

Relay circuit

All rungs of the ladder diagram are active simultaneously. This "parallel" operation sometimes causes "race" problems and malfunctions.

The order in which the rungs are drawn is immaterial.

For PLC

Each rung of the ladder is scanned, and acted upon, successively starting from the first rung. When the last rung has been scanned, a new cycle begins from the first rung again. Scanning period of the order of 5 to 50 ms

The order in which the rungs are "programmed" into memory is very important.

Program Scan – Program order

For the PLC, the order in which the rungs are "programmed" into memory is very important.

An Example

Input Module	Output Module	Connected to
X3		a+
X4		b+
X5		d+
	Y12	B+
	Y13	C+

I/O allocation

Re-drawn Ladder diagram For PLC

An Example

IA- Programmable Logic Controllers

37

An Example

Pro	ogram
LD	X 3
AND	M1
OR	M2
ANI	МЗ
OUT	M2
AND	X5
OUT	Y12
LD	M2
AND	X4
OR	M1
OUT	Y13
END	

End of PLC

00