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Abstract: Reinforcement learning has been extensively studied and applied for 
generating cooperative behaviours in multi-robot systems. However, traditional 
reinforcement learning algorithms assume discrete state and action spaces with 
finite number of elements. This limits the learning to discrete behaviours and 
cannot be applied to most real multi-robot systems that inherently require 
appropriate combinations of different elementary behaviours. To address this 
problem, we design a distributed learning controller that integrates 
reinforcement learning with behaviour-based control networks. This learning 
controller can enable the robots to generate appropriate control policy without 
the need for human design or hardcoding. Furthermore, to address the problems 
in concurrent learning, we propose a distributed learning control algorithm to 
coordinate the concurrent learning processes. The distributed learning 
controller and learning control algorithm are applied to multi-robot tracking of 
multiple moving targets. The efficacy of our proposed scheme is shown 
through simulations. 
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1 Introduction 

In the research on multi-robot systems, one key problem is how to achieve cooperation 
among robots (Cao et al., 1995), especially in a decentralised (distributed) manner. 
Normally, the desired cooperation is in task level, as in behaviour-based control 
(Tangamchit, Dolan and Khosla, 2002), in which the mission is broken down into tasks 
and robots choose different tasks (roles) according to their current state and behave 
accordingly and differently. However, to achieve mission decomposition, task allocation 
and conflict resolution, the designer needs to predict all possible scenarios and preset 
corresponding actions for each robot to react accordingly. Such development and coding 
work is undesirable and sometimes extremely difficult, especially when the mission is 
complex and the robots are heterogeneous. Therefore, we are motivated by the need to let 
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the mobile robots learn how to cooperatively work through the interaction among robots 
and the feedback from the environment, hence generating appropriate behaviours without 
human design or pre-programming (or coding) of behaviours. 

For behaviour-based control, the ‘behaviour’ is an interpretation of the reactions of 
the robots. It is a high-level control methodology that does not directly handle low-level 
input and output. For example, the elementary behaviour ‘avoid obstacles’ usually means 
‘when near to an obstacle’ (high-level state), ‘make a detour along the boundary of the 
obstacle’ (high-level action). Reinforcement learning naturally fits for the behaviour-
based control that requires the robot to ‘select’ optimal actions under any give state 
(Mataric, 2001). Therefore, in the past two decades, reinforcement learning has been 
extensively studied for multi-robot concurrent learning of cooperative behaviours. 

To apply reinforcement learning for behaviour-based control, the designer needs to 
define discrete and a very high number of elementary states and actions. But for most real 
applications, it is hard to give appropriate and accurate definition to these states and 
actions. Even through the states and actions can be discretised and defined, the 
behaviours are still discrete. At one time, the robot can perform only one action 
representing one kind of behaviour. This contradicts the human reasoning or behaviour 
that usually humans execute several elementary behaviours concurrently to accomplish a 
task. In addition, the switching of discrete behaviours usually results in the control of the 
robots becoming unsmooth, which is undesirable in most cases. 

Another problem of multi-robot concurrent learning is that the traditional single-
agent/robot-based reinforcement learning algorithms may not work appropriately in a 
multi-robot domain. This is because some basic assumptions in the single robot domain, 
e.g. Markov decision process and stationary environment, are not valid due to the 
interference of concurrent learning processes. To address this problem, the distributed 
learning processes in the robots have to be carefully controlled and coordinated. 

In this paper, we propose a learning controller to address the limitation of traditional 
reinforcement learning. By integrating reinforcement learning with behaviour-based 
control networks, the learning controller can generate optimal combinations of 
elementary behaviours to achieve optimal control. In addition, we retrieve ideas from 
human behaviours for coordinating concurrent learning processes in a distributed manner. 
The learning architecture and learning control algorithm are applied to multi-robot 
concurrent tracking of multiple moving targets. 

This paper is organised as follows. Section 2 introduces the fundamental ideas that 
serve as background and related work. Section 3 presents the basic idea and the concept 
of our approach. Then, the details of our approach in multi-robot tracking of multiple 
moving targets are introduced in Section 4. The simulation and results are discussed in 
Section 5. Finally, Section 6 concludes this paper and introduces the future work. 

2 Related work 

2.1 Reinforcement learning of behaviours 

Reinforcement learning is a learning algorithm that can learn based on the feedback from 
the environment (or other robots/agents) to generate optimal control policy subject to 
user-defined criteria (Sutton and Barto, 1998). The typical Q-learning, a well-known 
reinforcement learning algorithm, is as introduced in Algorithm 1. 
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Algorithm 1: The Q-learning algorithm 

Step 1. Initialisation: define the state pool {si} to represent the possible states of the 
environment; define the action pool {aj} to represent the possible actions to 
perform; set current time t = 0; set the initial state-action values {Q(si, aj)}.
Here Q(si, aj) is the value that represents the expected reward for performing 
action aj under state si.

Step 2. Detect the state of environment and then choose st to represent the real state. 

Step 3. Choose an action at, such that at = arg max (Q(st, a) + RandomFactor). Here
RandomFactor is used to avoid local optimality of the selection of actions. 

Step 4. Detect the new state st + 1 and receive the immediate reward rt.

Step 5. Update the Q(st, at) by the Q function (1) in which st, at, rt, , , st + 1 and at + 1
means state, action, reward, learning rate, discount rate, next state and next 
action, respectively (Sutton and Barto, 1998). 

1 1 1, , max ( , ) ,
tt t t t t a t t t tQ s a Q s a r Q s a Q s a  (1)

Step 6. Check whether the termination condition is satisfied. If yes, then stop; else,  
let t = t + 1, go to Step 3. 

For reinforcement learning, the discrete state and action spaces cannot be too large; 
otherwise, the learning may take excessively long or never converge to the desired result. 
This is the problem known as the curse of dimension (Sutton and Barto, 1998). To avoid 
oversized state and action spaces, the system designer needs to group the low-level 
control inputs and outputs into some form of high-level abstracts, i.e. primitive or 
elementary activities. Then, the high-level behaviour stems from these elementary 
activities. This is the basic concept of the hierarchical reinforcement learning of 
behaviours (Barto and Mahadevan, 2003), which can enable a robot to learn discrete 
control behaviours (Farahmand, Ahamadabadi and Araabi, 2004) or sequential actions 
(Amit and Mataric, 2002). On the other hand, the reinforcement learning algorithms can 
also be applied to learn the elementary activities (in low-level) while the high-level 
behaviour is pre-defined by the designer (Chu and Hong, 2000). 

Whatever the robot/agent learns, the reinforcement learning algorithm usually results 
in the discrete control policy, which ‘selects’ elementary behaviours according to the 
environmental states. However, in many cases the optimal control policy is to execute 
several elementary behaviours concurrently. For example, the optimal behaviour of 
tracking a target might be a mixture of several basic behaviours such as ‘approach 
detected targets’, ‘search for other targets’ and ‘avoid obstacle’. In addition, the 
switching between two elementary elements may make the control unsmooth. 

2.2 Reinforcement learning in continuous space 

As shown in Algorithm 1, traditional reinforcement learning assumes discrete and finite-
size state and action space. But for real applications, the input and output space are 
usually continuous and infinite. To address this problem, discretisation is usually applied 
to preprocess the inputs and outputs. However, if the discretisation is too coarse, some 
states may be hidden; therefore, the optimal control policy can not be found; if the 
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discretisation is too fine, the states cannot be generalised and the huge state/action space 
will badly affect the learning speed and convergence. Furthermore, to generate desired 
smooth control policy, the learning of discrete and infinite actions may not be acceptable. 

To make reinforcement learning work without discretisation, some heuristics of 
reinforcement learning have been proposed. Function approximation (Boyan and Moore, 
1995) and HEDGER (Smart and Kaelbling, 2000) apply the generalising function 
approximator to estimate the state-action value instead of using discrete lookup table. 
Autonomous state/action discretisation by Bayesian discrimination method (Yasuda, 
Ohkura and Taura, 2003) or cognitive learning (Ueno, Takeda and Nishida, 1999) can 
segment the continuous state and action space without human coding. Doya (1996) and 
Hagen (2001) propose reinforcement learning to derive optimal feedback control law for 
linear/nonlinear systems. These approaches have been successfully applied to simple and 
low-level control applications. However, they usually assume that the environment model 
is known and it has heavy computational burden. Therefore, they are still not widely used 
for behaviour learning. 

2.3 Multi-robot concurrent learning 

Reinforcement learning and most other machine learning algorithms assume that the 
learning process is Markovian and that the learning environment is stationary (Kaelbling, 
Littman and Moore, 1996). These two assumptions both require the full/sufficient 
observation of the environment. However, limited by the sensor ability, robots cannot 
generate a complete view of the environment. Furthermore, if all robots learn 
concurrently, the distributed learning processes will interfere with each other. Then, 
during multi-robot concurrent learning, in the view of an individual robot, the process 
and environment are neither Markovian nor stationary. This might lead to the undesired 
learning results as sub-optimal local control policy or the cyclic switching of control 
policies. 

One class of solutions to address this problem is to estimate the states or influences of 
other robots, such that the input states for learning become more observable and 
predicable for an individual learning robot (Uchibe, Asada and Hosoda, 1998a; 
Kawakami, Ohkura and Ueda, 2001). Another class of solutions is to coordinate or 
schedule the distributed learning processes to reduce the interference. Uchibe, Nakamura 
and Asada (1998b) and Asada, Uchibe and Hosoda (1999) propose the global scheduling 
method that synchronises the learning robots. Ikenoue, Asada and Hosoda (2002) propose 
a distributed learning control algorithm that can enable multiple robots learning 
concurrently. Bowling and Veloso (2002) introduce the algorithm to change the learning 
speed to reduce the interference of multi-robot/agent learning. Some approaches even let 
the multiple robots share the Q value of the state-action pairs to learn cooperatively 
(Mirfattah and Ahmadabadi, 2002). However, the coordination and scheduling of 
learning processes and the sharing of information, have to be deliberatively designed and 
require explicit intercommunications among the robots. This degrades the applicability of 
the coordination algorithms for multiple robot concurrent learning. 

For multi-robot concurrent learning, another important issue is the generation and 
assignment of the reward. In reinforcement learning, the reward is the key to encourage 
and reinforce the desired behaviour. To achieve cooperation, greedy learning may not 
work because the unselfish but cooperative actions also need to be rewarded 
(Tangamchit, Dolan and Khosla, 2002). In related approaches, the multiple robots/agents 
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either need to broadcast the local reward to the group of robots (Mataric, 1997) or to 
monitor the progress or efficacy of other robots (Parker, Touzet and Fernandez, 2002). 
This usually requires explicit inter-robot communications or the ability to detect the 
progress or even the capability, of other robots. 

3 Concurrent reinforcement learning with behaviour-based control 
network 

As introduced in Sections 1 and 2, there are two problems to be addressed for multi-robot 
concurrent learning of cooperative behaviours: 

 How to generate optimal combination of elementary behaviours for cooperation, 
based on low-level input states and output actions? 

 How to coordinate concurrent learning processes efficiently, especially in distributed 
manner? 

Therefore, the aim of our research is as follows: 

 Enable the robots to learn based on low-level input and output without the need for 
deliberate definition of high-level states and actions. 

 Let the robots learn based on a behaviour-based controller created using human 
knowledge of robot, mission and environment. 

 Let the robots learn task-level cooperative behaviours that combine elementary 
behaviours. 

 Coordinate concurrent learning processes to guarantee the generation of optimal 
control policy or at least, minimise the probability to result in local sub-optimal 
control policy or other undesired control policies. 

 Let the robots generate necessary global reward by local sensing to reinforce the 
desired cooperative behaviours. 

 Minimise the requirement for intercommunications for coordinating concurrent 
learning processes. 

With regard to the problems associated with discrete and finite number of elementary 
behaviours, we propose the integration of reinforcement learning with behaviour-based 
control networks. Details of this learning controller are shown in Figure 1 (inside the 
dotted rectangle). It includes behaviour-based control network module and reinforcement 
learning module. 

The behaviour-based control network module is created according to the human 
knowledge of the robot, the environment and the mission. In this network, the elementary 
behaviours are represented by control rules and equations. For example, elementary 
behaviour ‘obstacle avoidance’ may be represented by a formula while ‘target tracking’ 
may be a batch of fuzzy rules with corresponding membership functions. Each 
elementary behaviour can retrieve continuous and infinite number of input signals and 
generate continuous and infinite number of output commands. Finally, the overall output 
is the summation of weighted outputs of all elementary behaviours. In this behaviour-
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based control network, the weight is the key to combining different elementary 
behaviours: if the weight of one behaviour is large, the robot is more likely to perform 
this behaviour; otherwise, the robot is less inclined towards this behaviour. 

Figure 1 Architecture of proposed learning controller

In the proposed learning controller, the reinforcement learning module is integrated with 
the behaviour control network. The aim of this learning module is to adjust the weights 
inside the control network; thus affecting the combination of elementary behaviours. This 
is essential for generating optimal combination of behaviours. By retrieving states and 
rewards, the learning module can gradually find the appropriate weights for each 
elementary behaviour; therefore, the optimal control policy is learned. It should be noted 
that the reinforcement learning module needs to retrieve rewards corresponding to each 
behaviour; otherwise, the learning module cannot estimate the performance or results of 
acting the behaviour. For example, regarding behaviour ‘avoid obstacles’, if the 
performance is unsatisfactory, a negative reward (penalty) is given to indicate that the 
weight of ‘avoid obstacles’ needs to be adjusted. 

In general, the proposed learning controller has the following properties: 

 The behaviour-based control network is designed based on human expertise. The 
control rules or equations are the representations of elementary behaviours. 

 For the control network, the overall output behaviour is the summation of weighted 
elementary behaviours. The output control command is smooth and continuous. 

 The aim of the reinforcement learning module is to adjust the weights in the control 
network to achieve optimal combination of elementary behaviours. In other words, 
the output is not the ‘selection’ of exclusive discrete behaviour, but the way to 
‘combine’ them to generate continuous and infinite number of behaviours. 

 While the reinforcement learning module still works in discrete and finite space, in 
the macro view, the learning controller works in continuous space in that it can 
retrieve low-level sensor data and generate appropriate low-level commands 
representing continuous and infinite number of possible behaviours. 
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In addition to solving the discrete behaviours problem, another research issue is 
coordinating concurrent learning processes. To address this problem, we propose a 
solution inspired by natural human behaviours. Assuming two persons are approaching 
each other in a corridor and they want to avoid the collision, what will they do? If they 
are both trying, they may ‘struggle’ several rounds to find the best solution. So, in real 
life, usually one (say A) will fix his/her policy first, e.g. keeping left, then the other one 
(say B) can choose another side. In this encounter case, the optimal cooperation is that the 
two people choose opposite sides. Whatever A chooses initially, if B can finally learn to 
choose another side, the resultant control policy is optimal. Many real world applications 
have the same property: even if the learning process of one robot/agent stops very early, 
the resultant control policy of the whole system can still be optimal because other 
learning robots/agents can eventually find appropriate control policy to respond to the 
former one. In other words, for some cooperative multi-robot systems, the ‘optimisation’ 
lies in the relationship among robots. 

Our distributed learning coordination algorithm is proposed based on the above 
considerations. As shown in Algorithm 2, for a robot, if in one state, the best action’s 
value is much larger than other actions, the robot will stop learning in this state and after 
that it will always choose this best action in this state. In other words, a robot will fix its 
control policy when it feels that it has learned enough and the future improvement of the 
group performance is left to other learning robots. This learning coordination algorithm is 
embedded into the proposed learning process (Figure 2). Before the robot updates its 
state-action link value, it will run this local learning coordination algorithm to decide 
whether to change the state-action value or just keep the value unchanged. This learning 
control algorithm is entirely distributed and does not need intercommunications among 
robots. This algorithm should be effective for the kind of corridor encounter applications. 

Figure 2 Flow chart of learning process
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Algorithm 2: Learning coordination 

Step 1. For each state si in the state space, set flag(si) = 0. 

Step 2. Check the state-action value for each state si: Q(si, aj), where aj is the jth 
possible action. If there exists an j, such that 

1
, (1/ ) ,

m
i j i nn

Q s a m Q s a  Threshold, then set flag(si) = 1. Here m is

the number of possible actions for state si, Threshold is a positive value that 
indicates how much larger the best action’s value should be to stop learning. 

Step 3. If flag(si) = 0, the Q(si, aj) can be updated; otherwise Q(si, aj) will not be 
updated. 

To test the efficacy of the proposed learning controller, we apply the learning architecture 
and algorithm to the task of multi-robot tracking of multiple moving targets. The details 
of the implementation are introduced in Section 4. 

4 Learning in multi-robot tracking of multiple moving targets 

4.1 Museum problem: multi-robot tracking of multiple moving targets 

In robotics research, the problem of multi-robot tracking of multiple moving targets is 
also referred to as the ‘museum problem’ or ‘art gallery problem’. The assumptions and 
descriptions of the problem are as follows: 

 The environment is a large bounded plain area. 

 Several targets move in the environment. 

 Several mobile robots are in the environment. Each robot has a 360  view within a 
certain range. When an object is inside this range, the robot can detect the distance 
and angle towards this object. Besides, the robot can differentiate the observed object 
as obstacle, target or other robot. 

 For the robots, the number, distribution and the motion pattern of targets are 
unknown. 

 For the robots, the size and map of the environment are unknown. The robots cannot 
localise themselves in the environment. 

 There are no explicit intercommunications (e.g. wireless communications) available 
among robots. 

 The summation of the sensible area of all robots is far less then the size of the 
environment. Since the targets are mobile and the robot sensor range is limited, the 
robot needs to track (move together with) the targets to maintain observation. 

 For one target, only one robot is needed to track it. 

 The objective is to maximise the number of targets being simultaneously observed 
(detected within the robot’s sensing range) and minimise the number of robots that 
are needed to track. 
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4.2 Research issues in the museum problem 

In current research for the museum problem, Artificial Potential Field (APF) control is 
mostly used. The concept of APF is simple: map the targets as attractive force sources 
and map the robots and obstacles as repulsive force sources. Then, let the robot move 
under the vector sum of the attractive and repulsive forces. However, purely summing the 
attractive and repulsive forces may not achieve the desired cooperation in most cases. For 
example, if two robots detect a same target, both of them will track this target and 
therefore, they will form a triangular pattern. This is not the optimal cooperation; the 
robot force is wasted because one of the robots can leave and search for other targets to 
maximise the number of targets which are observed. 

A solution to avoid the triangular pattern of pure APF is giving a weight j

i

T
Rw  to the 

attractive force for each robot as shown in Equation (2). In this equation, 
iRF  is the 

summation of the attractive and repulsive forces for robot ,;
i ji R TR A  is the virtual 

attractive force from robot Ri to target Tj. The orientation of the force is the angle to Tj

and the magnitude is a fixed value, e.g. 1.0 or a value depending on the distance between 
Ri and Tj; j

i

T
Rw is the weight to change the attractive force from robot Ri to target Tj;

,i lR RR  is the virtual repulsive force from robot Rl to robot Ri. The orientation of the force 

is the angle to Ri and the magnitude is a fixed value, e.g. 1.0 or a value depending on the 
distance between Rl and Ri (Liu, Ang and Seah, 2004); dt and dr are the sets of neighbour 
targets and robots within the sensor range, respectively. 

, ,
d d

j

i i j i li

j l

T
R R T R RR

T t R r

F w A R  (2) 

Examining Equation (2), we can find if the weight of attractive force is zero; the robot 
will only have one behaviour, i.e. avoiding neighbouring robots; if the weight of 
attractive force is infinity, the robot will only have one behaviour, i.e. tracking targets. 
Changing the value of the weight means changing the preference to two behaviours 
‘avoiding neighbouring robots’ and ‘tracking targets’. In previous research, two classes 
of algorithms are proposed to adjust the weight. One is the all-adjust heuristic (Parker, 
2002) that lets the robot decrease the weight when it finds that another robot is also 
tracking the same target (Algorithm 3). The other solution is the selective-adjust heuristic 
(Liu, Ang and Seah, 2004), whereby only the further robot(s) decreases the weight 
(Algorithm 4). 

Algorithm 3: All-adjust heuristic of potential field-based control (for Robot Ri)

Step 1. Set initial force to move as F . The orientation of F is a random value 
uniformly distributed between [0, 2 ]; the magnitude of F  is a fixed value,  
e.g. 1.0. 

Step 2. Scan the surrounding environment; find the sets of detected targets and 
neighbour robots as dt and dr.
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Step 3. If dt , let F  = 0. For all Tj  dt if another robot is found tracking it  
(e.g. robot Rk  dr and distance between Rk and Tj is less than the sensor range 
of Rk), let F  = F  + , ;

i jj R TF w A  else, let , .
i jR TF F A  Here, the wj is the 

All Weight Decrease Ratio (AWDR) between [0, 1]. 

Step 4. If dr , let d , .
l i lR r R RF F R

Step 5. Let robot Ri move under the virtual force .F

Step 6. Go to Step 1. 

Algorithm 4: Selective-adjust heuristic of potential field-based control (for Robot Ri)

Step 1. Set initial force to move as .F  The orientation of F  is a random value 
uniformly distributed between [0, 2 ]; the magnitude of F is a fixed value,  
e.g. 1.0.

Step 2. Scan the surrounding environment; find the sets of detected targets and 
neighbour robots as dt and dr.

Step 3. If dt , let F  = 0. For all Tj  dt, if another robot is found tracking Tj and is 
nearer to it than Ri (e.g. robot Rk  dr and distance between Rk and Tj is less than 
the distance between Ri and Tj), let , ;

i jj R TF = F w A  else, let , .
i jR TF F A

Here, the wj is the Selective Weight Decrease Ratio (SWDR) between [0, 1]. 

Step 4. If dr , let d , .
l i lR r R RF F R

Step 5. Let robot Ri move under the virtual force .F

Step 6. Go to Step 1. 

These two heuristics of pure potential field-based control are shown to be effective in 
experiments; however, to make them work, the designer needs to carefully select 
appropriate weight decrease ratio for each robot. This is extremely difficult when the 
scenario is complex and the robot team is heterogeneous. A natural modification is to 
find optimal weight value through learning. Hence the museum problem is well suited to 
the implementation of our learning controller. 

4.3 Applying our learning controller in museum problem 

To implement the proposed learning controller to the museum problem, the key is to 
learn the optimal weights for potential field-based control; therefore, the robots can track 
targets cooperatively and efficiently. 

Figure 2 shows the flowchart of the learning process in the learning module of the 
learning controller. The main research issues include state/action definition, reward 
generation, state-action value update and action selection. For museum problem, one 
robot may meet many situations. To make the learning simple, yet not lose generality, we 
define the input state as the number of targets and robots detected. For example, if two 
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targets and one robot neighbour are detected, the state is (2, 1). The output of the learning 
module (action) is the weight of the attractive force. 

For reinforcement learning, one important issue is the generation of rewards. This is 
because reward represents the objective of the system designer and can directly affect the 
learning results. Since task level cooperation is desired, following behaviours should be 
encouraged: track target; leave the target being tracked by other robots. For this purpose, 
we define four kinds of rewards: 

Reward_TT: track target reward (positive) – if the robot tracks targets 

Reward_NR: near robot penalty (negative reward) – if the robots detect other robots 

Reward_SC: state change reward (positive or negative) – if in the new state the robot 
has less neighbour robots or more targets, the reward is positive; otherwise it is 
negative 

Reward_WT: waste time penalty (negative reward) – if the robot tracks a target being 
tracked by others 

For each individual robot, these rewards are generated by its local sensing. For example, 
if both robot A and robot B are tracking the same target, in the view point from robot A,
there will be Reward_WT if B is detected. 

For reinforcement learning, the learning process needs to update the state-action value 
Q(s, a) based on the reward received. In our approach, this value is updated by the  
Q function [Equation (1)] as introduced in Algorithm 1. 

Every time the state changes, the robot will reselect the action (weight). Furthermore, 
if the state is unchanged for a long period of time (N simulation steps), the robot also 
reselects the action (weight) to accelerate learning speed. When selecting an action, the 
robot both explores and exploits the action space: an exploration factor is added to the 
real state-action value and then the action having highest resultant value will be chosen. It 
should be noted that this exploration factor is just for action selection; it will not affect 
the state-action value. 

Regarding the coordination of the distributed learning processes, the robots do not 
need to communicate to share any information. We propose a distributed algorithm to 
coordinate learning processes: for a robot, if for one state, the best action’s value is much 
larger then other actions, the robot will stop learning for this state and it will always 
choose this action in future. By this method, the concurrent learning may less likely 
generate local sub-optimal control policy or the cyclic switching of control policies. 

5 Simulation and discussion 

5.1 Simulation methodology 

The aim of our research is to let the mobile robots learn how to cooperatively work 
through the interaction with environment and other robots, hence generating appropriate 
behaviours without human design or coding. This research aim includes two main 
aspects: 
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 The learning approach can generate cooperative behaviours. 

 The performance of the learning system should be comparable to other approaches 
that have been deliberatively hardcoded and tuned. 

To test the efficacy of our approach, we simulate four control modes as follows: 

 Pure APF-based control. 

 All-adjust heuristics to pure APF. 

 Selective-adjust heuristics to pure APF. 

 Robot learning controller: with and without coordination. 

These control modes are tested in both homogeneous and heterogeneous robot groups. 
‘Homogeneous’ means the robots are identical; ‘heterogeneous’ means one of the robots 
is 30% faster than the other (others). Regarding the learning controller, ‘coordination’ 
means the distributed learning coordination algorithm proposed by us. 

5.2 Simulation settings 

The parameters and settings of the environment are as follows: 

 The simulations are run on Webots, a differential-wheel robot simulator. 

 Museum: 4 4 to 6  6 m2 plain area with no obstacles inside. The simulated robot 
and target are less then 0.1 m in diameter. 

 For each control mode, run about ten episodes to get the average of the simulation 
results. Each episode is 15,000 simulation step long. One simulation step is about 
0.1 sec long in real time. 

For the all-adjust heuristics of pure potential field-based control, if two or more robots 
find the same target and they find each other, they will all decrease the weight of the 
attractive force to target. In the simulation, we test five different All Weight Decrease 
Ratio (AWDR): 0.1, 0.3, 0.5, 0.7 and 0.9. 

For the selective-adjust heuristics of pure potential field-based control, if two or more 
robots find the same target and they find each other, the further robot(s) will decrease the 
weight of the attractive force to the target. In the simulation, we test five different 
SWDR: 0.1, 0.3, 0.5, 0.7 and 0.9. 

The settings of the learning controller are as follows: 

 The initial Q values of all state-action pairs are set as 10. 

Reward_TT = 0.005* track target time. 

Reward_NR = – 0.01* near robot time. 

Reward_SC = (m–a)*0.5 – (n–b)* 2.0 (m, n are the current target/robot number; a, b
are the previous target/robot number). 

Reward_WT = 0.1* waste time. 

 Possible weights to learn are 0.1, 0.3, 0.5, 0.7 and 0.9. 
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 For learning ‘with coordination’, under one state, if one action’s value is 25% above 
the average, stop learning in this state. 

 If the state is unchanged for N = 100 simulation steps, the robot reselects the action. 

 When selecting action, a random number uniformly distributed in [–1, 1] is added to 
the real state-action value as the exploration factor. It should be noted that the 
exploration factor is just for action selection, but not for updating the state-action 
value. 

5.3 Simulation results and discussion 

5.3.1 Tracking performance 

Since the research aim of museum problem is to maximise the number of observed 
targets and minimise the number of robots needed to track targets, we use the following 
two metrics to evaluate the performance of the multi-robot systems: 

 Average number of tracked targets – the higher the better. 

 Average number of robots needed to tracked one target – the less the better. 

The simulation results are shown in Figures 3–7. In each of these figures, the leftmost 
column is the result of pure potential field-based control; the second to the left is the 
result of learning with coordination (the learning without coordination is discussed later); 
the third and fourth columns are the results of controllers with all-adjust heuristic and 
selective-adjust heuristic. In all simulation runs, the settings of the potential field-based 
controller and the learning controller are unchanged, i.e. the weight value (for potential 
field-based control) and the learning parameters (for proposed learning controller) are 
constant. Therefore, the performance of these two controllers shown in the figures is a 
single value that is the average of all simulation runs. On the other hand, as introduced in 
Section 5.2, in the simulation, different parameter settings for the all-adjust heuristic and 
selective-adjust heuristic controllers are tested, i.e. the AWDR (all-adjust heuristic) and 
SWDR (selective-adjust heuristic) are changed in different simulation runs. With regard 
to each parameter setting, we get one performance value. The values shown in the figure 
are the highest and lowest ones and the average of the all five values. For example, in the 
leftmost figure (for average number of tracked targets) in Figure 4, we show three 
performance values for the all-adjust heuristic controller: the lowest is 2.634 (when 
AWDR equals 0.1), highest is 2.765 (when AWDR equals 0.7) and the average value is 
2.692. 

Observing these figures, we may find that in most cases, the pure potential field-
based controller performs the worst. The two heuristics can improve the performance; 
however, the improvement is not consistent. Sometimes they perform the best, but 
sometimes they are even worse than the pure potential field-based control, e.g. Figure 5. 
This is because the hardcoded controllers are sensitive to the parameter settings and for 
different scenarios the optimal parameter setting varies. For example, as shown in 
Figure 8, for the all-adjust heuristic of potential field-based control, the different 
parameter (AWDR) settings have quite different results in different scenarios. In scenario 
‘three targets and six robots’ and homogeneous robot team, the AWDR = 0.7 achieves the 
best, while in scenario ‘six targets and three robots’ the AWDR = 0.1 achieves the best. 
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Figure 3 One target and two robots – 1T2R (left two for homogeneous, the other two are for 
heterogeneous) (P: pure potential field-based control; L: learning; A: all-adjust 
heuristic; S: selective-adjust heuristic) 

Figure 4 Three targets and three robots – 3T3R (left two for homogeneous, the other two are for 
heterogeneous) (P: pure potential field-based control; L: learning; A: all-adjust 
heuristic; S: selective-adjust heuristic) 

Figure 5 Three targets and six robots – 3T6R (left two for homogeneous, the other two are for 
heterogeneous) (P: pure potential field-based control; L: learning; A: all-adjust 
heuristic; S: selective-adjust heuristic) 
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Figure 6 Six targets and three robots – 6T3R (left two for homogeneous, the other two are for 
heterogeneous) (P: pure potential field-based control; L: learning; A: all-adjust 
heuristic; S: selective-adjust heuristic) 

Figure 7 Six targets and six robots – 6T6R (left two for homogeneous, the other two are for 
heterogeneous) (P: pure potential field-based control; L: learning; A: all-adjust 
heuristic; S: selective-adjust heuristic)

Figure 8 Performance with different parameter settings 

In contrast to the hardcoded controllers that require tuning to achieve optimal control, the 
learning controller does not need to select important parameters, but the system can 
maintain high performance in all cases as shown in Figures 3–7. The simulations show 
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that the proposed learning controller has the capability to adapt to different scenarios. 
Furthermore, in both homogeneous and heterogeneous robot teams, the performance of 
the learning robots is satisfactory and consistent, thus also showing the adaptation of the 
learning controller. 

Observing the simulation results, a question may arise that why the performance of 
the learning controller is sometimes worse than the selective-adjust weight heuristic of 
the pure potential field-based control. A reasonable explanations is that the selective-
adjust weight heuristic (Liu, Ang and Seah, 2004) also considers the distance between 
robots and targets (as shown in Algorithm 3), but the proposed learning controller does 
not utilise this information because we want to avoid the increase in the input state space 
and to make the learning converge within satisfactory time. 

5.3.2 Analysis of concurrent learning processes 

For the museum problem, the research aim is to maximise the number of observed targets 
and minimise the number of robots needed to track targets. To achieve this, the robot 
force needs to be fully utilised such that the robots should track detected targets and also 
try to find undetected targets. For example, when two robots find the same target, they 
should behave differently such that one keeps tracking and the other leaves to search for 
other targets. In our learning controller, to achieve this kind of cooperation, the two 
robots should learn different weights when they detect the same target: the robot with 
higher weight will keep tracking and the robot with lower weight will leave and search 
for other targets. 

Figure 9 shows the learning results of the homogeneous and heterogeneous robot 
teams, respectively. In the figures, the x-axis represents different scenarios; the y-axis 
represents the normalised successful rate that the robots learn to cooperate. The higher 
rate means better system performance. These figures show that in most cases (more than 
90%), the proposed learning coordination algorithm can help the robots learn the 
cooperative behaviours, while without this coordination the robots are less likely to learn 
the desired cooperation. 

Figure 9 Learning success rate

Figure 10 shows the normalised learning progress vs. time in scenario ‘three targets and 
six robots’ (3T6R), heterogeneous robot team. The left one is the overview of the 
learning progress in the whole simulation period and the right one is the progress in the 
last 7000 steps. The figures show that the learning with coordination can achieve better 
learning results and it is faster and more stable than the learning without coordination. 
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Because the learning coordination algorithm can improve the performance of learning 
to let the robots generate desired cooperative behaviour, the tracking performance of the 
learning controller with coordination is better than the learning controller without 
coordination. Figure 11 compares the average number of tracked target (normalised) 
between these two controllers in homogeneous and heterogeneous robot teams, 
respectively. The results show that the proposed learning coordination algorithm can 
enable the robots to learn to track targets more efficiently. 

Figure 10 Learning progress vs. time (scenario: 3T6R, heterogeneous); left: progress in the 
whole simulation; right: progress in the last 7,000 simulation steps 

Figure 11 Average number of tracked target (normalised) 

6 Conclusion and future work 

Multi-robot concurrent learning on how to cooperatively work is one of the ultimate 
goals of robotics and artificial intelligence research. In this paper, we propose a 
distributed learning controller that integrates reinforcement learning with behaviour-
based control networks. This controller can enable the robots to generate cooperative 
behaviours in continuous space. In addition, we propose a natural inspired distributed 
learning control algorithm to coordinate the concurrent learning processes. This 
algorithm can help avoid the generation of local sub-optimal control policy or the cyclic 
switching of control policies without the need for explicit intercommunications among 
the robots. Our approach is tested in multi-robot tracking of multiple moving targets and 
the efficacy is shown by simulation. The learning controller can achieve the performance 
as good as the controllers deliberatively designed. 
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However, in our learning controller, the reinforcement learning module still needs to 
retrieve discrete input state (target/robot number) and perform discrete actions (weights). 
A more challenging work is to design a totally continuous and infinite space learning 
algorithm or at least, let the robot do state/action discretisation by itself through learning. 
This is an important research issue to be studied. 

Another problem of the learning controller is that the behaviour-based control 
network coded by us is specific for the tracking task. If other task is selected, e.g. 
cooperative table carrying, we have to design other specific behaviour-based control 
network accordingly. If the network is inappropriately designed and does not fit the task, 
the reinforcement learning may not work properly, e.g. generate fatal error of local sub-
optimal control policy. Therefore, it will be much better if the behaviour-based control 
network in our learning controller can be generic and effective for all kinds of control 
problem. This is another important research issue to be studied. 

In addition, due to the interference among the concurrent learning robots, the 
distributed learning controller sometimes generates unsatisfying results (less than 10% as 
shown in the simulation) even though we have proposed a distributed learning 
coordination algorithm. How to perfectly coordinate concurrent learning processes by 
minimal intercommunications is still a critical research topic for both robotics and 
artificial intelligence research. 
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