
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 6, DECEMBER 2006 1417

A Fast Procedure for Optimizing Dynamic Force
Distribution in Multifingered Grasping

Yu Zheng and Wen-Han Qian

Abstract—This correspondence deals with the dynamic force distribu-
tion (DFD) problem, i.e., computing the contact forces to equilibrate a
dynamic external wrench on the grasped object. The sum of the normal
force components is minimized for enhancing safety and saving energy.
By this optimality criterion, the DFD problem can be transformed into
a linear programming (LP) problem. Its objective function is the inner
product of the dynamic external wrench and a vector, and the constraints
on the vector, given by a set of linear inequalities, define a polytope.
The solution to the LP problem can always be attained at the vertex of
the polytope called the solution vertex. We notice that the polytope is
determined by the grasp configuration. Along with the direction change of
the dynamic external wrench, only the solution vertex moves to an adjacent
vertex sequentially, whereas the polytope with all its vertices remains
unchanged. Therefore, the polytope and the adjacencies of each vertex can
be computed in the offline phase. Then, in the online phase, simply search
the adjacencies of the old solution vertex for the new one. Without lost of
optimality, such a DFD algorithm runs a thousandfold faster than solving
the LP problem by the simplex method in real time.

Index Terms—Dexterous robot hand, duality, dynamic force distribution
(DFD), multifingered grasping, optimal contact force.

I. INTRODUCTION

Multifingered robot hands have been explored with great enthusi-
asm for over two decades for their capability to manipulate objects
dexterously. A key issue in this area is dynamic force distribution
(DFD) for finding the optimal contact forces in real time to equilibrate
a dynamic external wrench on the grasped object subject to contact
constraints. Since Salisbury and Roth [1] decomposed the contact force
into a manipulation force and an internal force, DFD algorithms have
appeared one after another [2]–[22]. They can be classified into two
categories.

In the first category, the algorithms pursue optimal contact forces
possibly fast. Kerr and Roth [2] proposed a linear programming (LP)
algorithm based on linearized friction constraints. Cheng and Orin
[3]–[5] developed a compact dual LP algorithm. Nahon and Angeles
[6], [7] presented a quadratic programming (QP) algorithm. Based on
a Lagrange multiplier method, Nakamura et al. [8] gave a nonlinear
programming (NLP) algorithm. By transforming the contact con-
straints into the positive definiteness of a linearly constrained matrix,
Buss et al. [9] formulated the problem of grasping force optimiza-
tion as an optimization problem on the smooth manifold of linearly
constrained symmetric positive definite matrices, for which efficient
gradient flow algorithms [9]–[11] were raised. Han et al. [12] further
cast the contact constraints into linear matrix inequalities (LMIs) and
brought forth an interior point algorithm. Helmke et al. [13] suggested
a Newton algorithm. Liu et al. [14], [15] demonstrated that some of the
above algorithms [9]–[13] are quadratically convergent. These efforts
contribute to the mainstream of DFD.
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Fig. 1. Schema of the proposed DFD algorithm.

At the cost of some optimality, the algorithms of the second category
give priority to computational efficiency. Scientists tried to divide the
DFD algorithm into an offline phase and an online phase. Only the
latter runs in real time and can speed up if the former covers more
computation. To realize this good idea, however, is not easy, because
the optimal contact forces are varying in accordance with the dynamic
external wrench. Minimizing the online computation while keeping
the solution possibly optimal is the crux of the two-phase approach.
Park and Starr [16], Maekawa et al. [17], Zuo and Qian [18], and
Zheng and Qian [19] put forward different techniques to solve the
crux. Besides, some analytical or suboptimal methods can be found
in the literature [20], [21].

There are primarily two criteria for optimizing contact forces,
namely: 1) minimal inclination angle for increasing stability and
2) minimal force magnitude for enhancing material safety as well as
saving energy [19]. As these criteria can hardly be fulfilled at the same
time, and too small an inclination angle does not make any profit,
the latter was mainly considered [2]–[23]. The mainstream [2]–[15]
minimizes the contact forces by minimizing the sum of their normal
force components. Other work relevant to DFD includes using neural
networks [22], [23], decomposing the contact force [24]–[29], and
establishing a general framework for DFD [30].

In this correspondence, we present a novel technique not only to
reduce the online computation to an extreme but also to achieve truly
optimal contact forces. Our work starts from Liu’s achievement [31].
By linearizing friction cones and especially the duality of polytopes,
Liu transformed contact force optimization into a new LP problem
and solved it by the simplex method [31]. Its objective function to be
maximized is the inner product of the external wrench and a vector, and
the constraints on the vector are given by a set of linear inequalities,
which represent a set of closed half spaces in the wrench space. Their
intersection forms a polytope as the feasible region of the LP problem.
Convex analysis [32] tells that the solution to the LP problem can
always be attained at a vertex of the polytope. We are pleased to see
that the polytope relates only to the grasp configuration and can be
computed offline (Fig. 1). Its vertices remain fixed, and a sequence of
them takes turns at being the solution in real time. As the external
wrench changes in direction continuously, the solution shifts from
one vertex to its adjacency. If the offline computation contains the
adjacencies of each vertex, then the online computation is just seeking
an adjacency having the maximum inner product rather than searching
all the vertices by comparing their inner products for the maximum.
Using the helpful information from the previous solution, the online
computation becomes more rapid (Fig. 1).

The rest of this correspondence is arranged as follows. Section II
describes the DFD problem. Section III introduces Liu’s transforma-
tion of the force optimization problem into an LP problem. Section IV
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addresses our DFD algorithm. An example and the conclusion are
given in Sections V and VI, respectively.

II. PROBLEM DESCRIPTION

Consider an m-finger hand manipulating a three-dimensional (3-D)
object, fixed with a right-handed coordinate frame. Assume that each
finger contacts the object at a regular point with Coulomb friction.
Let ni, oi, and ti be the unit inward normal and two unit tangent
vectors at contact i (i = 1, 2, . . . ,m) in the object coordinate frame
such that ni = oi × ti. The contact force f i can be expressed in the
local coordinate frame {ni, oi, ti} by

f i = [fin fio fit]
T (1)

where fin, fio, and fit are the components of f i along ni, oi, and ti,
respectively. To avoid separation and slip at contact, f i must satisfy
the contact constraint

fin ≥ 0, f2
io + f2

it ≤ µ2
i f

2
in (2)

where µi is the Coulomb friction coefficient at contact i. The nonlinear
constraint (2) defines a circular cone named the friction cone. Fol-
lowing the mainstream [2]–[15], we also measure the force magnitude
over all contacts by

σ =

m∑
i=1

fin

fU
i

(3)

where fU
i is the force upper bound at contact i. The wrench in the

object coordinate frame produced by f i is

wi = Gif i

where Gi ∈ R
6×3 is the grasp matrix for contact i

Gi =

[
ni oi ti

ri × ni ri × oi ri × ti

]

where ri is the position vector of contact i in the object coordinate
frame.

Let wext denote the “dynamic” external wrench on the object. For
equilibrium, the resultant wrench w applied by the hand should always
conform to

w =

m∑
i=1

wi =

m∑
i=1

Gif i = −wext. (4)

In real-time control of the hand, wext is sampled at a sequence of
instants with sufficiently small intervals. Thus we encounter the DFD
problem.

DFD Problem: Given ri and ni, i = 1, 2, . . . , m and wext, fast
compute f i, i = 1, 2, . . . , m, satisfying (2) and (4) with minimal σ at
a sequence of sampling instants.

III. LP FORMULATION FOR THE DFD PROBLEM

In this section, we retell Liu’s transformation of contact force
optimization into an LP problem [31] using the terminology of convex
analysis. A new formula for computing contact forces is derived in
order to accomplish more computation offline.

A. Basic Equations

For linearization, substitute the friction cone with an n-side polyhe-
dral cone (n ≥ 3 since the friction cone is a 3-D cone). Its side edges
in the frame {ni, oi, ti} are

si,j =fU
i

[
1 µi cos

2jπ

n
µi sin

2jπ

n

]T

, j=1, 2, . . . , n. (5)

Then f i satisfying (2) can be approximately represented by

f i =

n∑
j=1

λi,jsi,j = Siλi, λi,j ≥ 0 for all i and j (6)

where Si = [si,1 si,2 · · · si,n] ∈ R
3×n, and λi =

[λi,1 λi,2 · · · λi,n]T ∈ R
n. From (1), (5), and (6), (3) can be

rewritten as

σ =

m∑
i=1

fin

fU
i

=

m∑
i=1

n∑
j=1

λi,j . (7)

Combining (4)–(6) leads to

w =

m∑
i=1

n∑
j=1

λi,jGisi,j =

m∑
i=1

n∑
j=1

λi,jwi,j = W λ = −wext

(8)

where wi,j is called a primitive wrench

wi,j = Gisi,j (9)

and W = [w1,1 w1,2 · · · wm,n] ∈ R
6×mn, and λ =

[λ1 λ2 · · · λm]T ∈ R
mn.

B. Computation of the Minimum Contact Force

From (6)–(8), we see that contact force optimization can be trans-
formed into the computation of nonnegative λ satisfying (8) with
minimal

∑m

i=1

∑n

j=1
λi,j .

For simplicity, replace wi,j with wk having the sole subscript k,
where k = 1, 2, . . . ,K, and K = mn. Let W be the set of wk, k =
1, 2, . . . , K, and Wc be the convex hull of W . From (7) and (8), Wc

consists of all the resultant wrenches that can be generated by the hand
with σ = 1. For a force-closure grasp, the origin 0 of the wrench space
lies in the interior of Wc.

Let wb = w/σ. Then σ = ‖w‖/‖wb‖, and wb belongs to Wc.
Clearly, σ attains the minimum value when wb falls on a face of Wc,
and w can be restricted to a positive combination of the elements
of W on the face. Partition W into W 1 and W 2, which comprise
such elements and the others, respectively. Correspondingly, parti-
tion the identity matrix I of rank mn in columns into I1 and I2.
From [31], this nonnegative λ with minimal

∑m

i=1

∑n

j=1
λi,j can be

calculated by

λ = I1W
+
1 w = Cw (10)

where W +
1 is the pseudoinverse of W 1, and C = I1W

+
1 ∈ R

mn×6.
Accordingly, the minimum contact forces f i, i = 1, 2, . . . ,m, can
be computed by (6). Now we may partition C equally in rows into
m submatrices C i ∈ R

n×6, i = 1, 2, . . . ,m. Combining (6) and (10)
yields

f i = SiC iw = Diw (11)

where Di = SiC i ∈ R
3×6.
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The key to this approach is finding the aforementioned face of Wc,
which can be done as follows.

Let W∗
c denote the polar set of Wc, which is given by

W∗
c =

{
u ∈ R

6|wT
k u ≤ 1 for all k = 1, 2, . . . , K

}
. (12)

Since Wc is a polytope containing the origin 0 as an interior point, W∗
c

is a suchlike polytope [32]. Let p denote the support function of W∗
c ,

which is the real-valued defined by

p(w) = sup
u∈W∗

c

wT u = max
u∈W∗

c

wT u. (13)

Proposition 1 [33]: Let bdWc denote the boundary of Wc and us a
point of W∗

c such that p(w) = wT us. Then the following statements
are true.

a) p(w)−1w ∈ bdWc.
b) The hyperplane H = {w ∈ R

6|uT
s w = 1} supports Wc at the

point p(w)−1w.

Proposition 1(a) implies wb = p(w)−1w and σmin = p(w).
Proposition 1(b) indicates that the hyperplane H contains the face we
are seeking. From (12) and (13), us is the solution to the LP problem

{
maximize wT u
subject to wT

k u ≤ 1, k = 1, 2, . . . ,K.
(14)

Solving it in O(K) time, the simplex method is the fastest way
up to now [31]. However, its computation time is still considerable,
especially when K is large. This motivates us to explore a more
efficient approach.

IV. INNOVATED APPROACH TO THE LP PROBLEM

The feasible region of the LP problem (14), i.e., the polytope W∗
c ,

is determined by wk, k = 1, 2, . . . , K, and related only to the grasp
configuration. Since the objective function wT u is a linear function
and bounded on W∗

c , the maximum of wT u on W∗
c , i.e., p(w), can

always be attained at a vertex of W∗
c .

A. Algorithm for Seeking Vertices and Adjacencies

Herein we not only compute all the vertices of W∗
c but also clarify

the adjacent vertices of each vertex in order to facilitate the online
computation.

Equation (12) indicates that W∗
c is the intersection of the half-spaces

bounded by the hyperplanes

Hk =
{
u ∈ R

6|wT
k u = 1

}
, k = 1, 2, . . . ,K. (15)

The points wk, k = 1, 2, . . . ,K, can be classified as follows:

A1) a vertex of Wc;
A2) a point on the boundary of Wc but not a vertex;
A3) an interior point of Wc.

From the duality theory [32], d-faces (i.e., faces of dimension d) of
Wc and (5 − d)-faces of W∗

c are one-to-one correspondent. Because
of this duality, the hyperplanes Hk, k = 1, 2, . . . ,K, can be clas-
sified according to the above classification of wk, k = 1, 2, . . . ,K,
as follows:

B1) containing a facet (i.e., a 5-face) of W∗
c ;

B2) containing a face of W∗
c with its dimension below five;

B3) lying outside W∗
c and being redundant.

Clearly, a vertex of W∗
c is the intersection of six hyperplanes of type

B1 or of some hyperplanes of types B1 and B2.

Proposition 2: Let wk1 , wk2 , . . . , wk6 be six elements of W , and
M = [wk1 wk2 · · · wk6 ]. Then the solution to the system

M T u = [1 1 · · · 1]T (16)

denoted by û is a vertex of W∗
c if the following conditions are both

satisfied.

1) The reciprocal of the condition number of M , denoted by
κ(M ), is nonzero.

2) wT
k û ≤ 1 for all k = 1, 2, . . . ,K.

Proof: Condition 1) implies that the square matrix M is nonsin-
gular, and the solution û to the linear system is unique. This means
that the hyperplanes Hk1 , Hk2 , . . . ,Hk6 given by (15) with respect
to wk1 , wk2 , . . . , wk6 intersect at merely the point û. Condition 2)
further ensures that û is not outside of W∗

c , which implies that none of
Hk1 ,Hk2 , . . . , Hk6 is of type B3. Therefore, û is a vertex of W∗

c . �
Suppose that a vertex û is found. Then we may divide W into W1

and W2 according to û, where W1 consists of wk, k = 1, 2, . . . , K,
on the facet of Wc dual to û, i.e., satisfying ûT wk = 1, and W2

consists of the others.
Proposition 3: Suppose that û1 is a vertex of W∗

c , and W is divided
into W1 and W2 according to û1. Let wk1 , wk2 , . . . , wk5 be five
elements of W1, and wk6 be an element of W2. If wk1 , wk2 , . . . , wk6

determine a vertex û2 of W∗
c , then the following statements are true.

1) û1 and û2 are different.
2) û1 and û2 are adjacent.
3) The intersection of the hyperplanes Hk1 ,Hk2 , . . . , Hk5 given

by (15) with respect to wk1 , wk2 , . . . , wk5 is the edge of W∗
c

connecting û1 and û2.

Proof:

1) If û2 = û1, then from (16) we get ûT
1 wk6 = 1, which im-

plies that wk6 is an element of W1 other than W2.
2), 3) If wk1 , wk2 , . . . , wk6 determine a vertex û2, then

wk1 , wk2 , . . . , wk5 are linearly independent, and the convex
hull of them is a ridge (i.e., a 4-face) of Wc. The set dual to
the ridge, namely the intersection of Hk1 ,Hk2 , . . . , Hk5 , is
the edge of W∗

c connecting û1 and û2. �
Proposition 2 shows how to find a vertex, while Proposition 3 indi-

cates how to find its adjacent vertices. By this, we have the following
algorithm for seeking all the vertices of W∗

c and their adjacencies. First
introduce the notations.
ul lth vertex of W∗

c .
l1 Index of a vertex whose adjacency is explored.
l2 Index of a vertex that has been found before.
L Number of the vertices that have been found.
Ul Index set of the vertices adjacent to vertex l.
Nl Number of the vertices adjacent to vertex l.
û Solution to the linear system (16).
Wl,1 Index set of wk, k = 1, 2, . . . , K, satisfying uT

l wk = 1.
Wl,2 Wl,2 = {1, 2, . . . , K} \ Wl,1.
Fl Family of the edges of W∗

c that connect vertex l with
its adjacent vertices. Each element of Fl is expressed by
{k1, k2, . . . , k5}, where k1, k2, . . . , k5 belong to Wl,1.

Step 1) Find the first vertex u1. This can be done by searching W
for wk1 , wk2 , . . . , wk6 satisfying Proposition 2 or solving
the LP problem (14) with an arbitrary nonzero w. Construct
the index sets W1,1 and W1,2 according to u1. Set L = 1,
U1 = ∅, N1 = 0, F1 = ∅, and l1 = 0.
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Step 2) If l1 < L, then l1 = l1 + 1, and go to Step 3); otherwise,
the procedure ends.

Step 3) Select five elements of Wl1,1, say k1, k2, . . . , k5, which
were not used together before. If all the combinations of the
elements of Wl1,1 have been examined, then the vertices
adjacent to vertex l1 are all found, and return to Step 2).

Step 4) If {k1, k2, . . . , k5} exists in Fl1 , then the vertex adjacent to
vertex l1 connected by the edge {k1, k2, . . . , k5} has been
found, and return to Step 3).

Step 5) Select elements of Wl1,2, say k6, which was not be used
before. If all the elements of Wl1,2 have been taken, then
wk1 , wk2 , . . . , wk5 are not corresponding to an edge of
W∗

c , and return to Step 3).
Step 6) Construct the matrix M = [wk1 wk2 · · · wk6 ]. If M is

nonsingular, then solve the linear system (16), and go to
Step 7); otherwise, return to Step 5).

Step 7) If the solution û satisfies wT
k û ≤ 1 for k = 1, 2, . . . , K,

then a vertex is found, and go to Step 8); otherwise, return
to Step 5).

Step 8) If û is a new vertex, then set L = L + 1, uL = û, UL =
{l1}, NL = 1, and FL = {{k1, k2, . . . , k5}}. Construct
WL,1 and WL,2. Set Ul1 = Ul1 ∪ {L} and Nl1 = Nl1 +
1. Add {k1, k2, . . . , k5} to Fl1 . Return to Step 3). Other-
wise, note down the index of the vertex, say l2.

Step 9) If l2 does not exist in Ul1 , then set Ul1 = Ul1 ∪ {l2} and
Nl1 = Nl1 + 1. Add {k1, k2, . . . , k5} to Fl1 . If l1 does
not exist in Ul2 , then set Ul2 = Ul2 ∪ {l1} and Nl2 =
Nl2 + 1. Add {k1, k2, . . . , k5} to Fl2 . Return to Step 3).

Because there exist points of type A2 in W , the linear system (16)
may be singular or the solution û to (16) may be a vertex that has
been found before. Thus, it needs to determine whether M is singular
and û is new in Steps 6) and 8), respectively. Due to the existence of
points of type A3, some û may not be a point of W∗

c ; hence, Step 7) is
required.

B. Fast Procedure for Solving the LP Problem

After all the vertices of W∗
c , namely ul, l = 1, 2, . . . , L, were

sought out, (13) can be rewritten as

p(w) = max
l=1,2,...,L

wT ul. (17)

Then the solution us to the LP problem (14) can be obtained just
by computing and comparing L inner products. Since we know the
adjacencies of each vertex, us can be found more quickly by the
following procedure, which successively travels from one vertex to its
adjacency until arriving at a vertex whose adjacencies cannot make an
ascent of the inner product wT ul. Begin with some notations.
l0 Index of the initial vertex.
l1 Index of a vertex.
l2 Index of a vertex adjacent to vertex l1.

Step 1) Given l0, set l1 = l0.
Step 2) Set l2 to be an element of Ul1 .
Step 3) If wT ul2 > wT ul1 , then l1 = l2 and return to Step 2).
Step 4) If all the elements of Ul1 are checked, then return l1 and

terminate the procedure; otherwise, assign another element
of Ul1 to l2 and return to Step 3).

In real time, the procedure can speed up by taking the last solution
vertex as the initial vertex. Generally, the succeeding solution is closed

to the preceding or even the same temporally. Otherwise, the sampling
interval should be shortened.

C. Algorithm for DFD

Combining the above arguments leads to a new two-phase DFD
algorithm, which can be implemented as follows.

1) Offline phase: Given the contact positions and the inward
normals, i.e., ri and ni, i = 1, 2, . . . ,m.

Step 1) Compute wk, k = 1, 2, . . . ,K, by (9).
Step 2) Compute ul, Ul, Wl,1, l = 1, 2, . . . , L, by the searching

algorithm.
Step 3) Construct W l,1 and I l,1 for l = 1, 2, . . . , L by selecting

the columns of W and I according to Wl,1, respec-
tively. Set C l = I l,1W

+
l,1 ∈ R

mn×6 for l = 1, 2, . . . , L.
Partition C l equally in rows into m submatrices
C i,l, i = 1, 2, . . . ,m. Set Di,l = SiC i,l ∈ R

3×6 for i =
1, 2, . . . ,m and l = 1, 2, . . . , L.

Step 4) Set l0 to be an arbitrary element of {1, 2, . . . , L} and t = 0.

2) Online phase: Given a dynamic external wrench wext with
duration T and sampling interval ∆t.

Step 5) Set w = −wext(t). Find the index l1 by calling the fore-
going procedure with l0.

Step 6) Compute f i = Di,l1w for i = 1, 2, . . . ,m.
Step 7) Set t = t + ∆t. If t > T , then the algorithm ends; other-

wise, set l0 = l1 and return to Step 5).

The applicability of the DFD algorithm to real-time control of the
robot hand is decided by the time complexity of its online phase,
mainly of Steps 5) and 6). Step 5) finds the solution vertex at each
instant. The worst situation may probably happen at the first instant,
since the initial vertex is selected at random in Step 4) in the absence
of prior information about the solution vertex. In spite of this, the
computation time is much less than O(K) of the simplex method and
O(L) of comparing all L inner products. After that, Step 5) runs in
hopeful O(1) time. Step 6) returns the optimal contact forces. The ma-
trices Di,l1 , i = 1, 2, . . . , m, have been calculated offline in Step 3)
so that only m multiplications of a 3 × 6 matrix by a vector are
required here. Therefore, for solving the DFD problem, this algorithm
is more efficient than the previous ones with polynomial [12] or
quadratic [13]–[15] complexities. Compared with [18] and [19], its
online computation cost is not greatly reduced, but the computed
contact forces are indeed optimal.

V. NUMERICAL EXAMPLE

Herein we demonstrate the efficiency of the proposed DFD algo-
rithm using Matlab.

The object to be manipulated is a teapot, as shown in Fig. 2. Assume
that the dynamic external wrench is given by

wext =




0.5 cos 2.4πt
(2 + 0.5 sin 2.4πt) sin 0.4πt

(2 + 0.5 sin 2.4πt) cos 0.4πt − 5
cos (sin 1.2πt) sin(cos 0.4πt))

sin(sin 1.2πt)
cos (sin 1.2πt) cos(cos 0.4πt))


 .

The external wrench is periodic and its period T = 5 s. Assign the
sampling interval ∆t = T/1000 = 5 ms. We grasp the teapot with a
four-finger [Fig. 2(a)] and a five-finger [Fig. 2(b)] robot hand. Their
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Fig. 2. Teapot grasped by (a) four-finger hand and (b) five-finger hand.

contact positions, unit inward normals, and force upper bounds are
as follows:

Grasp (a)

r1 =[0 0 −20]T n1 =[0 0 1]T

r2 =[50 0 40]T n2 =[−
√

3/2 0 −1/2]T

r3 =[−25 25
√

3 40]T n3 =[
√

3/4 −3/4 −1/2]T

r4 =[−25 −25
√

3 40]T n3 =[
√

3/4 3/4 −1/2]T

fU
1 =20 N fU

i =10 N for i=2, 3, 4.

Grasp (b)

r1 = [0 0 − 20]T n1 = [0 0 1]T

r2 = [0 − 50 − 15]T n2 = [0
√

2/2
√

2/2]T

r3 = [0 50 − 15]T n3 = [0 −
√

2/2
√

2/2]T

r4 = [50 0 40]T n4 = [−
√

3/2 0 − 1/2]T

r5 = [−50 0 40]T n3 = [
√

3/2 0 − 1/2]T

fU
1 =20 N fU

2 = fU
3 = 15 N fU

4 = fU
5 = 10 N.

The friction coefficient is 0.2 at these contacts. Each friction cone is
substituted by a ten-side polyhedral cone, i.e., n = 10 in (5). Running
the searching algorithm, we see that W∗

c has 861 vertices for (a) and
1618 vertices for (b), i.e., L = 861 for (a) and L = 1618 for (b). Also,
in both cases, a vertex has at most 13 adjacencies and most vertices
have only six adjacencies.

We compute the optimal contact forces by three methods, namely:
1) the simplex method; 2) comparing L inner products as stated by (17)
and using the function max in Matlab; and 3) the present approach.
Their CPU times on various PCs are listed in Table I. The CPU times
by 3) are approximately 1/1000 of those by 1). Reduction from 1) to 2)

TABLE I
EXECUTION TIME FOR AN INSTANT ON PCS WITH DIFFERENT CPUS

comes from the new two-phase technique. Further reduction to 3)
is the contribution of utilizing prior information. More importantly,
the CPU times by 1) are much greater than the sampling interval;
therefore, the robot hand cannot be controlled in this way. Contrarily,
the CPU times by 3) are far below the interval so that the real-time
control can be fulfilled with ease.

VI. CONCLUSION

DFD in multifingered grasping can be formulated as an LP problem,
of which the objective function is time varying along with the dynamic
external wrench, and the feasible region is a polytope. As a crucial re-
quirement, the problem must be solved in real time. Realizing that the
polytope is fixed according to the grasp configuration, and the solution
is moving successively from one vertex to its neighbor as the external
wrench varies, we compute all the vertices and their adjacencies in
the offline phase. Then in the online phase, the sequential solution
can be found stepwise very quickly by looking in the adjacency of
the previous solution vertex for a new one. Thus, an advanced DFD
algorithm comes out with the following advantages.

• Dramatically faster than the simplex method, it runs at a speed so
high as to richly satisfy the requirement of real-time control.

• The computed contact forces are really optimal. This means
the foregoing two categories of DFD algorithms interact here
eventually.

• The two-phase approach has a vivid geometrical meaning.
• Since the external wrench is not involved in the offline computa-

tion, it need not be known in advance and can be acquired through
sensors in real time. Hence, this algorithm is also and particularly
suitable for nonholonomic applications.

• By linearizing the soft finger contact constraint [34], this algo-
rithm can be applied to such contact as well.
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