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An Enhanced Ray-Shooting
Approach to Force-Closure
Problems
Force-closure is a fundamental topic in grasping research. Relevant problems include
force-closure test, quality evaluation, and grasp planning. Implementing the well-known
force-closure condition that the origin of the wrench space lies in the interior of the
convex hull of primitive wrenches, Liu presented a ray-shooting approach to force-
closure test. Because of its high efficiency in 3D work space and no limitation on the
contact number of a grasp, this approach is advanced. Achieving some new results of
convex analysis, this paper enhances the above approach in three aspects. (a) The ex-
actness is completed. In order to avoid trouble or mistakes, the dimension of the convex
hull of primitive wrenches is taken into account, which is always ignored until now. (b)
The efficiency is increased. A shortcut which skips some steps of the original force-
closure test is found. (c) The scope is extended. Our simplified ray-shooting approach
yields a grasp stability index suitable for grasp planning. Numerical examples in fixtur-
ing and grasping show the enhancement superiority. �DOI: 10.1115/1.2336259�

Keywords: force-closure, grasp planning, multifingered robot hand, ray-shooting
approach
Introduction
Multifingered robotic grasping has been ardently studied since

he pioneer work of Salisbury and Roth �1�. Force-closure is a
undamental topic in grasping research. This property means the
apability of a grasp to equilibrate any external wrench and to
estrain any motion on the grasped object. It is a prerequisite to
table grasping. Force-closure problems mainly include:

• Force-closure test: given contact positions on an object, de-
termine if the grasp is force-closure.

• Grasp quality evaluation: given contact positions on an ob-
ject, evaluate the closure quality of the grasp by a perfor-
mance index.

• Optimal grasp planning: given an object, determine the con-
tact positions to construct a force-closure grasp with optimal
performance quality.

hese problems can be discussed in the wrench space �1–5�, the
ontact force space, �6–10�, or their dual spaces �10–13�. The
rench space and its dual space are 6D vector spaces, while the
imensions of the contact force space and its dual space are both
0+3mf +4ms, where m0, mf, and ms are numbers of frictionless
oint contacts, frictional point contacts, and soft finger contacts,
espectively.

1.1 Related Work. Investigation in the wrench space tells
hat a grasp is force-closure if and only if the primitive wrenches
ositively span the entire wrench space �1�, or equivalently, the
rigin of the wrench space is an interior point of the convex hull
f the primitive wrenches �2�. By implementing this condition,
fter the 2D test �3� Liu �4� presented a ray-shooting based algo-
ithm for 3D. Zhu et al. �5� proposed a generally applicable algo-
ithm without linearizing the friction cones. In the contact force
pace, Murray et al. �6� revealed that a grasp is force-closure if
nd only if the grasp matrix is surjective and there is a strictly
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internal force. Various forms of this condition can be found in
Refs. �7–10�. Zuo and Qian �7� extended the condition to soft
multifingered grasps. Following Buss et al. �8�, Han et al. �9�
formulated force-closure test as a convex optimization problem
involving linear matrix inequalities. Bicchi �10� took account of
the kinematics of the grasping mechanism. Recently, Zheng and
Qian �13� generalized the method of form-closure analysis
�10–12� to force-closure by the duality between the infinitesimal
motion and the wrench.

As a higher topic than qualitative test, quantitative evaluation
indicates the goodness of various grasps. Optimal grasp planning
cannot proceed without it. Li and Sastry �14� presented three qual-
ity measures: the smallest singular value and the volume of the
grasp matrix as well as a task-oriented measure. Zuo and Qian �7�,
Buss et al. �8�, evaluated the stability of a grasp by its extent to
satisfy the friction constraints. Zheng and Qian �13� explored the
tolerance of force-closure grasps to some grasping uncertainties.
Kirkpatrick et al. �15�, Ferrari and Canny �16� assessed the “effi-
ciency” by the radius of the largest ball centered at the origin of
the wrench space, contained in the convex hull of the primitive
wrenches. Using the Q distance, Zhu and Wang �17� made it pos-
sible to compute the measure of efficiency for the first time. Other
quality measures were proposed by Varma and Tasch �18�, Xiong
and Xiong �19�, Salunkhe et al. �20�.

An early stage of optimal grasp planning research focused on
synthesizing force-closure grasps on simple objects with limited
contacts. On polygonal objects, Nguyen �21� computed indepen-
dent regions for two frictional or four frictionless point contacts to
achieve a force-closure grasp. Markenscoff and Papadimitriou
�22� proposed an analytic method for calculating the optimum
grip. Park and Starr �23� built a 3-finger grasp, while Tung and
Kak �24� fast constructed a 2-finger one. On irregular 2D and 3D
objects, Chen and Burdick �25� considered 2-finger antipodal
point grasps. Li et al. �26� developed a geometrical algorithm for
computing 3-finger force-closure grasps. Ponce and co-workers
�27–29� extended Nguyen’s �21� idea to 2-finger, 3-finger, and
4-finger force-closure grasps on 2D curved, polygonal, and poly-
hedral objects, respectively. In the recent years, limitation on the
contact number has been eliminated. Liu �30� calculated n-finger

grasps on polygons. Ding et al. �31� considered 3D n-finger grasps
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hose k fingers have been located in advance. Based on the Q
istance, Zhu and Wang �17� planned optimal grasps on 3D ob-
ects with curved surfaces. With the ray-shooting based algorithm
4�, Liu et al. �32� sought force-closure grasps on objects in the
iscrete domain. In addition, the algorithm for fixture design can
e applied to grasp planning as well �33�.

1.2 Our Work. In the previous work, we are especially inter-
sted in the ray-shooting approach �4�. Since Mishra et al. �2�
roposed the force-closure condition, no algorithm implemented it
n 3D grasps during the succeeding twelve years until Liu put
orward the ray-shooting based algorithm �4�. Up to the present, it
s still the fastest way to force-closure test and frequently used in
rasp planning as well as fixture design �31–33�. After repeatedly
tudying his work, we first found a shortcut to simplify its appli-
ation to force-closure test �34�. Second, we discover that, al-
hough the test algorithm is valid in most cases, it may commit
rrors because the dimension of the convex hull of primitive
renches is ignored. When the convex hull is below 6D, the linear
rogramming �LP� formulation for solving the ray-shooting prob-
em will be unbounded, or the origin will be mistaken for an
nterior point of the convex hull. This motivates us to investigate
he dimension and the relative interior of a convex set. According
o the dimensions and the relative positions to the origin, we clas-
ify the convex hulls into four categories. A grasp is force-closure
f and only if the convex hull is 6D and contains the origin as a
elative interior point, so that the origin lies in its interior. The
ormer condition is equivalent to that the grasp matrix has full row
ank and a certain linear system is consistent. The latter can be
etermined by the simplified ray-shooting approach. The consis-
ency of the linear system ensures that our LP formulation is
ounded and always has solution. Third, the simplified ray-
hooting approach turns out a grasp stability index, which is rel-
vant to the inclination angles of contact forces. It has different
eaning from the quality indices �15–17�, which reflect the result-

nt wrenches generated by a grasp. Compared with other formu-
ations of grasp stability �7,8�, ours is easier to compute. Further-

ore, the original ray-shooting approach �4,32� does not yield
uch an index, so the index is applied to optimal grasp planning of
rbitrary 3D objects for the first time. Needless to say, all the
bove start from Liu’s trailblazing work �4�. In addition, for use in
erivation, we deduce a number of theorems of convex analysis.
ome of them are brand new.

Preliminaries
Our work is based on the following assumptions:

1. The fingers and the grasped object are rigid bodies. Like
Refs. �1–34�, we do not consider their compliance and con-
tact region deformation as Refs. �35–37�, etc. All contacts
are point-to-point hard contacts.

2. Each finger contacts the object at a regular point, where ni,
oi, and ti are well defined.

3. The finger number m�3, which is a prerequisite for achiev-
ing 3D force-closure.

onsider an m-finger robot hand grasping a 3D object, fixed with
right-handed coordinate frame. The contact force fi at contact i

an be expressed in the local coordinate frame �ni ,oi , ti� by

fi = �f in f io f it�T �1�

o avoid separation and slippage at contact, fi must satisfy

f in � 0, f io
2 + f it

2 � �2f in
2

he above nonlinear contact constraint defines a circular cone
alled a friction cone. For simplicity, we substitute an n-sided
olyhedral cone for it �n�3 since the friction cone is 3D�, as
hown in Fig. 1. The side edges are expressed in the frame

ni ,oi , ti� by

ournal of Manufacturing Science and Engineering
s j = �1 � cos�2j�/n� � sin�2j�/n��T �2�

Thus fi in the friction cone can be approximately represented by

fi = �
j=1

n

�ijs j, �ij � 0 �3�

From Eqs. �1�–�3�, f in, f io, and f it are specified by

f in = �
j=1

n

�ij, f io = ��
j=1

n

�ij cos�2j�/n�, f it = ��
j=1

n

�ij sin�2j�/n�

�4�
The wrench �a couple of force and moment applied at the origin

of the object coordinate frame� produced by fi is given by

wi = Gifi �5�
where

Gi = � ni oi ti

ri � ni ri � oi ri � ti
	

Substituting Eq. �3� into Eq. �5� yields

wi = �
j=1

n

�ijwij, �ij � 0

where

wij = Gis j, i = 1,2, . . . ,m, j = 1,2, . . . ,n �6�

The vector wij is called a primitive wrench. Thereby the resultant
wrench applied by the hand is

w = �
i=1

m

wi = �
i=1

m

�
j=1

n

�ijwij, �ij � 0

A grasp is said to be force-closure if there always exist nonne-
gative reals �ij, i=1,2 , . . . ,m and j=1,2 , . . . ,n such that −wext
=�i=1

m � j=1
n �ijwij for any wext�R6, which is equivalent to that the

primitive wrenches positively span the whole wrench space �1�.
Let W be the convex hull of the primitive wrenches:

W =
�
i=1

m

�
j=1

n

�ijwij��
i=1

m

�
j=1

n

�ij = 1, �ij � 0� �7�

Not only the force-closure property but also the grasp quality
can be revealed from W �2,4,16,17�. Noticing that W may be 6D
or of lower dimension, in general we would discuss its relative

Fig. 1 Linearization of the friction cone at a contact point
interior as well as dimension rather than its interior. As the math-
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matical basis, we first extend the theorems on interior in convex
nalysis �38� to relative interior. Later, all of them will be used to
olve the foregoing force-closure problems.

Results of Convex Analysis
Let S be a nonempty convex set in Rd. The dimension of S is

he dimension of its affine hull aff S, namely the dimension of the
orresponding parallel subspace. The relative interior of S is the
nterior of S relative to aff S. In fact, the definition “relative inte-
ior” is an extension of the definition “interior.” When aff S=Rd,
i S=int S. As the former covers the latter, and we can regard the
atter as a special case of the former. The set cl S \ ri S is called the
elative boundary of S, denoted by rb S.

THEOREM 1. 0� int S if and only if dim S=d and 0� ri S.
THEOREM 2. If S is the convex hull of a finite set of points

1 ,x2 , . . . ,xe in Rd, i.e., S=conv�x1 ,x2 , . . . ,xe�, then any strictly
ositive convex combination of x1 ,x2 , . . . ,xe is a relative interior
oint of S, i.e., �k=1

e �kxk� ri S for any �1 ,�2 , . . . ,�e�0 with

k=1
e �k=1.
To prove this theorem, we need two lemmas.
LEMMA 1. If S is the convex hull of affinely independent points

1 ,x2 , . . . ,xe in Rd, i.e., S=conv�x1 ,x2 , . . . ,xe�, then any strictly
ositive convex combination of x1 ,x2 , . . . ,xe is a relative interior
oint of S, i.e., �k=1

e �kxk� ri S for any �1 ,�2 , . . . ,�e�0 with

k=1
e �k=1.
Proof. Since x1 ,x2 , . . . ,xe are affinely independent, they consti-

ute an affine basis of aff S; hence each point x�aff S can be
xpressed by x=�k=1

e �kxk with �k=1
e �k=1, and the coefficients

1 ,�2 , . . . ,�e are unique. Therefore, we define

	:aff S → Re

y letting

	�
k=1

e

�kxk� = ��1 �2 ¯ �e�T with �
k=1

e

�k = 1

his is an affine mapping; in particular, it is continuous. Let

Hk = ���1 �2 ¯ �e�T � Re��k � 0�, k = 1,2, . . . ,e .

hen H1 ,H2 , . . . ,He are open halfspaces in Re; hence, by conti-
uity, 	−1�H1� ,	−1�H2� , . . . ,	−1�He� are open in aff S. Their inter-
ection

�
k=1

e

	−1�Hk� =
�
k=1

e

�kxk � Rd��1,�2, . . . , �e � 0,�
k=1

e

�k = 1�
s therefore also open in aff S. This in particular shows that the set

k=1
e 	−1�Hk� is nonempty. Since �k=1

e 	−1�Hk� is a set of positive
onvex combinations of x1 ,x2 , . . . ,xe, we have �k=1

e 	−1�Hk��S.
n other words, S contains a nonempty set which is open in aff S,
hence �k=1

e 	−1�Hk�� ri S.
LEMMA 2. If x0� ri S and x1�S, then �1−��x0+�x1� ri S for

ll �� �0,1� �38�.
Proof of theorem 2. Let h=dim S�=dim�aff S��. Then there ex-

sts h+1 affinely independent points from �x1 ,x2 , . . . ,xe�; without
oss of generality, say x1 ,x2 , . . . ,xh+1. Let

S1 = conv�x1,x2, . . . ,xh+1� and S2 = conv�xh+2,xh+3, . . . ,xe�

hen S1 ,S2�S and dim�aff S1�=dim S1=h. Let

x = �
k=1

e

�kxk with �1,�2, . . . ,�e � 0 and �
k=1

e

�k = 1
his equation can be rewritten as

62 / Vol. 128, NOVEMBER 2006
x = l1�
k=1

h+1
�k

l1
xk + l2 �

k=h+2

e
�k

l2
xk = l1y + l2z

where l1=�k=1
h+1�k, l2=�k=h+2

e �k, y=�k=1
h+1�kxk / l1, and z

=�k=h+2
e �kxk / l2. Note that y is a strictly positive convex combi-

nation of x1 ,x2 , . . . ,xh+1, and from Lemma 1, y� ri S1. From
aff S1�aff S and dim�aff S1�=dim�aff S�, we have aff S1=aff S.
But since S1�S, it follows that y� ri S. In addition, z is a convex
combination of xh+2 ,xh+3 , . . . ,xe; thus z�S2, which implies z
�S. Because l1�0 and l1+ l2=1, Lemma 2 ensures that x� ri S.

The polar set S* �38� of S is defined by

S* = �y � Rd�xTy � 1 for all x � S� �8�

THEOREM 3. If 0�S, then S*= �S*�aff S�+ �aff S��. Further-
more, if S is compact and 0� ri S, then S*�aff S is a compact
convex set in aff S and 0� int S*.

Proof. If 0�S, aff S is a subspace of Rd. Let y1�S*�aff S and
y2� �aff S��. xTy1�1 and xTy2=0 for all x�S; thus xT�y1+y2�
�1, and �S*�aff S�+ �aff S���S*. Conversely, y�S* can be de-
composed into y1�aff S and y2� �aff S��. For all x�S, xTy
=xTy1�1; thus y1�S*. Hence y1�S*�aff S, and
S*� �S*�aff S�+ �aff S��. Therefore, S*= �S*�aff S�+ �aff S��, as
shown in Fig. 2.

In addition, if S is a compact convex set in Rd with 0� int S, S*

is a compact convex set in Rd with 0� int S* �38�. In general, if S
is compact and 0� ri S, S*�aff S is a compact convex set in aff S
and 0 is an interior point of S* relative to aff S. From S*

= �S*�aff S�+ �aff S��, dim S*=d. Thus 0� int S*.
The support function pS �38� of S is the real-valued function

defined by

pS�z� = sup
x�S

zTx �9�

for all z�Rd for which the supremum is finite. Let pS* be the
support function of S*. In the following, we assume that S is a
nonempty compact convex set with 0� ri S.

THEOREM 4. pS*�z� is finite if and only if z�aff S. Moreover, if
z�aff S, then pS*�z�= pS*�aff S�z� and there is yz�S*�aff S such
that pS*�z�=zTyz. If z is nonzero, then pS*�z��0.

Proof. From Theorem 3 it follows that any y�S* can be de-
composed into y1�S*�aff S and y2� �aff S��; thus zTy=zTy1
+zTy2 for any y�S*. If z�aff S, then zTy=zTy1, which implies
that pS*�z�= pS*�aff S�z�. Due to the compactness of S*�aff S �see
Theorem 3� and the continuity of the inner product, pS*�z� is finite
and there exists a point yz�S*�aff S such that pS*�z�=zTyz. Con-
versely, if z�aff S, then z can be decomposed into z1�aff S and

� T T T T

Fig. 2 The polar set of a compact convex set containing the
origin as a relative interior point
z2� �aff S� , where z2 is nonzero, so z y=z1y1+z2y2. Since z1y1
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s finite for all y1�S*�aff S while the supremum of z2
Ty2 on y2

�aff S�� takes on arbitrarily large values, the supremum of zTy
n y�S* is infinite. This proof can be illustrated in Fig. 2. Fur-
hermore, from Theorem 3, 0� int S*. Then for any nonzero z

aff S, we may always find y�S* such that zTy�0; thus
S*�z��0.
THEOREM 5. Let z be a point in aff S other than 0. Then

S*�z�−1z� rb S.
Proof. From the definition of pS*, zTy� pS*�z� for all y�S*.

rom Theorem 4, pS*�z��0. Then yTpS*�z�−1z�1 for all y�S*,
hich means pS*�z�−1z� �S*�*. Since S is closed and contains 0,
e have �S*�*=S �38�, and pS*�z�−1z�S. Let B�pS*�z�−1z ,r� be a

losed ball in aff S of radius r�0 centered at pS*�z�−1z. Let x
pS*�z�−1z+rz / �z�. Obviously, x�B�pS*�z�−1z ,r�. Because yz

Tx
1+rpS*�z� / �z��1 where yz�S*�aff S such that pS*�z�=zTyz

see Theorem 4�, we have x� �S*�*, i.e., x�S. Hence

S*�z�−1z� ri S, and pS*�z�−1z� rb S. This proof is illustrated in
ig. 3.
THEOREM 6. Let z be a point in aff S. Then z� ri S if and only

f pS*�z�
1.
Proof. Suppose that z is a point other than 0. Theorem 5 asserts

hat pS*�z�−1z� rb S. If pS*�z�
1, z is strictly between 0 and

S*�z�−1z, and from Lemma 2 we obtain z� ri S. Theorem 4 af-
rms that pS*�z��0. If pS*�z��1, then z lies on the relative
oundary of S or outside S. When z is just 0, pS*�z�=0
1. Con-
ersely, pS*�z�=0 implies z=0� ri S.

Force-Closure Conditions and Test

4.1 Classification of W. The convex hull of the primitive
renches, denoted by W, has been used in force-closure analysis

or a long time. However, its dimension was always neglected or
ssumed to be 6 in the 3D work space. In fact, the dimension of

may be less than 6.
By the dimension and the relative position to the origin 0, we

lassify W into four categories:

�a� dim W
6 and 0�aff W �Fig. 4�a��.
�b� dim W
6 and 0�aff W �Fig. 4�b��.
�c� dim W=6 and 0� ri W �Fig. 4�c��.
�d� dim W=6 and 0� ri W �Fig. 4�d��.

When ignoring the dimension of W, the ray-shooting based
lgorithm �4� does not have a solution in case �a�, and mistakes 0
or an interior point of W in case �b� if 0� ri W. Hence, in what
ollows, we take into account the dimension of W and suggest a
ay to avoid these errors.

4.2 Force-Closure Conditions. Our conditions originate

ig. 3 Illustration of Theorem 5. The point pS*„z…−1z is on the
elative boundary of S.
rom Mishra et al. �2�, who wrote:

ournal of Manufacturing Science and Engineering
PROPOSITION 1. A grasp is force-closure if and only if 0
� int W.

Theorem 1 gives directly:
PROPOSITION 2. 0� int W if and only if dim W=6 and 0

� ri W (Fig. 4(d)).
The convex cone determined by W and 0 consists of the result-

ant wrenches that can be generated by the grasp. If dim W
6 and
0� ri W, then the grasp can generate resultant wrenches in a
proper subspace of R6, namely aff W, as depicted in Fig. 4�b�.
Such a grasp is said to be partially force-closure �10�. Let wc be
the centroid of the primitive wrenches wij and T the translate of W
by −wc

wc =
1

mn�
i=1

m

�
j=1

n

wij �10�

T = W − wc �11�

From Eq. �7� and Theorem 2 it follows that wc� ri W. Thus T is
a compact convex set in R6 with 0� ri T, and aff T is a subspace
of R6. Furthermore, we readily have

PROPOSITION 3. The following statements are true: (1) dim W
=6 if and only if dim T=6; (2) 0� ri W if and only if −wc� ri T.

According to Proposition 3, the properties of W can be inves-
tigated from T. Let

T = �w11 − wc ¯ wij − wc ¯ wmn − wc� � R6�mn �12�

PROPOSITION 4. dim T=6 if and only if rank T=6.
Proof. As aff T is a subspace of R6 and is equal to the range of

the matrix T, the dimension of aff T equals the rank of T, i.e.,
dim T=rank T.

Let T* be the polar set of T. From Eqs. �7�, �8�, and �11�, T* can
be expressed by

T* = �u � R6��wij − wc�Tu � 1, i = 1,2, . . . ,m, j = 1,2, . . . ,n�

�13�

Let p denote the support function of T*:

p�w� = sup
u�T*

wTu �14�

for all w�R6 for which the supremum is finite.
PROPOSITION 5. −wc� ri T if and only if p�−wc�
1.

Fig. 4 Classification of W. „a… dim W<6 and 0−aff W. „b…
dim W<6 and 0«aff W. „c… dim W=6 and 0−ri W. „d…
dim W=6 and 0«riW.
Proof. If p�−wc�
1, then from Theorem 4 we have −wc

NOVEMBER 2006, Vol. 128 / 963
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aff T. From Theorem 6 it is straightforward that −wc� ri T if
nd only if p�−wc�
1.

The above force-closure conditions and their relations are sum-
arized in Fig. 5. In addition, it especially needs to be cautious

bout:

1. dim W=6 implies rank G=6, but the converse does not hold
true. The dimension of W is equal to the rank of T and may
be less than the rank of G.

2. p�−wc�
1 implies −wc�aff T, but −wc�aff T must be
confirmed prior to computing p�−wc�. p�−wc� is finite and
can be computed only if −wc�aff T.

4.3 Force-Closure Test Algorithm. Referring to Fig. 5, the
orce-closure test can be formulated as:

Step 1: Calculate the primitive wrenches wij by Eqs. �2� and
6�.

Step 2: Compute the centroid wc by Eq. �10�.
Step 3: Construct the matrix T by Eq. �12� and calculate its

ank.
Step 4: Determine if −wc�aff T. Since aff T equals the range of

, −wc�aff T if and only if the linear system Tz=−wc is consis-
ent, or �TT+wc−wc�=0, where T+ is the pseudoinverse of T. If
TT+wc−wc�=0, then go to Step 5; otherwise the algorithm
erminates.

Step 5: Compute p�−wc�. From Eqs. �13� and �14�, it is formu-
ated as an LP problem:


Maximize − wc
Tu

subject to �wij − wc�Tu � 1, i = 1,2, . . . ,m, j = 1,2, . . . ,n
�
�15�

he algorithm ends.
The algorithm turns out four types of results corresponding to

he foregoing categories of W:

�a� rank T
6 and �TT+wc−wc��0.
�b� rank T
6 and �TT+wc−wc�=0.
�c� rank T=6 and p�−wc��1.
�d� rank T=6 and p�−wc�
1 �force-closure�.

This formulation of force-closure test is closely related to the
ypical ray-shooting problem �4�, i.e., a problem of finding the
ntersection of a ray with the boundary of a polytope. Denote the
ay from the point wc to the origin 0 by

R = �− �wc + wc�� � 0�

here wc�0. The condition −wc�aff T, determined by �TT+wc
wc�=0, ensures that R is contained in aff T and intersects with

b W, which in turn guarantees that p�−wc� is finite. Hence, since
* is nonempty, the LP problem �15� always has solution and can
e solved in O�mn� time. In fact, intersection happens at the point
p�−wc�−1wc+wc, as shown in Fig. 6. Then p�−wc� equals the

atio of the distance between wc and 0 to the one between wc and
he intersection point. Therefore, p�−wc�
1 means 0� ri W. This
eometric insight into p�−wc� first helps us skip the computation
f the distances and simplify the original ray-shooting approach to
orce-closure test �4,34�. Moreover, p�−wc� intuitively suggests a
isk of losing force-closure, or its reciprocal gives a safety factor

Fig. 5 Logic relations among vario
f force-closure.
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5 Optimal Grasp Planning

5.1 Performance Index of a Grasp Configuration. The pre-
vious section indicates that p�−wc� can be applied to reflecting the
force-closure property of grasps. Hereafter, we give a further
physical interpretation of p�−wc�. Assume that dim W=6, and
then the force-closure property is entirely represented by p�−wc�.

Equation �10� shows that wc is the convex combination of wij
with the coefficients

�c,ij =
1

mn
, i = 1,2, . . . ,m, j = 1,2, . . . ,n �16�

Substituting Eq. �16� into Eq. �4� with � j=1
n cos�2j� /n�

=� j=1
n sin�2j� /n�=0 yields

fc,in =
1

m
, fc,io = fc,it = 0 �17�

Hence, wc is the resultant wrench of the contact forces fc,i
= �1/m 0 0�T, i=1,2 , . . . ,m, i.e.,

wc = �
i=1

m

Gifc,i �18�

When p�−wc��1, 0� ri W and the grasp is not force-closure.

force-closure conditions in Sec. 4.2

Fig. 6 Point −p„−wc…
−1wc+wc is the intersection of the ray Ṙ

with the relative boundary of W. „a… If p„−wc…Ð1, then 0−ri W.
us
„b… If 0<p„−wc…<1, then 0«ri W.
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�−wc� implies how far the grasp is away from force-closure.
Let us pay more attention to the case of p�−wc�
1. Then 0
ri W, and the affine hull aff W is a subspace of R6, which

omprises the resultant wrenches that the grasp can apply on the
ripped object. From wc�aff W it follows that −wc�aff W, i.e.,
here exist non-negative reals �ij, i=1,2 , . . . ,m and j
1,2 , . . . ,n such that

− wc = �
i=1

m

�
j=1

n

�ijwij �19�

his equation can be rewritten as

− wc = ��
i=1

m

�
j=1

n
�ij

�
wij = �wa �20�

here

� = �
i=1

m

�
j=1

n

�ij �21�

wa = �
i=1

m

�
j=1

n
�ij

�
wij �22�

rom Eq. �4�, � specifies the sum of the normal force components
or all contacts. Equation �20� indicates that wa�R and

� =
�wc�
�wa�

�23�

rom Eqs. �7�, �21�, and �22� we see that wa�W. Thus from Eq.
23�, � attains its minimum value �� when wa is the intersection
oint of R with rb W �Fig. 6�b��, i.e.,

wa = − p�− wc�−1wc + wc

�� =
�wc�

�− p�− wc�−1wc + wc�
=

1

p�− wc�−1 − 1

he derivative of �� with respect to p�−wc� is

d��

dp�− wc�
=

1

�1 − p�− wc��2 � 0 �24�

his means that �� is increasing on p�−wc�� �0,1�.
Suppose that �c,ij

− , i=1,2 , . . . ,m and j=1,2 , . . . ,n are non-
egative coefficients satisfying Eq. �19� with �� =�i=1

m � j=1
n �c,ij

− .
ubstituting �c,ij

− , j=1,2 , . . . ,n into Eq. �3� yields the contact
orces fc,i

− satisfying

− wc = �
i=1

m

Gifc,i
− , �25�

fc,in
− � 0, �26�

�fc,io
− �2 + �fc,it

− �2 � ��fc,in
− �2 �27�

�
i=1

m

fc,in
− = �� �28�

Let fint= �fint,1
T fint,2

T
¯ fint,m

T �T where

fint,i = fc,i + fc,i
− �29�

ubstituting Eq. �17� into Eq. �29� leads to

f int,in = fc,in
− +

1

m
, f int,io = fc,io

− , f int,it = fc,it
− �30�
ombining Eqs. �18�, �25�, and �29� indicates

ournal of Manufacturing Science and Engineering
�
i=1

m

Gifint,i = 0 �31�

From Eqs. �26�, �27�, and �30�, we obtain

f int,in � fc,in
− � 0 �32�

f int,io
2 + f int,it

2 = �fc,io
− �2 + �fc,it

− �2 � ��fc,in
− �2 
 �2f int,in

2 �33�

Equation �31� means that fint is an internal force, while Eqs. �32�
and �33� indicate that fint,i is strictly inside the friction cone.
Hence fint is a strictly internal force �6–10�.

Let

i =
�f int,io

2 + f int,it
2

�f int,in
for i = 1,2, . . . ,m �34�

The value i implies the inclination angle of fint,i. Smaller values
i, i=1,2 , . . . ,m mean higher grasp stability �8�. In grasp plan-
ning, we hope i as small as possible.

Substituting Eqs. �30� and �33� into Eq. �34� yields

i � ̄i �35�

where

̄i =
fc,in

−

fc,in
− + 1/m

�36�

From Eqs. �35� and �36�, ̄i is an upper bound of i and increasing

on fc,in
− . Minimizing fc,in

− will minimize ̄i, which in turn reduces
i. However, note that minimization of fc,in

− , i=1,2 , . . . ,m is a
multiobjective optimization problem (MOP). The most common
method in MOP is the point estimate weighted-sums approach
�39�, which characterizes the noninferior solution in terms of the
optimal solution of a composite objective function. Each objective
is multiplied by a strictly positive scalar weight and the weighted
objectives sum into the composite objective function. It is natural
to take the weights of fc,in

− , i=1,2 , . . . ,m equally, so all of them
are taken to be unity. Then the composite objective function is just
�� , as given by Eq. �28�. Hence we may reduce i by minimizing
�� . From Eq. �24�, this can be done by minimizing p�−wc�.

Therefore, p�−wc� is relevant to the inclination angles of con-
tact forces, and a small p�−wc� benefits the grasp stability.

5.2 Constraints on the Grasp Configuration. First, the con-
tact points should be restricted within some smooth pieces of the
object surface. If a contact is located at a singular point, then
ni ,oi , ti therein are uncertain and the grasp matrix Gi cannot be
formulated. We denote this constraint by ri�Ri, i=1,2 , . . . ,m
where points in region Ri are nonsingular.

Second, dim W=6 is necessary to force-closure �Fig. 5�. Herein
we propose two necessary conditions for dim W=6, which are
directly related to the grasp configuration. If these conditions are
fulfilled, then dim W=6 in general.

PROPOSITION 6. dim W=6 only if the following conditions are
both satisfied: (1) at least three contact points are noncollinear;
(2) at least two unit inward normals are different.

Proof. If condition �1� is not satisfied, i.e., all the contact points
are collinear, then rank G=5 �40�. As W lies in the range of G,
dim W� rank G
6.

Suppose that condition �2� is not satisfied, i.e., ni=n1 for all i
=2,3 , . . . ,m. Then oi=o1 and ti= t1 for i=2,3 , . . . ,m. Applying
elementary column operations to the matrix T, we obtain

T̃ = �0 w12 − w11 ¯ w1n − w11 w21 − w11 ¯ wmn − w1n�

= �0 G1 �s2 − s1� ¯ G1 �sn − s1��G2 − G1�s1 ¯ �Gm − G1�sn�

˜ ˜
Apparently, rank T=rank T. Partition T as
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T̃ = �T̃11 T̃12

T̃21 T̃22

	
here T̃11, T̃21�R3�n and T̃12, T̃22�R3��m−1�n. Note that T̃12

0 and rank T̃11
3. Thus dim W=rank T
6.
To comply with condition �1�, one may choose Ri for three

ontacts such that their positions ri�Ri are noncollinear. Condi-
ion �2� can be treated in the same manner.

5.3 Grasp Planning Algorithm. Taking the above constraints
nto account, the optimal grasp planning problem is formulated as
he following optimization problem, where p�−wc� serves as the
erformance index:


Minimize p�− wc�
subject to ri � Ri,i = 1,2, . . . ,m

� �37�

The iterative procedure of Eq. �37� can be divided into two
hases. When p�−wc��1, the grasp is not force-closure. As
�−wc� decreases to unity, −p�−wc�−1wc+wc is getting towards 0
nd 0 is getting towards rb W �Fig. 6�a��. This means that the
rasp is approaching force-closure. When p�−wc�
1, the grasp is
orce-closure. As p�−wc� keeps decreasing, the inclination angles
f internal forces can be smaller and the grasp becomes more
table.

Different from the algorithm �32�, this one considers the grasp
tability in addition to the intuitive safety of force-closure. The
erformance index can be computed in O�mn� time such that the
lgorithm is more efficient than the others �16,17�. Moreover, the
lanning algorithm can be applied to arbitrary 3D objects with
iecewise smooth surface.

In addition, notice that the goal of fixture design is similar to
rasp planning, i.e., positioning a number of contacts properly on
he object surface to immobilize the object and equivalently to
quilibrate any external wrenches on the object. The force-closure
roperty, including form-closure as a frictionless case, is a basic
equirement of both topics. Hence the ray-shooting approach is
lso available for fixture design. Such an application can be found
n �33�. However, the optimization criterion of fixturing considers
asy access or position accuracy rather than stability. Owing to
his, the value of p�−wc� may appear in the constraint other than
he performance index.

Numerical Examples
We implement the proposed algorithms using MATLAB on a

entium-M notebook and demonstrate their efficiency with two
xamples. The friction coefficient is assumed to be �=0.3 and
ach friction cone is represented by a 100-sided polyhedral con-
ex cone.

Example 1. As depicted in Fig. 7, a cast gold ingot may be
xtured differently for removing the surplus gold over the speci-

Fig. 7 Gold ingot used as money in feudal China
ed weight. The more surface the deburring instrument can ac-
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cess, the easier this work will be. Therefore we try to use less
fixels. Yet force-closure must be ensured. First, the ingot is sup-
ported by three fixels �Fig. 7�a��:

r1 = �5 0 0�T, r2 = �− 5 − 10 0�T, r3 = �− 5 10 0 �T

n1 = �0 0 1�T, n2 = �0 0 1�T, n3 = �0 0 1�T

In this case, dim W=rank T=5. �TT+wc−wc�=1.0, which implies
that 0�aff W. We also notice that rank G=6, so dim W

 rank G.

Second, four fixels are located collinearly �Fig. 7�b��:

r1 = �0 − 40 15�3�T, r2 = �0 − 15�3/2 15�3�T,

r3 = �0 15�3/2 15�3�T, r4 = �0 40 15�3�T

n1 = �0 �3/2 1/2�T, n2 = �0 3/5 − 4/5�T,

n3 = �0 − 3/5 − 4/5�T, n4 = �0 − �3/2 1/2�T

Similarly, dim W=rank T=5. Since �TT+wc−wc�=0, −wc
�aff T. From Eq. �15�, we obtain p�−wc�=0.1649
1. Thus 0
� ri W. The required CPU time is 68.60 ms.

Third, the fixels are relocated �Fig. 7�c��

r1 = �0 − 40 15�3�T, r2 = �15 0 10�3�T,

r3 = �0 40 15�3�T, r4 = �− 15 0 10�3�T

n1 = �0 �3/2 1/2�T, n2 = �− �3/2 0 1/2�T,

n3 = �0 − �3/2 1/2�T, n4 = ��3/2 0 1/2�T

Then dim W=rank T=6 and �TT+wc−wc�=0. Moreover, we ob-
tain p�−wc�=1.9245�1 with the CPU time of 64.79 ms. Hence,
0�aff W but 0� int W.

Finally, the fixel locations are more rational �Fig. 7�d��:

r1 = �0 − 30 10�3�T, r2 = �0 30 10�3�T,

r3 = �15�3/2 0 15�3�T, r4 = �− 15�3/2 0 15�3�T

n1 = �0 �3/2 1/2�T, n2 = �0 − �3/2 1/2�T,

n3 = �− 3/5 0 − 4/5�T, n4 = �3/5 0 − 4/5�T

Then dim W=rank T=6 and �TT+wc−wc�=0. With the CPU time
of 90.05 ms, we attain p�−wc�=0.1649
1. Therefore, 0� int W.

By the proposed force-closure test algorithm, we see that only
�d� is force-closure. Neither �a� nor �b� is force-closure, since
dim W
6 in them. If the dimension is ignored, the test for �a�
will fall into endless computation and �b� will be mistaken for
force-closure, because 0� int W is confused with 0� ri W. �c�
fails due to 0� int W. The convex hulls W for �a�–�d� are repre-
sented in Figs. 4�a�–4�d�.

Example 2. The object to be grasped is a jar, whose surface
consists of a surface of revolution S and a plane P, as shown in
Fig. 8. They can be expressed in parametric form:

S:�rx = �10 cos��v/30� + 20�cos �

ry = �10 cos��v/30� + 20�sin �

rz = v
� P:�rx = � cos �

ry = � cos �

rz = − 20
�

where −20�v�40, 0���2�, 0���15, 0���2�.
Let us determine an optimal force-closure grasp on the jar with

three frictional point contacts. Contacts 1 and 2 are located on S
and contact 3 is located on P. The grasp can be specified by u
= �v1 �1 v2 �2 � ��. The initial configuration u0
= �30 � 30 � 5 0� and the constraint on u is given by �−10 �
−10 �+� 0 0��u� �30 �−� 30 2�−� 10 2�� where �=0.01.

The initial grasp is not force-closure since rank G=5, while the
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ank of any grasp matrix subject to the constraint is 6. The itera-
ive procedure of Eq. �37� is described in Fig. 9. A force-closure
rasp is obtained in five iterations with the CPU time of 12.28 s
u5= �1.9705 0.0796� 1.9457 1.0291� 4.2551 0.0813��, for
hich p�−wc�=0.4889�. After the 15th iteration, u15
�5.9022 0.0160� 5.8499 1.0238� 0.0008 0.0990�� and p�−wc�
0.0230. Thus we obtain an optimal grasp as depicted in Fig. 8.
he CPU time is 38.60 s.

Conclusion

�1� The convex hulls of primitive wrenches are classified into
four categories by their dimensions and relative positions to
the origin of the wrench space �Fig. 4�. It is shown that a
grasp is force-closure if and only if the convex hull is 6D
and the origin is its relative interior point.

�2� We point out the importance of the dimension of the con-
vex hull. Disregarding the dimension, the original ray-
shooting approach may make mistakes in force-closure test
�4�. To avoid such mistakes, we supplement the condition
for the convex hull being 6D; that is, the grasp matrix is
full row rank and a certain linear system is consistent.

�3� Whether the origin is a relative interior point of the convex
hull is determined by the simplified ray-shooting approach.
Its geometric meaning is illustrated clearly in Fig. 6. The
consistency of a certain linear system guarantees that the
LP formulation in this approach always has an optimal so-
lution.

�4� As a whole, an exact and efficient force-closure test algo-
rithm is developed.

ig. 8 Towards an optimal grasp on a jar. The dots indicate the
nitial positions of the fingertips. During the optimization, they
race three curves on the jar surface up to the optimal grasp
onfiguration.
Fig. 9 p„−wc… versus the iteration number in Example 2

ournal of Manufacturing Science and Engineering
�5� Our ray-shooting approach presents a the-smaller-the-better
performance index. From the ray-shooting viewpoint, it in-
dicates intuitively the force-closure safety. Relevant to the
inclination angles of contact forces, physically it indicates
the grasp stability. Using it, we put forward an algorithm
for planning force-closure grasps of 3D objects.

�6� The proposed algorithms cover frictionless point contact.
By linearizing the constraint at soft finger contact �41�, they
can be applied to such contact without difficulty.

�7� Needed by this research, we extend theorems in convex
analysis for interiors to relative interiors and derive some
new results.
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Nomenclature
m � number of contacts
ri � position vector of contact i �i=1,2 , . . . ,m�

ni ,oi , ti � unit inward normal and two tangent vectors at
contact i, ni=oi� ti

� � Coulomb friction coefficient at contact
fi � contact force at contact i

f in, f io, f it � force components along ni, oi, ti
Gi � grasp matrix at contact i
wi � wrench produced by fi on the object

f � total contact force, f= �f1
Tf2

T
¯ fm

T �T�R3m

G � total grasp matrix, G= �G1G2¯Gm��R6�3m

wext � external wrench on the object
n � number of side edges for linearizing the fric-

tion cone
s j � the jth edge vector of the polyhedral cone �j

=1,2 , . . . ,n�
wij � primitive wrench
W � convex hull of the primitive wrenches
wc � centroid of the primitive wrenches
T � translate of W by −wc
T � T= �w11−wc¯wij −wc¯wmn−wc��R6�mn

T* � polar set of T
p � support function of T*

p�−wc� � value of p with respect to −wc
0 � origin of a space

R � ray from wc to 0
aff�·� � affine hull of a set

dim�·� � dimension of a set, i.e., the dimension of the
affine hull of the set

ri�·� � relative interior of a set, i.e., the interior of the
set in its affine hull

cl�·� � closure of a set
rb�·� � relative boundary of a set
int�·� � interior of a set

conv�·� � convex hull of a set
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