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Abstract

Friction uncertainty and contact position uncertainty may have a
disastrous effect on the closure properties of grasps. This paper re-
flects our approach to handling these uncertainties in force-closure
analysis. The former uncertainty is measured by the possible re-
duction rate κ of friction coefficients, while the radius ρ of contact
regions is used to quantify the latter uncertainty. The actual con-
tact point may deviate from the desired position but not farther than
ρ ·ρS , the supremum of ρ without loss of force-closure, indicates the
grasp tolerance to contact position uncertainty. For investigating the
above uncertainties systematically, we propose three new problems
in force-closure: whether a grasp with given κ and ρ achieves force-
closure, what value ρS equals if κ is given, and how ρS varies versus
κ . To facilitate their solutions, we extend the scope of the infinites-
imal motion approach from form-closure analysis to force-closure.
A necessary and sufficient condition for force-closure is deduced by
means of the duality between some convex cones, which play the
key role in solving the problems. Finally, efficient algorithms are
developed and applied to two illustrative examples.

KEY WORDS—duality, force-closure, grasping uncertainty,
infinitesimal motion approach, multifingered robot hand

1. Introduction

During the past two decades, closure properties, including
form-closure and force-closure, have been extensively studied
in robotic grasping. Traditionally, a grasp is said to be form-
closure if the object in any motion collides with the contacts,
while a grasp is said to be force-closure if the contact forces
can equilibrate any external wrench.

Form-closure is related only to the object geometry and
the contact positions. It can be considered as a pure geometric
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property (Bicchi 1995). On the other hand, form-closure and
force-closure are dual to each other (Nguyen 1988). If con-
tacts are frictionless, force-closure has the same mathematical
model as form-closure (Lakshminarayana 1978). Thus, in this
paper, form-closure is included in force-closure as a special
(frictionless) case.

1.1. Related Work on the Closure Properties

In this section, let us review previous research on the closure
properties. There are several primary categories.

1.1.1. Required Number of Contacts

The number of contacts necessary for force-closure is a fun-
damental topic, which dates from the 19th century. Reuleaux
(1875), who originally studied form-closure of mechanisms,
indicated that four contacts are necessary to achieve a two-
dimensional (2D) form-closure grasp. Subsequently, Somov
(1900) found that seven contacts are needed in the three-
dimensional (3D) case. Lakshminarayana (1978) reported the
results. Mishra, Schwarz, and Sharir (1987) provided an up-
per bound of the number of contacts necessary to synthesize
form-closure grasps on arbitrary objects. Markenscoff, Ni,
and Papadimitriou (1990) proved that four/seven contacts are
sufficient to achieve a form-closure grasp of a 2D/3D object
without rotational symmetry, respectively. Also, three/four
contacts are sufficient for any 2D/3D object with friction. Mur-
ray, Li, and Sastry (1994) summarized the number of contacts
required for various contact models to grasp an object. Bic-
chi (1995) generalized the Reuleaux–Somoff condition, i.e.,
m+1 contacts are required to partially form-restrain an object
with respect to anm-dimensional subspace.

1.1.2. Grasping Quality Evaluation

Li and Sastry (1988) presented three quality measures: the
smallest singular value and the volume of the grasp matrix as
well as a task-oriented measure. Trinkle (1992) produced a
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quantitative measure of how far a grasp is from form-closure.
Buss, Hashimoto, and Moore (1996) transformed the nonlin-
ear friction constraints into positive definiteness constraints on
a symmetric matrix, whose smallest eigenvalue was taken as
a measure of the grasp stability margin. Zuo and Qian (1998)
also proposed a quantitative index, which denotes the extent of
a grasp to comply with the friction constraints. In terms ofQ

distance, Zhu and Wang (2003) quantified the capability of a
grasp to equilibrate external wrenches. Other quality measures
have been made by Abel, Holzmann, and McCarthy (1985),
Barber et al. (1987), Ferrari and Canny (1992), Park and Starr
(1992), Bekey et al. (1993), Mirtich and Canny (1994),Varma
and Tasch (1995), and Zhang et al. (1997). Some quality mea-
sures can be applied to planning optimal grasps (e.g., Ferrari
and Canny 1992; Zhu and Wang 2003).

1.1.3. Force-closure Conditions and Tests

There have been many conditions and testing methods for
force-closure. We classify them into two schools.

The first school investigates force-closure in the wrench
space. It began with the condition that the primitive contact
wrenches positively span the entire wrench space (Salisbury
and Roth 1983). This condition is equivalent to the situation
that the origin of the wrench space is strictly inside the con-
vex hull of the primitive contact wrenches (Mishra, Schwarz,
and Sharir 1987). Without linearization of the friction cone,
Li and Sastry (1988) asserted that a grasp is force-closure if
and only if the origin of the wrench space is an interior point
of the image of the grasp matrix with respect to the force do-
main. These statements imply that a grasp is force-closure if
and only if it can generate resultant wrenches to constitute
a convex hull containing the origin of the wrench space as
an interior point. Nakamura, Nagai, and Yoshikawa (1989)
adopted six linearly independent resultant wrenches and their
opposites as vertices of such a convex hull. In fact, only seven
resultant wrenches are enough as long as their convex hull
is an origin-centered simplex in the wrench space. Based on
these conditions, several algorithms for the force-closure test
have been developed. Chen and Burdick (1993a) put forward
a qualitative force-closure test for 2Dn-finger grasps. To de-
termine if the origin lies strictly inside the convex hull, Liu
(1999) proposed a ray-shooting based algorithm, while Zhu
and Wang (2003) presented an algorithm by computing theQ

distance between the origin and the convex hull.
The second school studies force-closure in the contact

force space, and it is led by the condition that the grasp
matrix is surjective and that there is a strictly internal force
(Murray, Li, and Sastry 1994). Various forms of this con-
dition have appeared in the literature (Bicchi 1995; Chen,
Walker, and Cheatham 1995; Buss, Hashimoto, and Moore
1996; Yoshikawa 1996; Zuo and Qian 1998; Han, Trinkle,
and Li 2000). Bicchi (1995) and Yoshikawa (1996) took the
kinematics of the grasping mechanism into account. Zuo
and Qian (1998) extended the condition to soft multifingered

grasps. Based on the result by Buss, Hashimoto, and Moore
(1996), Han, Trinkle, and Li (2000) further cast the friction
constraints into linear matrix inequalities and formulated the
force-closure problem as a convex optimization problem in-
volving linear matrix inequalities. For grasps with specific
contact number and type, the force-closure condition was dis-
cussed in more detail (e.g., Nguyen 1986, 1988; Ponce, Stam,
and Faverjon 1993; Ponce and Faverjon 1995; Ponce et al.
1997; Liu 2000; Li, Liu, and Cai 2003).

The first school’s conditions require that the convex hull
of the primitive contact wrenches be six-dimensional and the
origin of the wrench space be in its relative interior. The ex-
istence of strictly internal forces is a necessary and sufficient
condition for the origin being a relative interior point of the
convex hull. On this basis, if the grasp matrix is surjective, the
convex hull is six-dimensional and the origin lies in its interior.
In addition, the surjection of the grasp matrix is a necessary
condition for the convex hull being six-dimensional. Hence,
the conditions of the two schools are equivalent. For friction-
less grasps, they are of the same mathematical model (e.g.,
Trinkle 1992; Murray, Li, and Sastry 1994).

1.1.4. Force-closure Grasp Planning

In the beginning, the grasp planning focused on the grasps
whose contact number and type are determined. Nguyen
(1986, 1988) computed independent regions for two fric-
tional and for four frictionless contacts to achieve force-
closure grasps on polygons. Markenscoff and Papadimitriou
(1989) proposed an analytic method for calculating the opti-
mum grip of polygonal objects. Park and Starr (1992) syn-
thesized three-fingered grasps on polygonal objects. Chen
and Burdick (1993b) considered two-fingered antipodal point
grasps of irregular 2D and 3D objects. Ponce and his col-
leagues (1993, 1995, 1997) extended Nguyen’s idea to two-
finger, three-finger and four-finger force-closure grasps on 2D
curved, polygonal, and polyhedral objects, respectively. Tung
and Kak (1996) brought forward an algorithm for synthesiz-
ing two-fingered force-closure grasps on polygons.

In recent years, planning algorithms have been oriented to
grasps with arbitrary contact number. Liu (2000) presented an
algorithm for computingn-finger grasps on polygons. Ding,
Liu, and Wang (2001) considered 3Dn-finger force-closure
grasps wherek fingers have been located in advance. With the
ray-shooting based algorithm (Liu 1999), Ding et al. (2001)
developed an algorithm for automatic selection of fixturing
surfaces and points on polyhedral workpieces. By minimizing
theQ distance, Zhu and Wang (2003) presented an algorithm
for optimal grasp planning on 3D objects with curved surfaces.

1.2. Summary of Our Work

Previously, only a few papers have paid attention to the uncer-
tainties in robotic grasping. Nakamura, Nagai, andYoshikawa
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(1989) mentioned friction uncertainty. Pai and Leu (1991)
have computed the end-effector uncertainty resulting from the
robot and have shown that the total uncertainty is the Minkow-
shi difference of the end-effector uncertainty and the task po-
sition uncertainty. Cheah et al. (1998) considered a grasping
control for multifingered robot hands with uncertain Jaco-
bian matrices. Schlegl and Buss (1998) compensated contact
point position errors by the internal impedance. Up to now, no
one has regarded the influence of uncertainties on the closure
properties. In practice, however, some amount of uncertainty
is inevitable and may cause a destructive effect.

This paper copes with grasping uncertainties in force-
closure analysis. Force-closure is mainly threatened by fric-
tion uncertainty and contact position uncertainty. The former
only occurs in the frictional case, while the latter usually oc-
curs. We quantify these as the possible reduction rateκ of
friction coefficients and the radiusρ of contact regions, re-
spectively. The actual contact point may fall in the regionR

of the object surface contained in a closed ball of radiusρ

centered at the desired contact point.ρS , the supremum ofρ
without loss of force-closure, indicates the grasp tolerance to
contact position uncertainty.Whether a grasp with givenκ and
ρ achieves force-closure, what valueρS equals ifκ is given,
and howρS varies versusκ are three new problems we are
solving in this paper. Moreover, because the existing meth-
ods are unsuitable for the problems (this will be discussed
at the beginning of Section 4), we deal with force-closure
analysis using an infinitesimal motion approach, which was
originally applied to form-closure only (Bicchi 1995; Qian,
Qiao, and Tso 2001). A necessary and sufficient condition for
force-closure is deduced from the duality between four con-
vex cones (see Figures 5 and 6), which are closely related
to the closure properties. Compared with the work of Bicchi
(1995) on form-closure, our work covers not only friction-
less point contact but also point contact with friction and soft
finger contact. Thus, the result is general. Different from the
methods of Salisbury and Roth (1983), Liu (1999), and Zhu
and Wang (2003), ours does not linearize the friction cone.
Until now, the linearization could not be applied to soft fin-
ger contact. Simpler than the approaches taken by Murray,
Li, and Sastry (1994), Chen, Walker, and Cheatham (1995),
Zuo and Qian (1998), Buss, Hashimoto, and Moore (1996),
and Han, Trinkle, and Li (2000), our force-closure test need
not compute the rank and the null space of the grasp matrix.
Finally, efficient algorithms are developed and demonstrated
with two numerical examples.

The rest of this paper is arranged as follows. In Section 2 we
review basic knowledge about robotic grasping. In Section 3
we discuss the uncertainties in force-closure analysis and their
quantification. Subsequently, new problems in force-closure
are presented. In Section 4 we apply an infinitesimal motion
approach to force-closure analysis and then propose a neces-
sary and sufficient condition for force-closure. In Section 5,
algorithms for solving the presented problems are developed.

Fig. 1. An object grasped by a multifingered hand.

In Section 6 we implement the algorithms with two illustra-
tive examples. A conclusion is made in Section 7 to highlight
the key points. For use in Section 4, a method for computing
the polar set of a compact convex set containing the origin as
an interior point is addressed briefly in the Appendix.

2. Preliminaries

Consider an object grasped by a multifingered robot hand,
as shown in Figure 1. Suppose that the grasp consists ofm0

frictionless point contacts (FPCs),mf point contacts with fric-
tion (PCwFs), andms soft finger contacts (SFCs). The total
number of contacts is

m = m0 + mf + ms.

Figure 2 depicts the three common contact types.
The total contact force exerted upon the grasped object by

the contacts can be written as

fff = [
fff T

1 fff T
2 · · · fff T

m

]T ∈ R
q (1)

whereq = m0 +3mf +4ms andfff i ∈ R
qi is the contact force

at contacti (i = 1, 2, . . . , m). For the three contact types,fff i

andqi are listed as follows:

FPC:fff i = [fin], qi = 1

PCwF:fff i = [fin fio fit ]T, qi = 3

SFC:fff i = [fin fio fit fis]T, qi = 4

wherefin is the normal force,fio andfit are two tangential
force components, andfis is the spin moment about the contact
normal.

The resultant wrench on the object can be calculated by

www = GfGfGf (2)
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(a)              (b)                  (c) 

Fig. 2. Three common contact types: (a) frictionless point contact, at which the fingertip can exert only a normal force, (b)
point contact with friction, at which the force exerted by the fingertip can be resolved into a normal force and two tangential
force components, and (c) soft finger contact, at which the force exerted by the fingertip can be resolved into a normal force,
two tangential force components and a spin moment about the contact normal.

where www ∈ R
6 is the resultant wrench andGGG =

[GGG1 GGG2 · · · GGGm] ∈ R
6×q is the grasp matrix.GGGi ∈ R

6×qi has
one of the following forms determined by its contact type

FPC: GGGi =
[

nnni

rrri × nnni

]
(3)

PCwF: GGGi =
[

nnni oooi ttt i

rrri × nnni rrri × oooi rrri × ttt i

]
(4)

SFC: GGGi =
[

nnni oooi ttt i 000
rrri × nnni rrri × oooi rrri × ttt i nnni

]
(5)

whererrri = [xi yi zi ]
T is the position vector of contacti, nnni is

the unit inward normal at contacti, andoooi andttt i are two unit
tangent vectors satisfyingnnni = oooi × ttt i . For SFC, the fingertip
contacts the object on a small area, generally elliptic, andrrri

means the position vector of the area center.
From now on, we represent a grasp by its grasp matrix.
Letwwwext denote the external wrench. For equilibrium,

www = −wwwext .

To avoid separation and slippage at contact,fff must satisfy
the following contact constraints

FPC: fin � 0 (6)

PCwF: fin � 0,
√

f 2
io + f 2

it � µifin (7)

SFCl: fin � 0,

√
f 2

io + f 2
it

µi

+ |fis |
µsi

� fin (8)

SFCe: fin � 0,

√
f 2

io + f 2
it

µ2
i

+ f 2
is

µ′2
si

� fin (9)

whereµi is the coefficient of tangential friction at contacti,
andµsi andµ′

si
are the coefficients of torsional friction for SFC

with linear approximation (SFCl) and elliptic approximation
(SFCe), respectively (Howe, Kao, and Cutkosky 1988).

DEFINITION 1. A contact forcefff i is said to be feasible if it

satisfies eqs. (6), (7), (8), or (9). Furthermore, a total contact
forcefff is said to be feasible if everyfff i is feasible.

DEFINITION 2. A resultant wrenchwww is said to be feasible if
there is a feasiblefff such thatwww = GfGfGf .

DEFINITION 3. A graspGGG is said to be force-closure if for
anywwwext , there exists a feasiblewww such thatwww = −wwwext .

3. Grasping Uncertainties and New Problems

A key influence on force-closure is the presence of grasping
uncertainties, which are inevitable in practice and can lead to
unpredictable, probably undesirable, results. So far, however,
no one has mentioned the influence, although a few papers
have referred to grasping uncertainties (Nakamura, Nagai, and
Yoshikawa 1989; Pai and Leu 1991; Cheah et al. 1998; Schlegl
and Buss 1998). Most publications assume that all given data
under discussion are certain. For secure application of a force-
closure grasp, it is necessary to figure out the capability of the
grasp to tolerate grasping uncertainties. In this section, we
first elaborate the uncertainties that threaten the force-closure
property. Then we raise some new force-closure problems
regarding the uncertainties.

3.1. Uncertainties in Force-closure Analysis

The force-closure property of grasps depends on the contact
types and positions. For PCwF and SFC, friction coefficients
are uncertain. For any contact, contact position uncertainty al-
ways exists. Both uncertainties have a stochastic nature. Fig-
ure 3 shows how they influence force-closure.

3.1.1. Friction Uncertainty

Friction, including tangential friction and torsional friction, is
very sensitive to the environment. Under vibration, or with oil
or water on the contact surface, the coefficients are liable to di-
minish. This changes the contact constraints (6)–(9) and thus
affects the force-closure property, as shown in Figure 3(b).
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   (a)                           (b)                      (c) 

Fig. 3. A planar grasp with two point contacts with friction. (a) The grasp is force-closure, as the line connecting the
contact points lies inside both friction cones. (b) Compared with (a), the grasp is not force-closure any more, owing to the
decline of friction coefficients. The dashed lines depict the original friction cones. (c) Compared with (a), the grasp loses the
force-closure property because of tiny deviations at the contact positions. The dashed curves indicate the original contact
positions.

In order to deal with this uncertainty, we regard

µi = 1

κ
µ0i , µsi = 1

κ
µ0si , µ′

si
= 1

κ
µ′

0si
(10)

as the effective friction coefficients, whereµ0i , µ0si , andµ′
0si

are the nominal friction coefficients, andκ is the “possible
reduction rate” (κ � 1).

It is assumed that all the friction coefficients decrease
with the same rateκ. There are two reasons for this assump-
tion. First, the friction coefficients depend on the contact sur-
faces (material, roughness, etc.), the substance between them
(clean, dust, moisture, oil, or something else), and the environ-
ment (vibration, temperature, etc.). The uncertainties of these
factors are often similar at all the contacts. Thus, it seems rea-
sonable to assume a uniqueκ. Even if the possible reduction
rates at different contacts are predicted to be unequal, we may
takeκ to be their maximum value for insurance. Secondly, if
we take different reduction rates for each friction coefficient,
then the problems would be too complicated owing to too
many parameters. As a result, the tolerance of a grasp to the
two uncertainties, for instance, cannot be clearly depicted by
a 2D curve (see Figures 10 and 13).

3.1.2. Contact Position Uncertainty

Often contacts cannot be located exactly in the desired posi-
tions and obtaining their actual positions without uncertainty
is very difficult, even impossible. Contact position uncertainty
can be easily expressed by a position deviation, which occurs
initially when the contact is located and further rises under the
influence of the environment, such as vibration and shock.Ad-
ditionally, in the case of rolling contact, the contact points are
usually changing and uncertain during grasping. The position
deviation alters the grasp matrices (3)–(5), so that the feasible
resultant wrenches that the grasp can generate according to

eq. (2) are transformed. The deviation may grow to such an
extent that computation of force-closure grasps using exact
contact positions may be completely unreliable in reality, as
described in Figure 3(c).

To cope with this uncertainty, we allow the contact position
rrri to be random on the object surfaceS in a regionRi bounded
by a closed ball of radiusρ centered at the desired contact
positionrrr0i . The contact regions can be formulated as

Ri = {rrri ∈ S| ‖rrri − rrr0i‖ � ρ} , i = 1, 2, . . . , m. (11)

Note thatρ must be bounded so that all the points inRi are
regular, becausennni ,oooi , andttt i cannot be determined at singular
points and thenGGG cannot be written as eqs. (3)–(5). LetGGG0

denote the desired grasp that makes contact with the object at
rrr0i , i = 1, 2, . . . , m. Let ρS be the supremum ofρ such that
the grasp keeps force-closure.

3.2. Problem Statement

PROBLEM 1. Suppose that a graspGGG0, a radiusρ, nominal
friction coefficientsµ0i , µ0si , andµ′

0si
, and a possible reduc-

tion rateκ are given. Determine whether the graspGGG0 is force-
closure or not.

PROBLEM 2. Suppose that a graspGGG0, nominal friction co-
efficientsµ0i , µ0si , andµ′

0si
, and a possible reduction rateκ

are given. ComputeρS .

PROBLEM 3. Suppose that a graspGGG0 and nominal friction
coefficientsµ0i , µ0si , andµ′

0si
are given. Draw theρS − κ

curve.
The above problems are defined progressively. Problem 1

is natural and fundamental (bothκ andρ are constant). Prob-
lem 2 is to evaluate the grasp tolerance to contact position
uncertainty under a givenκ (κ is constant, whileρS is an
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unknown to be determined). Problem 3 seeks the overall tol-
erance of a grasp to the two uncertainties by theρS − κ curve
(bothκ andρS are variables).

4. An Infinitesimal Motion Approach to
Force-closure Analysis

When trying to solve problems 1–3 with the existing meth-
ods of force-closure analysis, we have encountered some
difficulties.

Based on linearization of the friction cone, the methods
of the first school (see Section 1.1.3) could not be applied to
SFC until now. Furthermore, theQ distance (Zhu and Wang
2003) is not so convenient to compute.

The methods of the second school (see Section 1.1.3) need
to compute the rank and the null space of the grasp ma-
trix GGG. This is a tough task involving expensive computa-
tion cost, since in our problemsGGG is varying in the contact
regionsRi , i = 1, 2, . . . , m. It is not worth searchingRi ,
i = 1, 2, . . . , m for the minimal rank ofGGG. The computed
minimal rank is trustless, because a minimization algorithm
may possibly meet with an ill-conditioned matrix that is sen-
sitive to the round-off error in computing the rank. Instead
of the rank ofGGG, the smallest non-zero singular value can be
used to indicate how closeGGG is to a matrix of lower rank,
but the computation cost is increased. In addition, to check
the existence of a strictly internal force subject torrri ∈ Ri ,
i = 1, 2, . . . , m, a two-level optimization problem will be
used. Thus, especially for multifingered grasps, the computa-
tional complexity is exorbitant.

The foregoing situation simulates us to explore a novel
way. Inspired by the work of Bicchi (1995) on form-closure,
we analyze the force-closure property from infinitesimal mo-
tions of the grasped object, rather than resultant wrenches or
contact forces as usual. In order to bridge the gap between
form-closure and force-closure, we investigate the relation-
ship between several convex cones regarding infinitesimal
motions and their dual cones concerning contact forces. By
means of their duality, we obtain a new force-closure condi-
tion, which shows superior competence for solving problems
1–3.

4.1. Infinitesimal Motion of a Rigid Object

An infinitesimal motionuuu ∈ R
6 of a rigid object consists of an

infinitesimal translationεεε ∈ R
3 and an infinitesimal rotation

ϕϕϕ ∈ R
3. This may cause the relative movement of the object

to the fingertip at the contact point/area (see Figure 4).
For FPC and PCwF, the relative movement is just the trans-

lation of the object relative to the fingertip at the contact point
rrri , which can be characterized by

δδδi = εεε + ϕϕϕ × rrri . (12)

For SFC, different from point contact, the fingertip contacts
the object on an area. Then the relative movement involves not
only the translation but also the rotation of the object relative
to the fingertip at the contact area, which are characterized by
δδδi andϕϕϕ, respectively.

Let din, dio, anddit be the components ofδδδi alongnnni , oooi ,
andttt i , respectively, and letdis be the component ofϕϕϕ along
nnni , i.e.,

din = nnnT
i
δδδi, dio = oooT

i
δδδi, dit = tttT

i
δδδi, dis = nnnT

i
ϕϕϕ. (13)

The relative movement atrrri is consistent with the contact
constraint if

FPC: findin � 0

PCwF: findin + fiodio + fitdit � 0

SFC: findin + fiodio + fitdit + fisdis � 0

for all feasiblefff i . It is worth noting that onlydin has an
effect on FPC,din, dio, anddit make sense together at PCwF,
and all these components should be considered for SFC. The
components ofϕϕϕ alongoooi and ttt i do not have any physical
meaning for the three contact types (see Figure 4), since they
have no counterparts infff i .

From eqs. (12) and (13), we can formulate a matrix equa-
tion similar to eq. (2)

ddd = GGGTuuu (14)

whereuuu = [
εεεT ϕϕϕT

]T ∈ R
6, ddd = [

dddT
1 dddT

2 · · · dddT
m

]T ∈ R
q ,

anddddi ∈ R
qi has one of the following forms:

FPC: dddi = [din]
PCwF: dddi = [din dio dit ]T

SFC: dddi = [din dio dit dis]T.

dddi is called the functional movement, since only it makes sense
in determining the consistency of the relative movement atrrri .
Accordingly,ddd is called the total functional movement.

DEFINITION 4. An infinitesimal motionuuu is said to be con-
sistent (with the grasp) ifwwwTuuu � 0 for all feasiblewww.

DEFINITION 5. A functional movementdddi is said to be con-
sistent (with fingertipi) if fff T

i
dddi � 0 for all feasiblefff i . Fur-

thermore, a total functional movementddd is said to be consis-
tent if everydddi is consistent.

4.2. Convex Cones in Robotic Grasping

First, from Definition 1, the set of feasible total contact forces
can be written as

{fff } = {fff ∈ R
q | fff i ∈ {fff i} , i = 1, 2, . . . , m} (15)



Zheng and Qian / Coping with Grasping Uncertainties 317

Fig. 4. Functional movements at three common contact types. Referring to Figure 2, the functional movement is corresponding
to the contact force. At FPC (C1), only the componentd1n of δδδ1 alongnnn1 makes sense. At PCwF (C2), all the three components
of δδδ2 have physical meaning. At SFC (C3), besides the components ofδδδ3, the componentd3s of ϕϕϕ alongnnn3 cannot be neglected
either.

where{fff i} is defined by

FPC: {fff i} = {fff i ∈ R| fin � 0} (16)

PCwF: {fff i} =
{
fff i ∈ R

3
∣∣ fin � 0,

√
f 2

io + f 2
it � µifin

}
(17)

SFCl: {fff i} ={
fff i ∈ R

4
∣∣ fin � 0,

√
f 2

io + f 2
it

µi

+ |fis |
µsi

� fin

}
(18)

SFCe: {fff i} ={
fff i ∈ R

4
∣∣ fin � 0,

√
f 2

io + f 2
it

µ2
i

+ f 2
is

µ′2
si

� fin

}
. (19)

PROPOSITION1. {fff i} for i = 1, 2, . . . , m is a closed convex
cone with its vertex at the origin ofRqi . Furthermore,{fff } is
a closed convex cone with its vertex at the origin ofR

q .

Proof. See Li and Sastry (1988). �
Secondly, from Definition 2 and eq. (15), the set of feasible

resultant wrenches has the form

{www} = {
www ∈ R

6
∣∣ www = GfGfGf for somefff ∈ {fff }} . (20)

PROPOSITION2. {www} is a convex cone with its vertex at the
origin of R

6.

Proof. The property can be readily derived from Proposition 1
and eq. (20). �

Thirdly, from Definition 4 and eq. (20), the set of consistent

infinitesimal motions can be formulated as

{uuu} = {
uuu ∈ R

6
∣∣ wwwTuuu � 0 for allwww ∈ {www}} . (21)

Equation (21) represents a cone, known as the dual cone of
{www}.
PROPOSITION3. {uuu} is a closed convex cone with its vertex
at the origin ofR6.

Proof. It is known from convex analysis that the dual cone is
indeed a cone, always convex and closed. �

Fourthly, from Definition 5 and eqs. (16)–(19), the set of
consistent total functional movements can be written as

{ddd} = {ddd ∈ R
q | dddi ∈ {dddi} , i = 1, 2, . . . , m} (22)

where

{dddi} = {
dddi ∈ R

qi | fff T
i
dddi � 0 for allfff i ∈ {fff i}

}
. (23)

Equation (23) means{dddi} is the dual cone of{fff i}.
PROPOSITION4. The following statements are true.

1. {dddi} for i = 1, 2, . . . , m is a closed convex cone with its
vertex at the origin ofRqi . Furthermore,{ddd} is a closed
convex cone with its vertex at the origin ofR

q .

2. {ddd} is the dual cone of{fff }:
{ddd} = {

ddd ∈ R
q | fff Tddd � 0 for allfff ∈ {fff }} . (24)

Proof.

1. See the proof of Proposition 3.
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2. We claim the equivalence of eqs. (22) and (24).

Equation (22)⇒eq. (24): ifddd satisfies eq. (22), then
from eq. (23),fff T

i
dddi � 0 for all fff i ∈ {fff i}, i =

1, 2, . . . , m. Thus,fff Tddd =
m∑

i=1

fff T
i
dddi � 0 for all fff ∈

{fff }, which meansddd satisfies eq. (24).

Equation (24)⇒eq. (22): ifddd does not satisfy eq. (22),
then from eq. (23), there is somedddi such thatfff T

i
dddi <

0 for some fff i ∈ {fff i}. Thus, for somefff =
[000 · · · fff T

i
· · · 000]T ∈ {fff }, fff Tddd = fff T

i
dddi < 0. This im-

plies, ifddd satisfies eq. (24), it will also satisfy eq. (22).
�

From the above, a necessary and sufficient condition for
consistent infinitesimal motions can be derived below.

PROPOSITION5. uuu ∈ {uuu} if and only ifGGGTuuu ∈ {ddd}.
Proof. Sufficiency: if there existsuuu ∈ R

6 such thatGGGTuuu ∈ {ddd},
then from eq. (24),fff TGGGTuuu � 0 for allfff ∈ {fff }. According to
eq. (20), this is equivalent towwwTuuu � 0 for all www ∈ {www}. Thus
uuu ∈ {uuu} from eq. (21).

Necessity: ifuuu ∈ {uuu}, then from eq. (21),wwwTuuu � 0 for
all www ∈ {www}, which impliesfff TGGGTuuu � 0 for all fff ∈ {fff } by
eq. (20). Hence,GGGTuuu ∈ {ddd} from eq. (24). �

4.3. Force-Closure Conditions

From Definition 3 and eq. (20), we have Theorem 1 directly.

THEOREM 1. A grasp is force-closure if and only if{www} =
R

6.

THEOREM2. A grasp is force-closure if and only if{uuu} con-
sists only of the origin 000 of R

6.

Proof. Sufficiency: when{uuu} = {
000 ∈ R

6
}
, the dual cone of

{uuu} is R
6. Since{uuu} is the dual cone of{www} and{www} is convex,

the dual cone of{uuu} is the closure of{www}. Then the closure
of {www} equalsR6. Hence,{www} = R

6, which ensures that the
grasp is force-closure by Theorem 1.

Necessity: from Theorem 1, the grasp being force-closure
means{www} = R

6. Since{uuu} is the dual cone of{www}, {uuu} ={
000 ∈ R

6
}

when{www} = R
6. �

Theorem 2 means that a force-closure grasp can prevent the
object from moving. This is in accordance with our intuition.

THEOREM 3. A grasp is force-closure if and only if there
does not exist non-zerouuu ∈ R

6 such thatGGGTuuu ∈ {ddd}.
Proof. Sufficiency: if there is not non-zerouuu ∈ R

6 such that
GGGTuuu ∈ {ddd}, then from Proposition 5,{uuu} = {

000 ∈ R
6
}
. There-

fore the grasp is force-closure from Theorem 2.
Necessity: if there is non-zerouuu ∈ R

6 such thatGGGTuuu ∈
{ddd}, then from Proposition 5,uuu ∈ {uuu}. Thus, the grasp is not
force-closure from Theorem 2. �

Compared with the Bicchi (1995) form-closure condition,
Theorem 3 involves all three contact types and is a general re-
sult. Different from the methods by Salisbury and Roth (1983),
Liu (1999), and Zhu and Wang (2003), it does not employ
linearization. Simpler than the methods by Murray, Li, and
Sastry (1994), Chen, Walker, and Cheatham (1995), Zuo and
Qian (1998), Buss, Hashimoto, and Moore (1996), and Han,
Trinkle, and Li (2000), the force-closure test by Theorem 3
need not compute the rank and the null space ofGGG. If GGG is
not full row rank, there exists non-zerouuu in the null space
of GGGT such thatGGGTuuu = 000 ∈ {ddd}; hence, the graspGGG is not
force-closure. Moreover, by Theorem 3, we can avoid solving
problems 1–3 by two-level optimization (see Section 5).

4.4. Explicit Expression of {dddi}
Although{dddi} is given by eq. (23) implicitly, we need to work
out its explicit expression for applying Theorem 3 to problems
1–3.

The explicit expression of{dddi} is deduced in terms of the
duality between{dddi} and{fff i}, as indicated by eq. (23). Since
{fff i} is a cone according to Proposition 1, it can be rewritten
in the equivalent form:

{fff i} = {
fff i = fin[ 1xxxT

i
]T ∈ R

qi
∣∣ fin � 0 andxxxi ∈ {xxxi}

}
(25)

where{xxxi} takes one of the following forms obtained by com-
bining eqs. (16)–(19) and (25), respectively.

FPC:{xxxi} is a compact convex set ofR
0 that

contains the origin as an interior point (26)

PCwF: {xxxi} =
{

xxxi ∈ R
2
∣∣ 1

µi

√
x2

i,1 + x2
i,2 � 1

}
(27)

SFCl: {xxxi} =
{

xxxi ∈ R
3
∣∣ 1

µi

√
x2

i,1 + x2
i,2 + 1

µsi

∣∣xi,3

∣∣ � 1

}
(28)

SFCe: {xxxi} =

xxxi ∈ R

3
∣∣

√
x2

i,1 + x2
i,2

µ2
i

+ x2
i,3

µ′2
si

� 1


 (29)

wherexi,1, xi,2, andxi,3 are components ofxxxi .

REMARK 1. For PCwF, SFCl, and SFCe,{xxxi} is a compact
convex set that contains the origin as an interior point. For
unification, we assume that{xxxi} for FPC is also such a set.

LEMMA 1. {dddi} can be rewritten in the equivalent form

{dddi} = {
dddi = din[ 1yyyT

i
]T ∈ R

qi
∣∣ din � 0 andyyyi ∈ {yyyi}

}
(30)

where{yyyi} is the polar set of{xxxi}:
{yyyi} = {

yyyi ∈ R
qi−1

∣∣ xxxT
i
yyyi � 1 for allxxxi ∈ {xxxi}

}
. (31)
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Proof. We claim the equivalence of eqs. (23) and (30).
Equation (23)⇒eq. (30): letdddi = [ din aaaT

i
]T whereaaai ∈

R
qi−1 and supposedddi satisfies eq. (23). From eqs. (23) and (25)

it follows thatfff T
i
dddi = fin(din + xxxT

i
aaai) � 0 for all fff i ∈ {fff i}.

Fromfff i ∈ {fff i} whenfin > 0 andxxxi = 000, it next follows that
findin � 0 for all fin > 0. Thusdin � 0.

If din = 0, then from eqs. (23) and (25),fff T
i
dddi = finxxx

T
i
aaai �

0 for all fff i ∈ {fff i}. Fromfin > 0 we see thatxxxT
i
aaai � 0 for

all xxxi ∈ {xxxi}. Note that, from eqs. (26)–(29), 000 is an interior
point of {xxxi}. Henceaaai = 000, anddddi = 000 satisfies eq. (30).

If din > 0, from eqs. (23) and (25),fff T
i
dddi = findin(1 +

xxxT
i
yyyi) � 0 for allfff i ∈ {fff i} whereyyyi = aaai

/
din. Fromfin > 0

it follows that xxxT
i
yyyi � −1 for all xxxi ∈ {xxxi}. Since{xxxi} is

symmetric about the origin,xxxT
i
yyyi � 1 for all xxxi ∈ {xxxi}; that

is,yyyi ∈ {yyyi}. Therefore,dddi satisfies eq. (30).
Equation (30)⇒eq. (23): suppose thatdddi = din[ 1yyyT

i
]T

satisfies eq. (30). From eq. (31) and the symmetry of{xxxi} it
follows thatxxxT

i
yyyi � −1 for all xxxi ∈ {xxxi}. From eqs. (25) and

(30) it next follows thatfff T
i
dddi = findin(xxx

T
i
yyyi + 1) � 0 for all

fff i ∈ {fff i}. Thusdddi satisfies eq. (23). �
The Appendix offers an approach to computing the polar

set of a compact convex set containing the origin as an interior
point. Using this approach,{yyyi} for eqs. (26)–(29) is computed
as follows.

FPC:{yyyi} is a compact convex set ofR
0 that

contains the origin as an interior point (32)

PCwF: {yyyi} =
{

yyyi ∈ R
2
∣∣ µi

√
y2

i,1 + y2
i,2 � 1

}
(33)

SFCl: {yyyi} =
{

yyyi ∈ R
3
∣∣ µi

√
y2

i,1 + y2
i,2 � 1, µsi

∣∣∣yi,3

∣∣∣ � 1

}
(34)

SFCe: {yyyi} =
{

yyyi ∈ R
3
∣∣ √

µ2
i (y

2
i,1 + y2

i,2) + µ′2
siy

2
i,3 � 1

}
(35)

whereyi,1, yi,2, andyi,3 are components ofyyyi .
Finally, substituting eqs. (32)–(35) into eq. (30) respec-

tively yields

FPC: {dddi} = {dddi ∈ R| din � 0} (36)

PCwF: {dddi} =
{
dddi ∈ R

3
∣∣ µi

√
d2

io + d2
it � din

}
(37)

SFCl: {dddi} =
{
dddi ∈ R

4
∣∣ µi

√
d2

io + d2
it � din,µsi |dis | � din

}
(38)

SFCe: {dddi} =
{
dddi ∈ R

4
∣∣ √

µ2
i (d

2
io + d2

it ) + µ′2
sid

2
is � din

}
.

(39)

Figure 5 depicts{fff i} and{dddi} for various contacts. The re-
lationships between{xxxi}, {yyyi}, {fff i}, {dddi}, {fff }, {ddd}, {www}, and
{uuu} are summarized in Figure 6.

5. Efficient Algorithms

Based on Theorem 3, we provide the algorithms to solve prob-
lems 1–3. Herein, we adopt SFCe, but the presented algo-
rithms can also be applied to SFCl.

ALGORITHM 1. (solving problem 1). The algorithm searches
the contact regionsRi , i = 1, 2, . . . , m for the contact posi-
tions such that the grasp is not force-closure.

Step 1. Let µi = µ0i

/
κ and µsi = µ0si

/
κ for i =

1, 2, . . . , m.

Step 2. Letddd = GGGTuuu. Setζi for i = 1, 2, . . . , m as follows:

FPC:ζi = din

PCwF:ζi = din − µi

√
d2

io + d2
it

SFCe:ζi = din − √
µ2

i (d
2
io + d2

it ) + µ′2
sid

2
is .

Seekuuu∗ ∈ {uuu| ‖uuu‖ = 1} andrrr∗
i

∈ Ri , i = 1, 2, . . . ,

m, for which ζ = min
1�i�m

ζi is maximal. This can be

formulated as

Maximizeζ = min
1�i�m

ζi

subject to‖uuu‖ = 1, rrri ∈ Ri, i = 1, 2, . . . , m.

(40)

Suppose that the maximal objective value of eq. (40) isζ ∗,
which gives the results according to Theorem 3.

1. If ζ ∗ < 0, thenGGGTuuu /∈ {ddd} for any rrri ∈ Ri , i =
1, 2, . . . , m, and non-zerouuu ∈ R

6. Thus the given grasp
GGG0 is force-closure withκ andρ.

2. If ζ ∗ � 0, thenGGGTuuu ∈ {ddd} for rrr∗
i
, i = 1, 2, . . . , m, and

uuu∗. This means the graspGGG∗, whose contact positions
arerrr∗

i
, i = 1, 2, . . . , m, is a non-force-closure grasp

anduuu∗ is a consistent infinitesimal motion. Thus, the
given graspGGG0 is not force-closure withκ andρ.

REMARK 2. ζ ∗ provides a the-less-the-better quality mea-
sure of the graspGGG0 with respect to the givenκ andρ. The
graspGGG∗ is the closest to non-force-closure (ζ ∗ < 0) or the
furthest from force-closure (ζ ∗ � 0) within the contact re-
gions. In addition, whenκ = 1 andρ = 0, the algorithm
degenerates into a force-closure test for the graspGGG0 disre-
garding the uncertainties.

Whenκ is fixed,ζ ∗ is continuous and monotonically in-
creasing with respect toρ on [0, ρU ], whereρU is the upper
bound ofρ such that the points inRi for i = 1, 2, . . . , m are
all regular.

For a givenκ, if ζ ∗(0) < 0 andζ ∗(ρU) � 0, there isρ ∈
[0, ρU ] such thatζ ∗(ρ) = 0. Then the minimumρ satisfying
ζ ∗(ρ) = 0 is the supremum of the radius we are looking
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(a)                                                                                  (b) 

                          

(c)                                                                                 (d) 

Fig. 5. Graphic representations of{fff i} and{dddi}. The former denotes the feasible contact force set, while the latter denotes
the consistent functional movement set dual to the former. Both sets are closed convex cones. (a) For FPC,{fff i} and {dddi}
are half-lines alongnnni . (b) For PcwF,{fff i} and{dddi} are circular cones in the coordinate frame[nnni,oooi, ttt i].αi = tan−1 µi and
βi = tan−1 µ−1

i . (c) For SFCl, in the coordinate frame[nnni, eeeti , eeesi], {fff i} is a rhombic cone, whereas{dddi} is a rectangular
cone. The coordinate offff i with respect toeeeti is

√
f 2

io + f 2
it or −√

f 2
io + f 2

it , while that with respect toeeesi is fis or −fis .
αti = tan−1 µi , αsi = tan−1 µsi , βti = tan−1 µ−1

i , βsi = tan−1 µ−1
si . (d) For SFCe,{fff i} and{dddi} are elliptic cones.αsi = tan−1 µ′

si

andβsi = tan−1 µ′−1
si .

Fig. 6. Diagram of relationships. The hollow arrow represents that the dual cone of{uuu} is not {www} but the closure of{www} if
{www} is not closed.
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for in problem 2. Accordingly, problem 2 is formulated as an
algebraic equation of one variable.

ALGORITHM 2. (solving problem 2). The algorithm com-
putes the supremumρS of the radiusρ within which the given
graspGGG0 is force-closure.

Step 1. Computeζ ∗(0) by Algorithm 1. If ζ ∗(0) � 0, then
ρS = 0 and the algorithm ends; otherwise, go to Step 2.

Step 2. Determine the upper boundρU of ρ. Computeζ ∗(ρU)

by Algorithm 1. If ζ ∗(ρU) < 0, ρS = ρU and the algo-
rithm ends; otherwise, go to Step 3.

Step 3. Now, ζ ∗(0) < 0 andζ ∗(ρU) � 0. We use the bisec-
tion method to search for the minimum solution to the
equationζ ∗(ρ) = 0 on [0, ρU ]. Initialize ρ1 = 0 and
ρ2 = ρU .

Step 4. ρ = (ρ1 + ρ2)
/

2. Computeζ ∗(ρ) by Algorithm 1.
If ζ ∗(ρ) < 0, thenρ1 = ρ; otherwise,ρ2 = ρ.

Step 5. If ρ2 − ρ1 � ερ (ερ > 0 is the termination tolerance
onρ), thenρS = (ρ1 + ρ2)

/
2 and the algorithm ends;

otherwise, return to Step 4.

REMARK 3. ρS represents the capability of the graspGGG0

to overcome contact position uncertainty with respect toκ.
In steps 3–5, besides the bisection method, other numerical
methods for solving algebraic equations can also be used.

Notice thatρS is related toκ, and obviously,ρS is mono-
tonically decreasing onκ � 1. This implies that the grasp
tolerances to the two grasping uncertainties are restricted by
each other. Thus, we require Algorithm 3.

ALGORITHM 3. (solving problem 3). The algorithm plots the
ρS − κ curve to show the relation betweenρS andκ. It is a
straightforward application of Algorithm 2. We begin with
κ = 1 and computeρS at some intervals.

REMARK 4. TheρS − κ curve offers a complete report on
the closure properties of the graspGGG0 and its capability to
tolerate the two grasping uncertainties. IfρS > 0 atκ = 1,
then the graspGGG0 is force-closure; otherwiseρS = 0 and the
graspGGG0 is not force-closure. If lim

κ→+∞
ρS(κ) = Const > 0,

then the graspGGG0 is form-closure; otherwise lim
κ→+∞

ρS(κ) = 0

and the graspGGG0 is not form-closure.

6. Numerical Examples

We implement the presented algorithms using the optimiza-
tion toolbox of MATLAB on Pentium-IV PC.

EXAMPLE 1. Figure 7 depicts a wedge with ver-
tices V1(25, 50

√
3, 0), V2(−25, 50

√
3, 0), V3(−25, 0, 50),

V4(25, 0, 50), V5(25, 0, 0), V6(−25, 0, 0). It is grasped by a

Fig. 7. A wedge is grasped by a seven-fingered gripper with
a soft finger contactC1, two point contacts with frictionC2

andC3, and four frictionless point contactsC4–C7.

seven-fingered robot hand, whose fingertips make a SFC (C1),
two PCwFs (C2, C3), and four FPCs (C4 − C7). The nominal
friction coefficientsµ0 = 0.2 andµs0 = 0.2mm.

The desired contact positions are as follows:

rrr01 = [−25 25 15]T
, rrr02 = [25 25 25]T

,

rrr03 = [25 50 15]T
, rrr04 = [−5 0 15]T

,

rrr05 = [−5 25 0]T
, rrr06 =

[
0 15

√
3 35

]T

,

rrr07 =
[
0 35

√
3 15

]T

.

The contact regions can be formulated as

R1 = {
rrr1| (r12 − 25)2 + (r13 − 15)2 � ρ2, r11 = −25

}
,

R2 = {
rrr2| (r22 − 25)2 + (r23 − 25)2 � ρ2, r21 = 25

}
,

R3 = {
rrr3| (r32 − 50)2 + (r33 − 15)2 � ρ2, r31 = 25

}
,

R4 = {
rrr4| (r41 + 5)2 + (r43 − 15)2 � ρ2, r42 = 0

}
,

R5 = {
rrr5| (r51 + 5)2 + (r52 − 25)2 � ρ2, r53 = 0

}
,

Ri =
{
rrri | ‖rrri − rrr0i‖ � ρ, ri2 + √

3 ri3 = 50
√

3
}

for i = 6, 7.

First, using Algorithm 1 withκ = 1, we obtain theζ ∗ − ρ

(maximal objective value versus radius) curve, as shown in
Figure 8. Forρ = 0 andρ = 4, ζ ∗ = −6.1697× 10−2 < 0
andζ ∗ = 5.6618× 10−2 > 0, respectively. This means that
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Fig. 8. Theζ ∗ − ρ curve obtained by Algorithm 1 when
κ = 1. The plus signs indicate the data (ρ, ζ ∗) in running
Algorithm 2.

the graspGGG0 is force-closure, but not force-closure with the
radiusρ = 4, since we find a non-force-closure grasp within
the contact regions as

rrr∗
1 = [−25.0000 24.2974 11.0622]T

,

rrr∗
2 = [25.0000 28.5222 23.1580]T

,

rrr∗
3 = [25.0000 50.7033 18.9377]T

,

rrr∗
4 = [−1.0000 0.0 15.0003]T

,

rrr∗
5 = [−1.0000 25.0002 0.0]T

,

rrr∗
6 = [−2.5999 25.9808 35.0000]T

,

rrr∗
7 = [−4.0000 60.6219 14.9999]T .

uuu∗ = [9.9138 0.6496 1.0336 0.0 − 0.4674 0.0834]T ×
10−1 is a direction of consistent infinitesimal motions of the
wedge at the moment. The required CPU time for running
Algorithm 1 once is 1.02 s.

In Figure 8, theζ ∗ − ρ curve seems to consist of two line
segments with a slope change aroundρ = 2.5. This is because
rrr∗

i
with respect toρ traces a line turning suddenly around

ρ = 2.5, as shown in Figure 9 which takesrrr∗
1 as an example.

Next, takingρU = 4 andερ = 10−4, we apply Algorithm 2
to computingρS of GGG0 with respect toκ = 1. The data in
each loop are listed in Table 1, and(ρ, ζ ∗) is marked by plus
signs in Figure 8. The algorithm terminates atρ1 = 2.4999
andρ2 = 2.5000. In the end,ρS = 2.5000, for whichζ ∗ =
−0.0002× 10−2. The required CPU time is 13.84 s.

Finally, Figure 10 shows theρS − κ curve obtained by
Algorithm 3. As clearly reflected in Figure 10,ρS is mono-

Fig. 9. The trajectory ofr∗
1 .

Fig. 10. TheρS − κ curve forGGG0 obtained by Algorithm 3.

tonically decreasing onκ � 1. SinceρS = 2.5000 > 0
at κ = 1, the graspGGG0 is force-closure. Asκ increases,ρS

approaches a positive number. Using Algorithm 1, we have∣∣ρS(κ) − 1.3175
∣∣ < 10−4 for κ > 104. This means thatGGG0 is

not only force-closure but also form-closure; hence friction
uncertainty can be entirely overcome.

EXAMPLE 2. Figure 11 represents an L-shaped pipe grasped
by a three-fingered robot hand. All the contacts (C1 − C3) are
PCwFs where the nominal friction coefficientµ0 = 0.4. The
pipe can be expressed piecewise by
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Table 1. Data During the Iteration by Bisection in Running Algorithm 2 for Example 1

Loop ρ1 ρ2 ρ = (ρ1 + ρ2)/2 ζ ∗(10−2)

1 0 4 2.0000 –1.1853
2 2.0000 4 3.0000 1.8513
3 2.0000 3.0000 2.5000 0.0000
4 2.0000 2.5000 2.2500 –0.5891
5 2.2500 2.5000 2.3750 –0.2936
6 2.3750 2.5000 2.4375 –0.1466
7 2.4375 2.5000 2.4688 –0.0776
8 2.4688 2.5000 2.4844 –0.0387
9 2.8444 2.5000 2.4922 –0.0184
10 2.4922 2.5000 2.4961 –0.0092
11 2.4961 2.5000 2.4980 –0.0049
12 2.4980 2.5000 2.4990 –0.0024
13 2.4990 2.5000 2.4995 –0.0012
14 2.4995 2.5000 2.4998 –0.0006
15 2.4998 2.5000 2.4999 –0.0003

S1:




r11 = 10 cosφ1 0 � φ1 < 2π

r12 = ϕ1 0 � ϕ1 � 40

r13 = 10 sinφ1 + 40,

S2:




r21 = 10 sinφ2 0 � φ2 < 2π

r22 = (10 cosϕ2 + 40) cosϕ2 π/2 � ϕ2 � π

r23 = (10 cosϕ2 + 40) sinϕ2

S3:




r31 = 10 cosφ3 0 � φ3 < 2π

r32 = 10 sinφ3 − 40 −50 � ϕ3 � 0

r33 = ϕ3

The desired contact positions are

φ01 = π/2, ϕ01 = 30, rrr01 = [0.0 30.0 50.0]T ;

φ02 = π, ϕ02 = 3π/4, rrr02 = [0.0 − 21.2132 21.2132]T ;

φ03 = −π/2, ϕ03 = −40, rrr03 = [0.0 − 50.0 − 40.0]T
.

The contact regions are formulated as

Ri = {rrri ∈ Si | ‖rrri − rrr0i‖ � ρ} for i = 1, 2, 3.

Running Algorithm 1 withκ = 1 andρ = 0 yields ζ ∗ =
−1.4525× 10−1 < 0, which means the graspGGG0 is force-
closure. Usingρ = 3 and running Algorithm 1 again, we get
ζ ∗ = 1.4032× 10−1 > 0; thusGGG0 is not force-closure with
the radiusρ = 3. A non-force-closure grasp is found with the
CPU time of 1.52 s:

Fig. 11. An L-shaped pipe is grasped by a three-fingered
gripper with point contacts with frictionC1, C2, andC3.

φ∗
1 = 1.8675, ϕ∗

1 = 30.5122,

rrr∗
1 = [−2.9235 30.5122 49.5631]T ;

φ∗
2 = 2.8405, ϕ∗

2 = 2.3573,

rrr∗
2 = [2.9659 − 21.5549 21.5078]T ;

φ∗
3 = −1.8656, ϕ∗

3 = −40.6085,

rrr∗
3 = [−2.9058 − 49.5685 − 40.6085]T

.
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Fig. 12. Theζ ∗ − ρ curve obtained by Algorithm 1 when
κ = 1. The plus signs indicate the data (ρ, ζ ∗) in running
Algorithm 2.

Fig. 13. TheρS − κ curve forGGG0 obtained by Algorithm 3.

uuu∗ = [9.9371 − 0.5496 − 0.4416 0.0267 − 0.5870
−0.6413]T × 10−1 is a direction of consistent infinitesimal
motions of the pipe. Figure 12 describes theζ ∗ − ρ curve
with respect toκ = 1 and the values(ρ, ζ ∗) in each loop
of Algorithm 2 usingρU = 3 andερ = 10−4. As displayed
in Table 2, Algorithm 2 terminates atρ1 = 1.8879 andρ2 =
1.8880. ThenρS = 1.8880, for which−0.0001× 10−1 <

ζ ∗ < 0. The required CPU time is 24.81 s. Figure 13 shows
the result of Algorithm 3. Asκ increases to 13,ρS decreases
to 0; hence the graspGGG0 is not form-closure.

7. Conclusions

The existing literature on the closure properties has been
summarized and classified distinctively. Although it is so ex-
tensive, no one has studied friction uncertainty and contact
position uncertainty, which are the main dangers to force-
closure. This paper seeks to fill this void. The former uncer-
tainty is quantified by the possible reduction rateκ of friction
coefficients, while the latter is measured by the radiusρ of
contact regions. The force-closure test with givenκ andρ,
the supremumρS of ρ without loss of force-closure, and the
ρS −κ curve are three emergent problems in this respect. The
first problem is solved by searching for a non-zero consistent
infinitesimal motion using nonlinear programming technique
(Algorithm 1). The second problem is transformed to an alge-
braic equation of one variable, to which the bisection method
is applied (Algorithm 2). Using the two algorithms, the last
problem is readily settled and its result evaluates the overall
tolerance of a grasp to both uncertainties (Algorithm 3).

In order to solve the above problems efficiently, we gen-
eralize the infinitesimal motion approach from form-closure
to force-closure analysis. This approach covers the three con-
tact types, does not use linearization, and does not need to
compute the rank and the null space of the grasp matrix. In
the force-closure analysis, the sets of feasible contact forces,
feasible resultant wrenches, consistent infinitesimal motions,
and consistent functional movements are formulated. They
are convex cones and are discussed systemically. In virtue of
the duality between them (Figures 5 and 6), we prove that a
grasp is force-closure if and only if any non-zero infinitesimal
motion is inconsistent. Furthermore, an approach to comput-
ing the polar set of a compact convex set containing the origin
as an interior point is addressed with application to comput-
ing the set of consistent functional movements. On this basis,
looking for a non-zero consistent infinitesimal motion is for-
mulated as a nonlinear programming problem.

Appendix: Computing the Polar Set of a
Compact Convex Set Containing the
Origin as an Interior Point

The set{xxxi} is a compact convex set containing the origin as
an interior point. The set{yyyi} defined by (31) is the polar set
of {xxxi}. The computation of{yyyi} is preceded by the following
lemmas.

LEMMA 2. {yyyi} is a non-empty compact convex set contain-
ing the origin as an interior point.

Proof. It follows from that{xxxi} is a non-empty compact con-
vex set and contains the origin as an interior point (see Lay
1982, p. 142). �

Lemma 2 allows us to find the boundary of{yyyi}, and then
{yyyi} is the convex hull of its boundary. Letbd {xxxi} andbd {yyyi}
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Table 2. Data During the Iteration by Bisection in Running Algorithm 2 for Example 2

Loop ρ1 ρ2 ρ = (ρ1 + ρ2)/2 ζ ∗(10−1)

1 0 3 1.5000 –0.4673
2 1.5000 3 2.2500 0.4778
3 1.5000 2.2500 1.8750 –0.0214
4 1.8750 2.2500 2.0625 0.2344
5 1.8750 2.0625 1.9688 0.1096
6 1.8750 1.9688 1.9219 0.0463
7 1.8750 1.9219 1.8984 0.0144
8 1.8750 1.8984 1.8867 –0.0020
9 1.8867 1.8984 1.8926 0.0063
10 1.8867 1.8926 1.8896 0.0023
11 1.8867 1.8896 1.8882 0.0003
12 1.8867 1.8882 1.8875 –0.0008
13 1.8875 1.8882 1.8878 –0.0003
14 1.8878 1.8882 1.8880 0.0001
15 1.8878 1.8880 1.8879 –0.0001

denote the boundaries of{xxxi} and{yyyi}, respectively. To de-
terminebd {yyyi}, we introduce the support functionp of {xxxi},
which is the real-valued function defined by

p(zzz) = sup
xxxi∈{xxxi }

xxxT
i
zzz

for all zzz for which the supremum is finite.

LEMMA 3. If zzz is any fixed point other than the origin, the
following hold (see Lay 1982, p. 206):

1. xxxT
i
zzz � p(zzz) for all xxxi ∈ {xxxi};

2. There exists a pointxxxbi ∈ bd {xxxi} such thatp(zzz) = xxxT
bi
zzz;

3. The hyperplaneHi = {
xxxi | xxxT

i
zzz = p(zzz)

}
supports{xxxi}

atxxxbi ;

4. The function is positively homogeneous:p(λzzz) =
λp(zzz) for λ > 0;

5. p(zzz) > 0.

LEMMA 4. If zzz is any fixed point other than the origin, the
following hold:

1. p(zzz)−1zzz ∈ bd {yyyi};
2. p(λzzz)−1λzzz = p(zzz)−1zzzfor λ > 0.

Proof.

1. From Lemma 3, points (1) and (5),xxxT
i
p(zzz)−1zzz � 1

for all xxxi ∈ {xxxi}. Then from eq. (31),p(zzz)−1zzz ∈ {yyyi}.
Suppose that there is a closed ballS(r, p(zzz)−1zzz) with

centerp(zzz)−1zzz and radiusr > 0. Letyyy = p(zzz)−1zzz +
rzzz

/‖zzz‖. Obviously,yyy ∈ S(r, p(zzz)−1zzz). However, from
Lemma 3, points (2) and (5),xxxT

bi
yyy = xxxT

bi
p(zzz)−1zzz +

rxxxT
bi
zzz = 1 + rp(zzz)

/‖zzz‖ > 1, which meansyyy /∈ {yyyi}.
Hencep(zzz)−1zzz ∈ bd {yyyi}.

2. If λ > 0, then from Lemma 3, point (4), we readily
havep(λzzz)−1λzzz = λ−1p(zzz)−1λzzz = p(zzz)−1zzz.

�
Lemma 4, point (2), implies thatp(zzz)−1zzz is decided only

by the direction ofzzz. Then, from Lemma 4, point (1), the
boundary of{yyyi} can be expressed by

bd {yyyi} =
{

yyyi = p(zzz)−1zzz
∣∣ p(zzz) = sup

xxxi∈{xxxi }
xxxT

i
zzz, ‖zzz‖ = 1

}
.

From Lemma 3, points (2) and (3),bd {yyyi} can be rewritten
as

bd {yyyi} = {
yyyi = (xxxT

bi
zzz)−1zzz

∣∣ xxxbi ∈ bd {xxxi} , zzz ∈ {zzz}bi

}
where{zzz}bi consists of the unit outward normal vectors of all
hyperplanes supporting{xxxi} atxxxbi .
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