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cables to eight or even seven. Once the possibilities of directly trans-
ferring existing theorems from grasping have been exhausted, their un-
derlying tools, such as Grassmann theory and convexity theory, can
be used to derive customized theorems for other types of cable robots.
Regardless of the method, significant analysis of cable robots can be
derived from the abundant work on multifinger grasps.

VI. CONCLUSION

Although the close relationship between cable robots and grasping,
which are both based on unidirectional constraints, has been pointed
out in literature, it has not yet been fully exploited. In this paper, it was
shown that the antipodal grasp theorem can be applied to cable robots.
It is hoped that this paper will spur other new ideas to be taken from
grasping and applied to cable robots and vice versa.
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Dynamic Force Distribution in Multifingered Grasping by
Decomposition and Positive Combination

Yu Zheng and Wen-Han Qian

Abstract—This paper presents a general algorithm for computing the op-
timal dynamic force distribution in multifingered grasping. It consists of
two phases. In the offline phase, we select a spanning set for the required
dynamic resultant wrench and find a corresponding spanning set for the
total contact force. Then, in the online phase, the total contact force is ob-
tained by decomposition of the resultant wrench into the former spanning
set and a coefficient vector followed by positive combination of the latter
spanning set with the vector. To make the online computation as simple as
possible, iterative operation is executed offline and only arithmetic opera-
tion is employed online. To improve the grasping quality, the two spanning
sets are selected elaborately.

Index Terms—Contact constraint, dexterous robot hand, dynamic force
distribution (DFD), multifingered grasps, optimal contact force.

NOMENCLATURE

m0 Number of frictionless point contacts (FPC).
mf Number of point contacts with friction (PCwF).
ms Number of soft finger contacts (SFC).
m Total number of contacts, m = m0 +mf +ms.
fff i 2

q Contact force at contact i; i = 1; 2; . . . ; m;.
qi Dimension of the ith contact force space, equal to

one, three, and four for FPC, PCwF, and SFC, respec-
tively.

fff 2
q Total contact force, fff = [fffT1 � � � fffTi � � � fffTm]T .

q Dimension of the total contact force space, q = m0+
3mf + 4ms.

www 2
6 Resultant wrench, www = [pppT mmmT ]T .

ppp 2
3 Resultant force.

mmm 2
3 Resultant moment.

GGG 2
6�q Grasp matrix.

GGG+
2

q�6 Pseudoinverse of GGG or the right-inverse if GGG is full
row rank.
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AAA 2 q�h Matrix whose columns constitute a basis for the null
space of GGG.

xxx 2 h An arbitrary vector.
h Dimension of the null space ofGGG; h = q� rank(GGG).
fin Inward normal force at contact i.
fio; fit Two tangential force components of fff i.
fis Spin moment at SFC.
�i Coulomb friction coefficient at contact i.
�si Coefficient of spin moment for SFC with linear

model (SFCl).
�0si Coefficient of spin moment for SFC with elliptical

model (SFCe).
fUi Upper bound of the magnitude of fff i.
Sw A spanning set for www.
wwwj 2

6 Element of Sw(j = 1; 2; . . . ; l).
ccc 2 l Coefficient vector.
cj 2 The jth element of ccc.
Sf A spanning set for fff with respect to Sw .
fff j 2

q A feasible total contact force for wwwj , used as an ele-
ment candidate of Sf .

fff�j 2 q A feasible total contact force for �wwwj , used as an
element candidate of Sf .

k � k1 1-norm of a vector.
k � k 2-norm of a vector.

I. INTRODUCTION

The major function of multifingered robot hands is manipulating ob-
jects dexterously, which needs to compute dynamic force distribution
(DFD) at contacts in real time.

DFD is a topic of finding the optimal fff for a required www, subject
to static equivalence and contact constraints. There are many feasible
solutions for fff for a given www. Among them, we look for an optimal
one, whose inclination angle and magnitude are smaller for the sake of
grasping stability and material strength (also reducing actuator power
as a minor reason), respectively.

As a foundation of this problem (Fig. 1), Salisbury and Roth [1]
decomposed the contact force exerted on the grasped object into two
parts (a manipulation force and an internal force). Such decomposition
was illustrated by Yoshikawa and Nagai [2] in more detail.

Kerr and Roth [3] proposed a linear programming (LP) algorithm.
Later, Cheng and Orin [4]–[6] developed a compact-dual LP algorithm.
Although the latter facilitates real-time optimization, still undesirable
temporal discontinuities may be introduced into the solution, which is
the most important deficiency in all LP algorithms, as shown in [7].

To overcome the deficiency, Nahon and Angeles [7], [8] presented a
quadratic programming (QP) algorithm. Compared with LP schemes,
it shows higher performance in computation speed and solution quality,
but the linearized friction model is still adopted. As a result, both the QP
and LP algorithms are inapplicable to soft finger grasping, where the
friction constraint cannot be linearized up to now. Based on a Lagrange
multiplier method, Nakamura et al. [9] brought forward a nonlinear
programming (NLP) algorithm. Nevertheless, the applicability to real-
time situations was not mentioned.

To speed up the online computation, Park and Starr [10], Maekawa
et al. [11], and Zuo and Qian [12] fixed the direction of internal forces
strictly inside the friction cones and left only the magnitude of internal
forces to be adjusted in real time. Total computation of contact forces
is divided into offline iterative search for the optimal internal force di-
rection and online analytical computation of the total contact force.
Moreover, the method [12] covers soft finger contact. However, the op-
timal direction of internal forces is fixed; hence, the final contact force
is not so optimal, because the optimal direction usually changes along

Fig. 1. Review and goals of DFD research.

with the external wrench. Besides, using interaction force rather than
internal force [10] may limit the search space of the optimal internal
force direction, since the interaction force space is equal to or less than
the internal force space [13].

Brockett [14] first introduced the algebra and group theory into
robotic manipulation research. Buss et al. [15] transformed the contact
constraints into the positive definiteness of a linearly constrained ma-
trix. Then the task of grasping force optimization was formulated as an
optimization problem on the smooth manifold of linearly constrained
positive definite matrices, for which efficient projected gradient flow
algorithms [15]–[17] were developed. Han et al. [18] further cast
the contact constraints into linear matrix inequalities (LMIs) and
formulated the force optimization problem as a convex optimization
problem involving LMIs. Thereupon, highly efficient algorithms with
polynomial time complexity can be directly applied. The theories
based on manifolds and groups give a new approach to these problems
and well-developed algorithms can be expediently used. However,
the methods still require many iterations. To reduce online iterations,
Remond [19] converted a constrained optimization problem into an
unconstrained one.

Among the algorithms mentioned above, some [3]–[7], [10]–[12],
[15]–[19] are claimed to be suitable for real-time control. Three
[10]–[12] of them forcibly fix the direction of internal forces and
restrict the contact force optimization. The others need large numbers
of online iterations, so they are essentially numerical. Besides, some
other analytical or suboptimal methods [20], [21] were proposed for
real-time control, but they work only in some particular occasions.

Succeeding the idea in [12], in this paper, we also partition the total
computation into two phases and shift as much computation as possible
from online to offline, but the approach is new. In the offline phase (see
Fig. 2), instead of searching the optimal direction of internal forces,
we select an appropriate spanning set Sw for www and search the corre-
sponding optimal spanning setSf forfff , subject to stability and strength
criteria. Then, in the online phase, fff can be readily computed by de-
composition ofwww into Sw and a coefficient vector ccc, followed by a pos-
itive combination of ccc and Sf . ccc serves as an interconnector betweenwww
and fff and varies according to the variation of www. The interconnection
through decomposition and positive combination keeps static equiva-
lence and contact constraints forwww and fff if each element of Sw and its
corresponding element of Sf satisfy these conditions. In addition, by
proper selection of Sw; fff can inherit the optimality from Sf . In this
way, an algorithm with the simplest online computation until now as
well as a superior solution quality is proposed. It also overcomes the
temporal discontinuity due to continuous operation and can be applied
to all three types of contact. Thus, all of the goals in Fig. 1 have been
achieved.
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Fig. 2. Graph showing the algorithm procedure. Encircled are five principal
datawww; S ; ccc; S , and fff , wherewww—required resultant wrench; S —spanning
set forwww; ccc—coefficient vector;S —spanning set for fff ; fff—final contact force.
Only the thick arrows are performed online. All of the others are accomplished
offline. Actually, the decomposition is carried out by ccc = WWW www. Hence, the
arrow from Step 5 to S is dashed.

In existing literature, there are decompositions of the contact force
[1], [2], [22]–[26]. So far, however, none refers to the decomposition of
the resultant wrench space for simplifying DFD in real time, as we are
presenting. Unlike the numerical algorithms [3]–[9], [15]–[19], ours
needs no iteration during online computation. Its computational com-
plexity grows linearly with the contact number, while those with itera-
tion grow very rapidly, such as exponentially [15]–[17] or polynomially
[18]. Compared with the algorithms [10]–[12], we do not restrict the
internal force in one direction and our online computation is much sim-
pler. Many algorithms mentioned above do not cover soft finger con-
tact, but ours is generally applicable.

For the organization of the rest of this paper, Section II introduces
fundamentals and criteria of DFD. Section III explains the basic idea
of the algorithm. Section IV discusses how to select the spanning sets.
Section V depicts the algorithm procedure. A numerical example and
conclusions are given in Sections VI and VII, respectively.

II. FORMULATIONS AND CRITERIA

A. Basic Formulations

Consider an object grasped by a multifingered robot hand, which
makes m contacts.

The general static equivalence equation for the grasped object is

www = GGGf: (1)

The general solution to (1) can be expressed by

fff = GGG+www +AAAx: (2)

The first term on the right-hand side of (2) is a particular solution called
the manipulation force, which has an effect on www, and the second is a
homogeneous solution called the internal force, which does not affect
www but can be changed to optimize the contact force.

In order to avoid separation and slip at contact, fff must satisfy the
following contact constraints [12], [15]–[18], [27], [28]:

FPC : fin � 0; fio = fit = 0 (3)

PCwF : fin � 0; f2
io
+ f2

it
� �ifin (4)

SFCl : fin � 0;
f2
io
+ f2

it

�i
+
jfisj

�si
� fin (5)

SFCe : fin � 0;
f2
io
+ f2

it

�2
i

+
f2
is

�02
si

� fin: (6)

This paper adopts SFCe, but the proposed algorithm can be applied
to SFCl as well. A total contact force fff is said to be feasible if it satisfies
the static equivalence equation (1) as well as the contact constraints (3),
(4), and (6).

In addition, the magnitude of fff
i

must be within the strength limit so
that the grasping mechanism and the grasped object can bear

FPC : fin � fUi (7)

PCwF : f2
in
+ f2

io
+ f2

it
� fUi (8)

SFC : f2
in
+ f2

io
+ f2

it
+ �2

i
f2
is
=�02

si
� fUi : (9)

Noticing the dimensional difference between fis and the other force
components, we express the strength limit for SFC equivalently.

B. Optimization Criteria and Problems

Referring to Fig. 1, there are mainly two criteria for optimizing con-
tact forces, which are different from those for planning optimal grasps
such as [29].
1) Maximum Stability Criterion: To keep contact stability without

separation and slip, it requires that each contact force be close to the
inward normal, which can be evaluated by

� = max
1�i�m

�i (10)

where �i has one of the following forms:

FPC : �i = N:A: (11)

PCwF : �i = f2
io
+ f2

it
=�ifin (12)

SFC : �i = f2
io
+ f2

it
+ �2

i
f2
is
=�02

si
=�ifin: (13)

�i is the ratio of the actual or equivalent tangential force to its max-
imum value before slip impending at contact i. At FPC, the fingertip
exerts only a normal force and no tangential force is allowed, and there-
fore �i is nonapplicable. In a sense, � is a measure of risk concerning
grasping stability with its upper bound equal to unity. The less � is, the
more stable it is.
2) Minimum Force Criterion: It often needs to consider that the

magnitude of the contact force must be below the strength limit, which
can be practically formulated as

� = max
1�i�m

�i (14)

where �i has one of the following forms:

FPC : �i = fin=f
U

i (15)

PCwF : �i = f2
in
+ f2

io
+ f2

it
=fUi (16)

SFC : �i = f2
in
+ f2

io
+ f2

it
+ �2

i
f2
is
/�02

si
fUi : (17)

Thus, � is a measure of risk concerning material strength with its
upper bound equal to unity. A smaller � is more favorable.

With the aforesaid two criteria, we formulate the following.

Optimization Problem 1:

Minimize � subject to (2); 0 � � � 1; and 0 � � � 1: (18)

Optimization Problem 2:

Minimize � subject to (2); 0 � � � 1; and 0 � � � 1: (19)

Optimization Problem 3:

Minimize � subject to (2); 0 � � � 1; and �=� = K (20)

where K is a constant.
All of the above problems can be computed directly without diffi-

culty, but their computation costs are too expensive for real-time con-
trol. The result so obtained is called the optimal solution. Particularly,
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the solution of Optimization Problem 1 is called the minimum contact
force. In what follows, we seek a decomposition and positive combi-
nation (DPC) algorithm which aims at a solution best approaching the
optimal solution with a very low online computation cost.

III. COMPUTING FEASIBLE CONTACT FORCES

A feasible fff must satisfy two conditions: the static equivalence (1)
and the contact constraints (3), (4), and (6). This section explores an
easy way to fulfilling the conditions.

A. Attaining the Static Equivalence by Linear Combination

Suppose that Sw is a spanning set for www, namely

Sw = fwwwj 2
6 j j = 1; 2; . . . ; lg (21)

such that

www =

l

j=1

cjwwwj = WWWc (22)

where WWW = [www1 www2 � � � wwwl] 2
6�l; ccc = [c1 c2 � � � cl]

T 2 l. The
solution to (22) may not be unique. We prefer

ccc = WWW+www (23)

where WWW+ is the pseudoinverse of WWW . Since WWW+ can be computed
offline, merely a matrix multiplication can compute ccc online.

Let fff j = [fffT1;j � � � fff
T
i;j � � � fff

T
m;j ]

T be a total contact force for the
resultant wrench wwwj , i.e.,

wwwj = GGGf j : (24)

Combining (1), (22), and (24) yields

fff =

l

j=1

cjfff j (25)

which is a total contact force for www. Alternatively, if wwwj and fff j satisfy
the static equivalence equation (24), then their superpositions www and fff
by (22) and (25) also satisfy the static equivalence equation (1).

B. Preserving the Contact Constraints by Nonnegative Coefficients

As originally stated in [30], all of the total contact forces satis-
fying the contact constraints constitute a convex cone. Let fff j for
j = 1; 2; . . . ; l satisfy the contact constraints, and then fff j lies in the
convex cone. From convex analysis, every positive combination (linear
combination with nonnegative coefficients) of fff j ; j = 1; 2; . . . ; l also
lies in the convex cone. Thus, if cj � 0 for all j = 1; 2; . . . ; l; fff
computed by (25) will satisfy the contact constraints as well.

C. Making the Coefficients All Nonnegative

To sum up, a positive combination of feasible fff j ; j = 1; 2; . . . ; l is
a feasible fff . It remains to be dealt with how to always obtain a non-
negative ccc from (23).

This problem can be settled by a positizing process as follows:

If cj < 0; then cj  �cj ; wwwj  �wwwj ; and fff j  fff�j ;

otherwise leave them unchanged

where  means assignment. The process does not destroy the static
equivalence between (22) and (25). Therefore, the feasible fff can be
computed by (25) as a positive combination indeed.

To complete this section, we construct

Sf = ffff j or fff
�
j 2

q j j = 1; 2; . . . ; lg (26)

where fff j and fff�j are alternatively used in (25). Sf is a spanning set
with respect to Sw , which can positively span the feasible fff .

IV. OPTIMIZATION OF THE CONTACT FORCE

As feasibility is transmitted from Sf (with respect to Sw) to fff (with
respect to www) by positive combination, we would investigate transmis-
sion of optimality from Sf to fff if fff j and fff�j are optimized according
to a certain criterion. Herein we assume the following.

1) The direction of www is time-varying. Otherwise, in a very simple
case when www changes only in magnitude with a fixed direction,
it can be spanned by a vector www0. Let fff0 and fff�0 be the optimal
contact forces for www0 and �www0, respectively. Then, the optimal
fff for www can be formulated directly as

fff =
wwwTwww0=www

T
0www0 fff0; forwwwTwww0 � 0

� wwwTwww0=www
T
0www0 fff�0 ; forwwwTwww0 < 0

:

2) cj � 0 for j = 1; 2; . . . ; l; except otherwise indicated.

A. Upper Bounds of � and �

The upper bounds of � and � of fff by (25) are evaluated, respectively,
in (27)–(29) and (30)–(32), shown at the bottom of the next page.

Substituting (27)–(29) into (10), we have

� = max
1�i�m

�i � max
1�i�m

max
1�j�l

�i;j = max
1�j�l

�j (33)

where we define �j = max1�i�m �i;j . This means that the overall �
is bounded above by max1�i�m �i, which in turn is not greater than
max1�j�l �j . Hence � can be reduced by reducing max1�j�l �j .

Substituting (30)–(32) into (14), we have

� = max
1�i�m

�i � max
1�i�m

fkccck1 max
1�j�l

�i;jg = kccck1 max
1�j�l

�j (34)

where we define �j = max1�i�m �i;j . Different from �, the overall
� is not bounded above by max1�j�l �j but by kccck1max1�j�l �j .
Hence, � cannot be reduced by only reducing max1�j�l �j .

B. Selecting Sw for Optimization

There could be various Sw forwww. After a number of numerical tests,
we would like to recommend the following one:

Sw = f�1www(tL); �2www(tM ); �3www(tR); eee1; eee2; . . . ; eee6g (35)

where tL and tR are the endpoints of the time segment in which Sw is
used, tM is a point between tL and tR(tL < tM < tR); �1; �2; �3
are weights, and eee1; eee2; . . . ; eee6 are the elements of the standard basis
for 6. This kind of Sw has several pleasing properties.

First, the parameters �1; �2; �3, and tM can be selected by opti-
mization so that fff computed by (25) best approaches its optimal value.
Noting that � from (25) is more difficult to be restricted than �, we pro-
pose a principle for optimizing these parameters as follows:

Minimize max
1�i�m

h

k=1

(��i;k � �i(�1; �2; �3; tM ; tk))
2

subject to �1; �2; �3 � 0; and tL < tM < tR (36)

where ��i;k = ��i (tk); k = 1; 2; . . . ; h are the values of �i obtained by
directly solving Optimization Problem 1 at t1; t2; . . . ; th(tL = t1 <
t2 < � � � < th = tR). In solving (36), fff j or fff�j of Sf is taken as
the minimum contact forces. We seek [��1; �

�
2; �

�
3; t

�
M ] for which the

maximum sum of squared deviations for i = 1; 2; . . . ;m is minimal.
As zero is a lower bound of the objective function, the solution exists.
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Second, by properly selecting the weights �1; �2; �3, the values
� and � of fff from (25) can be very close to their optimal values at
tL; tM ; tR.

Third, the smallest nonzero singular value of the matrix
WWW = [�1www(tL) �2www(tM) �3www(tR)eee1eee2 � � � eee6] is unity (see
the Appendix for details). This is helpful to slow down the variation
of ccc and the increase of �. Indeed, suppose that WWW has singular value
decomposition UUUDV T . Substituting WWW = UUUDV T into (23) yields

kccck = kWWW+wwwk = kVVV D+UUUTwwwk = kDDD+���k

=
v21
�21

+
v22
�22

+ � � �+
v2r
�2r

(37)

where �1; �2; . . . ; �r are the nonzero singular values of
WWW ; v1; v2; . . . ; vr are the elements of ��� = UUUTwww and k���k = kwwwk.
From (37), if �1; �2; . . . ; �r are small, a small variation of www might
result in a large variation of ccc and lead to a rapid increase of � at the
points other than tL; tM ; tR.

Finally, the set Sw can span the entire resultant wrench space 6.

C. Calculating Sf for Optimization

As the optimal solution of fff is computed by solving Optimization
Problems 1, 2, or 3 with respect to www, each element fff j of Sf can be
obtained in the same way with respect to wwwj of Sw . To specify � or �
of fff calculated online by (23) and (25), we can adjust �j or �j of fff j
offline. Actually, only the maxima of � and � in the whole time segment
between tL and tR determine the grasping quality

�� = max
t �t�t

� and �� = max
t �t�t

�: (38)

Still, either value of them can be specified by adjusting � or � in com-
puting Sf . Thus, by replacing � and � with �� and �� in (18)–(20), the
optimization problems can be applied to DPC as well.

D. Segmentation

In general,www may vary significantly with time t, but Sw is static. For
a better approach, we divide the www � t curve into a sufficient number
of segments and apply different spanning sets to them.

If the magnitude ofwww can be measured by a single scalar s 2 , then
t can be segmented according to the s� t curve. The natural choice of
s seems to be kwwwk. However, kwwwk does not give any physical meaning
because the components ppp and mmm of www have different dimensions N
and N � m. As an alternative, we compute a �� � t curve where �� is
obtained by directly solving Optimization Problem 1. Then, we divide
the �� � t curve at the points where ��(t) are local minima. If ��(t)
varies slightly, thewww� t curve can be divided equidistantly for conve-
nience.

It should be pointed out that segmentation might bring on discon-
tinuity at segment points. Nevertheless, the jump of �(t) at segment
points is negligible for �(t) is approaching ��(t), and it does not affect
the validity of the proposed algorithm.

V. ALGORITHM PROCEDURE

Referring to Fig. 2, the algorithm is implemented in two phases.
In the offline phase:

Step 1) Compute the matrices GGG+ and AAA.
Step 2) Select the spanning set Sw for www.
Step 3) Construct the matrix WWW and compute WWW+.
Step 4) Calculate the spanning set Sf with respect to Sw under the
desired optimization criterion.
In the online phase:

Step 5) (Resultant wrench deomposition): Compute the coefficient
vector ccc by (23).

Step 6) (Positive combination): Positize the decomposition of www
and compute the total contact force fff by (25).

The online phase can be programmed as

FPC : �i = N:A: (27)

PCwF : �i =

l

j=1

cjfio;j

2

+

l

j=1

cjfit;j

2

�i

l

j=1

cjfin;j �

l

j=1

cj f2io;j + f2it;j �i

l

j=1

cjfin;j

� max
1�j�l

f2io;j + f2it;j �ifin;j � max
1�j�l

�i;j (28)

SFC : �i =

l

j=1
cjfio;j

2

+ l

j=1
cjfit;j

2

+
�

�

l

j=1
cjfis;j

2

�i
l

j=1
cjfin;j

�

l

j=1

cj f2io;j + f2it;j + �2i f
2
is;j �02si �i

l

j=1

cjfin;j

� max
1�j�l

f2io;j + f2it;j + �2i f
2
is;j �02si �ifin;j

= max
1�j�l

�i;j (29)

FPC : �i =
1

fUi

l

j=1

cjfin;j � kccck1 max
1�j�l

�i;j (30)

PCwF : �i =
1

fUi

l

j=1

cjfin;j

2

+

l

j=1

cjfio;j

2

+

l

j=1

cjfit;j

2

�
1

fUi

l

j=1

cj f2in;j + f2io;j + f2it;j � kccck1 max
1�j�l

�i;j (31)

SFC : �i =
1

fUi

l

j=1

cjfin;j

2

+

l

j=1

cjfio;j

2

+

l

j=1

cjfit;j

2

+
�2i
�02si

l

j=1

cjfis;j

2

�
1

fUi

l

j=1

cj f2in;j + f2io;j + f2it;j + �2i f
2
is;j=�

02
si � kccck1 max

1�j�l
�i;j : (32)
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TABLE I
OPERATION COUNT OF ONLINE COMPUTATION FOR THE DYNAMIC FORCE DISTRIBUTION ALGORITHM

TABLE II
COMPARISON OF THE COMPUTATIONAL EFFICIENCY WITH THE PREVIOUS ALGORITHMS WITHOUT ONLINE ITERATION

fff = 0; //Initialization
ccc = WWW+www; //Computing the coefficient vector
for j = 1; 2; . . . ; l //Computing the total contact force

if cj < 0
fff = fff � cjfff

�

j ;
else

fff = fff + cjfff j ;
end

Note: Steps 2)–4) are taken for each segment, respectively.
Table I lists the online operation count of the algorithm. According to

Table I, the algorithm owns linear computational complexity. Table II
compares the computational efficiency of the algorithm with the pre-
vious ones without iteration during online computation. Although the
online operation count of our algorithm is more than that of Zuo and
Qian [12] when l is large, our solution has better quality.

VI. NUMERICAL EXAMPLE

Fig. 3 shows an equilateral tetrahedron with vertices
���1(0; 0; 2

p
2); ���2(2; 0; 0); ���3(�1;�

p
3; 0), and ���4(�1;

p
3; 0). It is

grasped by a four-fingered robot hand, which makes a SFCC1(0; 0; 0),
a FPC C2(�2=3; 0; 2

p
2=3), and two PCwFs C3(1=3;

p
3=3; 2

p
2=3)

and C4(1=3;�
p
3=3; 2

p
2=3) with the object surface. The

coefficients of friction and spin moment � = 0:4; �0s = 0:4 mm. The
upper bounds of contact forces fU1 = 1000 N and fUi = 500 N for
i = 2; 3; 4. The required resultant force and moment

ppp =

(40 + 10 sin 12�t) sin�t cos(�=6)� 10 cos 12�t sin(�=6)

(40 + 10 sin 12�t) cos�t

(40 + 10 sin 12�t) sin�t sin(�=6) + 10 cos 12�t cos(�=6)

mmm =

cos[sin(2�t)] sin[cos(�t)]

� cos[sin(2�t)] cos[cos(�t)]

sin[sin(2�t)]

:

The periods of ppp and mmm are 1/6 and 2 s, respectively. As a whole, the
period of www is 2 s.

Fig. 3. Equilateral tetrahedron is grasped by a four-fingered gripper with a soft
finger contact C , a frictionless contact C , and two frictional contacts C and
C . Each contact is at the center of a facet.

Due to the variation of ppp, the �� � t curve comprises 12 waves in
2 s, as depicted by the dashed line in Fig. 4. In accordance with its
fluctuation, we divide the �� � t curve into 12 segments at the points
where �� approaches local minima (the first column of Table III).

For each segment, we adopt the Sw given by (35) and determine
the parameters �1; �2; �3, and tM by (36) (the middle column of
Table III), where the value �� is taken for every 0.01 s. For instance,
Sw for the first segment consists of the elements shown at the bottom
of the page and eee1; eee2; . . . ; eee6.

For material strength, we minimize �� while calculating Sf . Fig. 4
depicts � and � of fff in a period, where the optimal solution is ob-
tained by directly solving Optimization Problem 1. As clearly reflected
in Fig. 4(a), � computed by the algorithm is less than 0.72 and closely
approaches optimal. The graceful result can be verified by the slight
deviations listed in the last column of Table III. Fig. 4(b) shows that
� of the optimal solution is equal to unity, while that computed by the
DPC algorithm is below unity most often.

�1www(tL) = [�0:8848 7:0788 1:5326 14:8915 �9:5617 0]T

�2www(tM) = [1:3114 4:4816 �0:2737 7:7209 �5:2228 4:2147]T

�3www(tR) = [22:1262 64:8990 17:8448 138:8172 �106:1972 156:0894]T :
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Fig. 4. Computed results of Optimization Problem 1 (�� = 1; minimize ��).

TABLE III
SELECTED POINTS, WEIGHTS, AND OTHER MAIN DATA FOR EACH SEGMENT

For grasping stability, we minimize ��. In this case, � and � are shown
in Fig. 5, where the optimal solution comes from Optimization Problem
2 directly. Close to the optimal value, � obtained by the DPC algorithm
is less than 0.6486 and � is not greater than that of the optimal solution.
Compared with Fig. 4, Fig. 5 indicates that � is dramatically reduced
and grasping stability is improved indeed; however, this improvement
causes an increase in �.

Regarding grasping stability and material strength equally, we mini-
mize �� subject to �� = ��. Then, � and � are redrawn in Fig. 6, where the
optimal solution is produced by Optimization Problem 3 with K = 1

directly. Fig. 6 shows that both � and � computed by the DPC algorithm
are less than 0.85 and close to the optimal values.

Fig. 5. Computed results of Optimization Problem 2 (�� = 1; minimize ��).

Fig. 6. Computed results of Optimization Problem 3 (�� = ��; minimize ��).

The total computation cost at each point is 136 additions, 153 multi-
plications, and nine comparisons. The algorithm has been implemented
using Matlab and run on PCs with different CPUs. The execution time
for a point is given in Table IV.
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TABLE IV
EXECUTION TIME FOR A POINT ON PCS WITH DIFFERENT CPUS

VII. CONCLUSION AND FUTURE WORK

We present a new DFD algorithm for multifingered grasping (Fig. 2).
Instead of online optimization, the technique of transmitting feasibility
and optimality from the offline optimized Sf to fff is addressed for the
first time, which greatly reduces the online computation cost and keeps
the superior solution quality. Making large strides toward all of the
goals of DFD research (Fig. 1), hopefully the algorithm will be the first
choice for the real-time control of multifingered robot hands.

Like other DFD algorithms and force-closure analysis, our algorithm
also assumes that the friction coefficient is known and certain. The as-
sumption is still a problem that deserves investigation in the future.

APPENDIX

WWW can be partitioned into two submatrices: [WWW 1 III] where the null
space of WWW T

1 has nonzero elements and III is the identity matrix. This
Appendix proves that the smallest nonzero singular value of WWW is ir-
relevant to WWW 1 and equal to unity.

From matrix analysis, the nonzero singular values of WWW are the
square roots of the nonzero eigenvalues of WWW TWWW .

The nonzero eigenvalue � of WWW TWWW must satisfy the equation
WWW TWWWx = �xxx with a nonzero vector xxx. From the partition of WWW , we
have

WWW T
1WWW 1 WWW T

1

WWW 1 III

xxx1
xxx2

= �
xxx1
xxx2

(39)

where xxx is partitioned into xxx1 and xxx2, i.e., xxx = [xxxT1 xxxT2 ]
T .

Multiplying both sides of (39) on the left by [
III �WWW T

1

0 III
] yields

0 0

WWW 1 III
xxx1
xxx2

= �
xxx1 �WWW T

1 xxx2
xxx2

: (40)

From � 6= 0 and (40), it follows that

xxx1 = WWW
T
1 xxx2 (41)

WWW 1xxx1 = (�� 1)xxx2: (42)

From (41), it next follows that, if xxx2 = 0, then xxx1 = 0 and xxx = 0.
However, since xxx 6= 0, we see that xxx2 6= 0.

Multiplying both sides of (42) on the left by xxxT2 and combining (41),
we obtain

kxxx1k = (�� 1)kxxx2k

which implies � � 1.
On the other hand, it follows from (41) and (42) that � = 1 is an

eigenvalue of WWW TWWW and an eigenvector belonging to � = 1 has the
form of xxx1 = 0 and xxx2 being nonzero in the null space of WWW T

1 .
Therefore, the smallest nonzero singular value of WWW is unity.
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Localization of Curved Parts Through Continual Touch

Yan-Bin Jia

Abstract—We describe a simple system that localizes two-dimensional
curved shapes through touch sensing, offering computational and ex-
perimental studies. The idea lies in determining the placement of a
manipulator on a curved object during some special motion—rolling. A
geometric algorithm is introduced to locate the boundary segment traced
out by their contact using tactile data. Both completeness and local conver-
gence have been established. The algorithm is asymptotically as efficient
as evaluating the object’s perimeter through numerical integration. For
implementation, a two-axis force/torque sensor has been designed to realize
contact sensing. Functioning like a “wrist,” the sensor is calibrated over
the ratio between the bending and twisting moments, eliminating the need
for known weights. A simple geometry-based control strategy is devised to
implement the rolling motion. Experiments have been conducted with an
Adept Cobra 600 manipulator.

Index Terms—Curves, kinematics of rolling, parts localization, solid me-
chanics, touch sensing.

I. INTRODUCTION

Parts sensing and orienting involve determining the position and ori-
entation of a part whose shape is often known. Not to disturb the part,
parts sensing [27], [38], [44] invokes geometric algorithms to process
sensor data which serve as constraints on the part. A practical drawback
is that the robot is hardly reactive to sensing errors or minor distur-
bances on the part. A vision system, meanwhile, is unable to handle
occlusions. Since a part is often machined according to some com-
puter-aided-design (CAD) model, an image also contains redundant
information that could become a source of errors and inefficiency in
the process.

With performance guaranteed by mechanical analysis, parts ori-
enting carries out operations, such as vibration [17], tray-tilting [11],
parallel-jaw gripping [7], [14], pushing [2], [32], microelectromechan-
ical systems (MEMS) actuation [5], or fixturing [8]. These methods
trade sensing (and, thus, all sensor errors) for gained task robustness.
Nevertheless, the tradeoff often requires special engineering of the task
environment, which increases the cost while decreasing modularity
and efficiency.
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Fig. 1. Localizing a jaw on a motionless object through rolling. During the
same period of rolling, the contact point moves from a to b on the object and
from c to d on the jaw.

Knowledge about the geometry of a part facilitates its localization
through the exploration of tactile information. In industrial automation,
a workpiece is typically localized by finding the optimal registration of
some measured points onto a given CAD model [19], [31], [33]. The
general scheme iteratively improves on a transformation in order to
minimize some least-squares error function and also on the registration
of the measured data points. Though involved numerical routines have
been developed, the local nature of nonlinear optimization guarantees
neither completeness nor efficiency.

In most tasks, parts only need to be localized relative to the robot. In
grasping, for instance, if the hand is already in contact with an object,
then it needs to only know where the fingers are placed on the object
rather than where the object is located (in the world coordinates). The
human hand often calibrates itself by moving its fingers on the object’s
surface so as to “feel” the change of geometry.

To emulate such ability of “feeling,” the robotic hand needs to be
equipped with a force/torque or tactile array sensor. Such a sensor
plays an important role in the dynamic integration of sensing into
manipulation.

While a combination of tactile, force, and position sensing carries the
promise of enhancing the flexibility and robustness of robotic manip-
ulation [22], the integration of different control strategies for multiple
sensor modalities can become very sophisticated and unreliable. From
a minimalist point of view, one sensor modality should be preferred if
it yields sufficient information needed for task execution.

The aim of this paper is to demonstrate that parts can be localized
with very limited touch sensing plus a little action. By doing this, we
hope to gain some insight into enabling the robot to “feel” the geometry
and pose of an object. We believe that the retrieval and engineering of
such knowledge will become important for skillful task execution in
the long term.

Our investigation focuses on parts in curved shapes. A substantial
amount of research has dealt with polygonal and polyhedral objects so
far. These objects do not have local geometry (except at vertices). Nev-
ertheless, actions and mechanics are inherently differential and subject
to local geometric properties of bodies interacting with each other.

The specific problem studied in this paper is posed as follows. A jaw
(as shown in Fig. 1) rolls from one location (a) to another (b) on an
object. We would like to determine these two locations, thus locating
the jaw on the object (i.e., determining the object’s relative pose to the
jaw). The idea is to measure the angle of rotation (
) by the jaw as
well as the distance (L) of contact movement on the object boundary.
We offer an algorithm that finds the segment traced out by the contact
point in Section II.
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