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Abstract

Without any limit to the contact force magnitude, the traditional definition of force-closure caused controversy. As an
essential modification to it, in the early 1990s two criteria for goodness were proposed without preference. The grasp qual-
ity is thus measured by the largest resultant wrench in the worst direction generated by the contact forces with the normal
components equal to unity at most. The difference between the two criteria lies in computing the resultant wrench by either
the convex combination or the Minkowski sum. If the required resultant wrench is known, then we pursue the least contact
forces. Correspondingly, the difference becomes minimizing either the sum or the maximum of the normal components.
Following the former a number of important papers on optimal grasp planning (OGP) and dynamic force distribution
(DFD) appeared in recent years converging into the mainstream, but none referred to the latter. Differing from the current
trend, this paper reveals that the former is not so good to evaluate the grasp goodness, whereas the latter is a good criterion
indeed. For the first time the algorithms for computing the latter and furthermore for OGP and DFD are formulated. With
these results as a standard, the exactness of the former when applied to OGP and DFD is estimated.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Illuminated by the creative work of Salisbury and Roth [1], optimal grasp planning (OGP) and dynamic
force distribution (DFD) have been hotly studied more than two decades. The former topic is to determine
the optimal contact positions for achieving the best grasp according to some grasp quality criterion(-ria).
The latter is to find the optimal contact forces for equilibrating the external wrench subject to some force opti-
mality criterion(-ria).

Closure properties, including form-closure and force-closure, are prerequisite to stable grasping and pri-
marily required for OGP. These properties mean the capability of a grasp to restrain any motion and to equil-
ibrate any external wrench on the grasped object. So far several force-closure conditions have been deduced
0094-114X/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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[1–7], which lead to the closure test [8–11] and lay the foundation for constructing force-closure grasps [12–21].
However, the traditional force-closure definition [1–3] permits the contact forces to be arbitrarily large as long
as they conform to the contact constraint. Certain grasps must exert very large contact forces (even exceeding
the material strength and/or the actuator power) to equilibrate a small external wrench. Therefore, the force
magnitude must be limited and the grasp quality criteria regarding it should be considered. Being another vital
problem, DFD always concerns the contact force magnitude, which is taken as an objective to be minimized.

In multifingered grasping, there are several contacts, so we need a quantity for indicating the overall contact
force magnitude. The previous literature proposed two measures: the sum of the normal force components and
their maximum. Limiting the sum to unity, Kirkpatrick et al. [22], Ferrari and Canny [23] suggested the largest
resultant wrench in the worst direction generated by the feasible contact forces as a grasp quality criterion. It is
geometrically interpreted as the minimum distance from the origin of the wrench space to the boundary of the
convex hull of the primitive wrenches. Zhu and his colleagues [24,25] utilized the Q distance to compute the
criterion easier but probably lost a little precision. Liu et al. [9,21] computed a distance between the origin and
the boundary of the convex hull in a certain direction with high efficiency, but it is usually not the minimum.
Limiting the maximum, Ferrari and Canny [23] recommended an alternative quality criterion without compar-
ing them, but no algorithm for OGP according to the latter was put forward until now. In DFD, since a linear
programming (LP) algorithm [26] was raised to minimize the sum, a compact-dual LP algorithm [27], a qua-
dratic programming (QP) algorithm [28], two gradient algorithms [29,30], an interior point algorithm [31], and
a Newton algorithm [32] appeared one after another. Liu et al. [33,34] proved that some of the algorithms [29–
32] are quadratically convergent. Linearizing the Coulomb friction cone, Liu [9] developed a ray-shooting
based algorithm using the duality of polytopes. DFD algorithms can be also found in [35–38]. Particularly,
Zheng and Qian minimized the maximum [38] rather than the sum [26–37].

Since summation is a linear operation and much easier, the sum of the normal force components is adopted
as the mainstream measure of the overall contact force magnitude [9,21–36], whereas their maximum is laid
aside as an alternative after its proposal [23,31]. On the contrary, this paper claims the advantages of the latter.
More generally, we limit each normal force component by an upper bound, which may be different for differ-
ent contacts. To the magnitude of each contact force, we prefer the ratio of the normal force component to its
upper bound. Accordingly the overall value is measured by the sum or the maximum of the ratios. The
extreme contact force is defined as a contact force reaching the friction cone boundary in inclination and
the force upper bound in magnitude. Its image under mapping of the grasp matrix into the wrench space is
called a primitive wrench. Following [23], when the sum is limited to unity, the grasp quality is assessed by
the distance between the origin and the convex hull Wu

c� of the union of the primitive wrenches. To limit only
the maximum, the convex hull WM

c� of the Minkowski sum is used instead of Wu
c�. A method of precisely com-

puting the two criteria is derived. Detailed comparison reveals that the former is not so proper for evaluating
the grasp goodness, while the latter is really competent. An OGP algorithm is developed with either criterion.
Due to the distinct descent directions of the criteria, the resulted optimal grasps may differ. Furthermore, we
propose a unified DFD algorithm for minimizing the sum or the maximum. The difference lies in that the algo-
rithm is based on Wu

c� or WM
c�. Their computation results are often conspicuously apart.

2. Preliminary studies

Consider an m-fingered hand grasping an object, fixed with a right-handed coordinate frame. Assume that
each finger contacts the object at a regular point with the Coulomb friction. Set a local right-handed coordi-
nate frame at each contact point with the unit inward normal ni and the unit tangent vector(s) ti (and oi). The
contact force fi (i = 1, 2, . . . ,m) can be expressed in the local coordinate frame by
fi ¼ ½ fin fit �T 2 R2 ð2D graspsÞ or f i ¼ ½ fin fio fit �T 2 R3 ð3D graspsÞ; ð1Þ
where fin, fio, and fit are the force components along ni, oi, and ti, respectively. To avoid separation and slip at
contact, fi should comply with the contact constraint:
fin P 0; and � lifin 6 fit 6 lifin ð2DÞ or
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2

io þ f 2
it

q
6 lifin ð3DÞ; ð2Þ



Y. Zheng, W.-H. Qian / Mechanism and Machine Theory 41 (2006) 1243–1257 1245
where li is the Coulomb friction coefficient. A contact force under the contact constraint is said to be feasible.
Let si,h, h = 1, 2, . . . , l be the extreme contact forces, which characterize or linearize the friction cone:
si;1 ¼ ½ f U
i lif

U
i �

T
; si;2 ¼ ½ f U

i �lif
U
i �

T ð2DÞ or si;h ¼ f U
i ½ 1 li cosð2hp=lÞ li sinð2hp=lÞ �T ð3DÞ;

ð3Þ
where f U
i is the upper bound of fin, bounded by the material strength and/or the actuator power. Then a

feasible fi under f U
i can be represented by
fi ¼
Xl

h¼1

ki;hsi;h; ki;h P 0 for h ¼ 1; 2; . . . ; l and
Xl

h¼1

ki;h 6 1. ð4Þ
Moreover, combining (1), (3) and (4) leads to
fin ¼ f U
i

Xl

h¼1

ki;h. ð5Þ
The overall contact force magnitude covering all contacts takes either of
ru ¼
Xm

i¼1

fin

f U
i
¼
Xm

i¼1

Xl

h¼1

ki;h; ð6Þ

rM ¼ max
16i6m

fin

f U
i

� �
¼ max

16i6m

Xl

h¼1

ki;h

 !
. ð7Þ
Then the wrench wi 2 Rd generated by contact i can be calculated by
wi ¼ G if i ¼
Xl

h¼1

ki;hG isi;h ¼
Xl

h¼1

ki;hwi;h ¼W iki; ð8Þ
where d = 3 and d = 6 for 2D and 3D grasps, respectively; Gi is the grasp matrix; wi,h = Gisi,h is called a prim-

itive wrench; W i ¼ ½wi;1 wi;2 � � � wi;l � 2 Rd�l and ki ¼ ½ ki;1 ki;2 � � � ki;l �T 2 Rl. Let Wi and Wic be the
set of and the convex hull of wi,1, wi,2, . . . ,wi,l together with the origin 0 of the wrench space
Wi ¼ f0;wi;1;wi;2; . . . ;wi;lg; ð9Þ
Wic ¼ convf0;wi;1;wi;2; . . . ;wi;lg ¼ convWi; ð10Þ
where conv(Æ) denotes the convex hull of a set. The set Wic consists of all the wrenches that can be generated by
feasible fi under f U

i . For 2D grasps, Wic is a triangle with a vertex at 0 of the 3D wrench space. For 3D grasps,
Wic is a 3D polytope with a vertex at 0 of the 6D wrench space.

To equilibrate an external wrench wext, the resultant wrench w applied by the hand should be
w ¼
Xm

i¼1

G if i ¼
Xm

i¼1

wi ¼
Xm

i¼1

W iki ¼Wk ¼ �wext; ð11Þ
where W ¼ W1 W2 � � � Wm½ � 2 Rd�ml and k ¼ kT
1 kT

2 � � � kT
m

� �T 2 Rml.

3. Optimal grasp planning

3.1. Two grasp quality criteria

A grasp is said to be force-closure if any wext 2 Rd can be equilibrated [2–25,31]. Without other conditions,
certain grasps have to exert the contact forces exceeding their upper bounds. This implies that only the force-
closure requirement is insufficient for OGP, and the grasp quality criteria regarding the force magnitude must
be considered. For this the largest resultant wrench in the worst direction generated by the feasible contact
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forces with limited magnitude is suggested [22,23]. Since the contact force magnitude can be measured by ru or
rM, limiting either of them, we obtain a criterion. First consider the former.

Let ru be within unity. From (6) and (11), the resultant wrenches that can be generated by the grasp lie in
the convex hull Wu

c of the union of Wic, i = 1, 2, . . . ,m:
Wu
c ¼ conv

[m
i¼1

Wic

 !
¼ conv

[m
i¼1

convWi

 !
¼ conv

[m
i¼1

Wi

 !
¼ convWu; ð12Þ
where
Wu ¼
[m
i¼1

Wi. ð13Þ
Let Wu
� be the subset of Wu except 0 and Wu

c� the convex hull of Wu
�:
Wu
� ¼Wu n 0 ¼

[m
i¼1

Wi

 !
n 0; ð14Þ

Wu
c� ¼ convWu

� ¼ conv
[m
i¼1

Wi

 !
n 0

 !
. ð15Þ
The L2 distance qð0;Wu
c�Þ between 0 and Wu

c� can be taken as a grasp quality criterion.

Proposition 1. The following statements are true:

1. If qð0;Wu
c�Þ > 0, then 0 62Wu

c�. The grasp cannot apply resultant wrenches in any two opposite directions
(neither force-closure nor partial force-closure).

2. If qð0;Wu
c�Þ ¼ 0, then 0 2Wu

c� with 0 62 intWu
c�. The grasp may apply resultant wrenches in certain opposite

directions but not in all directions (partial force-closure).

3. If qð0;Wu
c�Þ < 0, then 0 2 intWu

c�. The grasp can apply resultant wrenches in all directions (force-closure).

Moreover, �qð0;Wu
c�Þ indicates the magnitude of the largest resultant wrench in the worst direction generated

by feasible contact forces with ru equal to unity.

On the other hand, the last two paragraphs hold true if the word union is replaced by Minkowski sum and all
the superscripts u by M. After the substitution, Proposition 1 is renumbered as Proposition 2. Both criteria
qð0;Wu

c�Þ and qð0;WM
c�Þ are the-less-the-better. Hereinafter they are shortened as qu and qM, respectively.
3.2. Precise computation of the criteria

Although the above two criteria were advanced long ago [23], no precise computational method was
available until now. From Theorem 1 in Appendix A it follows that
qu ¼ �min
kzk¼1

pWu
c�
ðzÞ; ð16Þ

qM ¼ �min
kzk¼1

pWM
c�
ðzÞ; ð17Þ
where z 2 Rd is a variable; pWu
c�
ðzÞ and pWM

c�
ðzÞ are the support functions of Wu

c� and WM
c�, respectively. From

Wu
c� ¼ convWu

� it follows that pWu
c�
ðzÞ ¼ pWu

�
ðzÞ, where pWu

�
ðzÞ is the support function of Wu

�. By the same
reason, we obtain pWM

c�
ðzÞ ¼ pWM

�
ðzÞ, where pWM

�
ðzÞ is the support function of WM

� . Thus
qu ¼ �min
kzk¼1

pWu
�
ðzÞ; ð18Þ

qM ¼ �min
kzk¼1

pWM
�
ðzÞ. ð19Þ
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From (9) and (14), pWu
�
ðzÞ ¼ maxðwT

1;1z;wT
1;2z; . . . ;wT

m;lzÞ and qu can be found by
Maximize �maxðwT
1;1z;wT

1;2z; . . . ;wT
m;lzÞ

subject to kzk ¼ 1.

�
ð20Þ
Similarly, from Algorithm 1 (see below), pWM
�
ðzÞ ¼ maxðwT

1 z;wT
2 z; . . . ;wT

n zÞ and qM can be obtained by
Maximize �maxðwT
1 z;wT

2 z; . . . ;wT
n zÞ

subject to kzk ¼ 1.

�
ð21Þ
Algorithm 1. This algorithm computes the elements of WM
� , denoted by wj. A vector qj 2 Rml is employed to

note down wi,h, h = 1, 2, . . . , l and i = 1, 2, . . . ,m yielding wj, i.e., wj ¼
Pm

i¼1

Pl
h¼1qlði�1Þþh;jwlði�1Þþh ¼Wqj,

where ql(i�1)+h,j is the component of qj.

Let sl(i�1)+h = si,h and wl (i�1)+h = wi,h for h = 1, 2, . . . , l and i = 1, 2, . . . ,m.
n = 0;
For i = 1, 2, . . . ,m
For h = 1, 2, . . . , l

For j = 1, 2, . . . ,n

wnhþj ¼ wj þ wlði�1Þþh; qnhþj ¼ qj; qlði�1Þþh;nhþj ¼ 1;

End
End
For h = 1, 2, . . . , l

wnðlþ1Þþh ¼ wlði�1Þþh; qnðlþ1Þþh ¼ 0; qlði�1Þþh;nðlþ1Þþh ¼ 1;

End
n = n(l + 1) + l;

End

Let us make the following remarks:

1. WM
� ¼ fw1;w2; . . . ;wng, where n = (l + 1)m � 1.

2. Let P ¼ ½w1 w2 � � � wn � 2 Rd�n and Q ¼ ½ q1 q2 � � � qn � 2 Rml�n. Then P = WQ.
3. qj consists of 0 and 1. At most one of ql(i�1)+h,j, h = 1, 2, . . . , l is 1, which implies that wi,h, h = 1, 2, . . . , l from

the same contact i cannot be simultaneously used to yield wj. Moreover, at least one of ql(i�1)+h,j,
h = 1, 2, . . . , l and j = 1, 2, . . . ,n is 1. Totally there are ml(l + 1)m�1 entries of Q are 1’s.

4. Let k = Qa, where each component aj of a 2 Rn is nonnegative and ki,h denotes a component of k 2 Rml.
From Remark 3 it follows that

Pl
h¼1ki;h 6

Pn
j¼1aj and

Pm
i¼1

Pl
h¼1ki;h P

Pn
j¼1aj. This property together with

Remark 2 plays an important role in deriving the DFD algorithm in Section 4.
3.3. Comparison of their physical meanings

Both criteria search for the largest resultant wrench in the worst direction. The only difference is that qu

comes from ru, while qM comes from rM.
From (4) and (11), the contact forces generating Wu

c� can be expressed by
fi ¼
Xl

ki;hsi;h; i ¼ 1; 2; . . . ;m satisfying
Xm Xl

ki;h ¼ 1 with all ki;h P 0

h¼1 i¼1 h¼1
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Thus Wu
c� can be rewritten as
Fig. 1.
qM, wh
WM

c�),
A vari
certain
Wu
c� ¼

Xm

i¼1

G if ijf i satisfies (4) for i ¼ 1; 2; . . . ;m with ru ¼ 1

( )
. ð22Þ
From (4) and Remark 2 on Algorithm 1, the contact forces generating WM
c� can be expressed by
f i ¼
Xl

h¼1

ki;hsi;h; i ¼ 1; 2; . . . ;m satisfying k ¼ Qa and
Xn

j¼1

aj ¼ 1 with all aj P 0
where a ¼ ½a1 a2 � � � an�T 2 Rn. From Remark 4, we further obtain
Pl

h¼1ki;h 6
Pn

j¼1aj ¼ 1 andPm
i¼1

Pl
h¼1ki;h P

Pn
j¼1aj ¼ 1. Thus WM

c� can be rewritten as
WM
c� ¼

Xm

i¼1

G if ijf i satisfies (4) for i ¼ 1; 2; . . . ;m with ru P 1 and rM
6 1

( )
. ð23Þ
Comparing (22) with (23), we see that the constraint on the contact forces in Wu
c� is excessive and much

stronger than that in WM
c�; thus Wu

c� is no more than a subset of WM
c�. Fig. 1(a) gives a planar example, where

the friction coefficients are 0.2 and the force upper bounds are 1 at each contact. Fig. 1(b) illustrates that the
corresponding Wu

c� is contained in and much smaller than WM
c�. Consequently, for a force-closure grasp, qu is

usually greater than qM (note that both are negative and their absolute values indicate the resultant wrenches).
Fig. 1(c) together with (a) shows that qu does not change when the contacts increase. Actually, since the resul-
tant wrenches in Wu

c� are obtained by the convex combination (a weighted average) of Wic, i = 1, 2, . . . ,m, qu

computes the average function of the contacts. As a result, qu is insensitive to the contact number. On the con-
trary, WM

c� is obtained by the Minkowski sum of Wic, i = 1, 2, . . . ,m, so that the functions of all the contacts
are added up. We would say, qM reflects the load capacity of a grasp. Therefore the two criteria are not equiv-
alent. For evaluating the goodness of various grasps, of course the latter is better.

3.4. Description of the OGP algorithm

OGP problem: Given an object, determine the contact positions of a grasp such that a quality criterion
attains a minimum.

OGP algorithm (Refer to Fig. 2). For easy understanding, we start with the 2D case. The contact position ri

can be expressed by a function of one variable /i. qM is taken as the optimization criterion, which changes
with /i, i = 1, 2, . . . ,m. Let /L

i and /U
i denote the lower and upper bounds on /i, i.e., /L

i 6 /i 6 /U
i .
Wu
c� adopted in previous literature compared with WM

c� recommended by this paper. The data at the bottom of each grasp are qu/
ich are the distances from 0 to Wu

c� and WM
c�, respectively. qu (resp. qM) is negative if and only if 0 lies in the interior of Wu

c� (resp.
and is the-less-the-better. (a) A three-finger grasp holding a unit circle. (b) Wu

c� in the thick lines and WM
c� in the thin lines of (a). (c)

ety of other grasps. Two phenomena are worthy of note: (i) Wu
c� is rather smaller than WM

c�. (ii) With more contacts, the grasp is
ly better, but qu keeps the same.



Fig. 2. Flowchart of the optimal grasp planning (OGP) algorithm. Wu
c� can be used instead of WM

c�, but the results might be different.
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Step 1. Choose the initial values /ð0Þi , the initial step D/i (D/i > 0), the lower bounds /L
i and the upper bounds

/U
i of /i, and the termination tolerances ei (ei > 0) of D/i, i = 1, 2, . . . ,m. Set k = 0.

Step 2. Search the domain D ¼
Qm

i¼1fmaxð/L
i ;/

ðkÞ
i � D/iÞ;/ðkÞi ;minð/ðkÞi þ D/i;/

U
i Þg for ½/�1/

�
2 � � �/

�
m�, where

the value of qM is minimal.
Step 3. Check whether /�i ¼ /ðkÞi for i = 1, 2, . . . ,m. If /�i ¼ /ðkÞi , set D/i = D/i/2. Let /ðkþ1Þ

i ¼ /�i and
k = k + 1.

Step 4. If D/i 6 ei for all i = 1, 2, . . . ,m, then go to Step 5; otherwise, go to Step 2.
Step 5. /ðkÞi ; i ¼ 1; 2; . . . ;m give the optimal grasp configuration. The algorithm terminates.

This algorithm searches the gradient descent directions so as to decrease qM most rapidly. The quality of
the computed grasp depends on the initial values and the initial steps. Instead of the globally optimal solution,
often a local minimum is attained, like [24]. Striving for the global minimum, one may try several initial values
and steps. The running time is determined by the initial steps and the termination tolerances. For 3D grasps, it
needs only to add a parameter wi to specify the contact position ri together with /i and treat it like /i. If qM is
replaced by qu, the results may differ because their descent directions are different.

4. Dynamic force distribution

4.1. Principle of the DFD algorithm

DFD problem: Given a force-closure grasp and a dynamic external wrench wext, find the contact forces fi,
i = 1, 2, . . . ,m satisfying (4) and (11) such that the contact force magnitude becomes minimum.

To minimize the contact forces, the objective function can be taken as ru ¼
Pm

i¼1ðfin=f U
i Þ for fast compu-

tation or rM ¼ max16i6mðfin=f U
i Þ for better solution. Now we transform the DFD problems with the two

objectives into the same convex analysis problem, which has been solved in Appendix B.
From (4), (6), and (11), DFD with ru minimized can be transformed into computing ki,h, i = 1, 2, . . . ,m and

h = 1, 2, . . . , l satisfying (11) with minimum
Pm

i¼1

Pl
h¼1ki;h. On the other hand, �wext can be expressed by
�wext ¼
Xn

j¼1

ajwj ¼ Pa; aj P 0 for j ¼ 1; 2; . . . ; n. ð24Þ
From Remark 2, we obtain
�wext ¼Wk with k ¼ Qa. ð25Þ

From (5) and Remark 4, fin 6 f U

i

Pn
j¼1aj for i = 1, 2, . . . ,m, which implies that max16i6mðfin=f U

i Þ 6
Pn

j¼1aj.
Thus DFD aiming to minimize rM can be transformed into computing aj, j = 1, 2, . . . ,n satisfying (24) with
minimum

Pn
j¼1aj.

Referring to Appendix B, to compute ki,h, i = 1, 2, . . . ,m and h = 1, 2, . . . , l such that ru is minimum, we first
determine zb by
Maximize � wT
extz

subject to wTz 6 1;w 2Wu
�.

�
ð26Þ
Let W be partitioned into W1 and W2, where W1 consists of w 2Wu
� satisfying zT

b w ¼ 1 and W2 consists of the
others. Correspondingly, k is be partitioned into k1 and k2. Then
k1 ¼ �Wþ
1 wext and k2 ¼ 0. ð27Þ
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To compute ki,h, i = 1, 2, . . . ,m and h = 1, 2, . . . , l such that rM is minimum, just substituting WM
� for Wu

� and
P for W in the above derivation, we obtain
Fig. 3.
Step 3
a1 ¼ �Pþ1 wext and a2 ¼ 0. ð28Þ

Partition Q into Q1 and Q2 according to a1 and a2. Combining (25) and (28) leads to
k ¼ Q1a1 þQ2a2 ¼ �Q1Pþ1 wext. ð29Þ

Furthermore, ru

min and rM
min are the optimal objective values of (26) w.r.t. Wu

� and WM
� , respectively.

4.2. Enhancements of DFD based on WM
c�

Solving problem (26) w.r.t. WM
� needs O(n) time, where n = (l + 1)m � 1 is large for 3D grasps. This encum-

bers the real-time application of the DFD algorithm. Section 4.1 implies that only a few elements of WM
� ,

namely those being the columns of P1, are required for wext at a time point. Let WM
t be a set of them. ThenS

tW
M
t is sufficient for the whole wext. Notice that WM

t and WM
tþDt are identical when Dt is small. Thus we can

pick out
S

tW
M
t at some discrete time points. Moreover, as the assumption in Appendix B, it should be sat-

isfied that 0 2 intðconvð
S

tW
M
t ÞÞ; otherwise randomly add more elements, since they will not participate in

computing the contact forces. This process can be automatically executed by computers in advance.
In addition, the matrix Q 2 Rml�n is a large-scale sparse matrix, which can be substituted by two matrices

A 2 R2�n and B 2 R2�mlðlþ1Þm�1

. The entries b1,k and b2,k of B keep the values of i and h, while the entries a1,j

and a2,j of A note down the starting and end addresses of bk corresponding to wj:
wj ¼
Xa2;j

k¼a1;j

wb1;k ;b2;k ¼
Xa2;j

k¼a1;j

Gb1;k sb1;k ;b2;k . ð30Þ
This process can be easily integrated into Algorithm 1. Then fi ¼ fb1;k
can be computed by the following loop
fb1;k
¼ fb1;k

þ ajsb1;k ;b2;k for k ¼ a1;j; a1;j þ 1; . . . ; a2;j and j ¼ 1; 2; . . . ; n. ð31Þ
Moreover, by this means, computation of k can be skipped.

4.3. Description of the DFD algorithm

DFD algorithm (Refer to Fig. 3). The algorithm is implemented in two phases.

Offline phase.

Step 1. Calculate wi,h, h = 1, 2, . . . , l and i = 1, 2, . . . ,m.
Step 2. To minimize rM ¼ max16i6mðfin=f U

i Þ, compute wj, j = 1, 2, . . . ,n by Algorithm 1, reserve the required
wj by the method in Section 4.2, and go to Step 7. To minimize ru ¼

Pm
i¼1ðfin=f U

i Þ, go to Step 3.
Online phase.

Step 3. Determine zb by (26) w.r.t. Wu
�.

Step 4. Construct W1 by the elements wi,h of Wu
� satisfying zT

b wi;h ¼ 1.
Flowchart of the dynamic force distribution (DFD) algorithm. Steps 1 and 2 are performed offline. The online phase starts from
or 7 for minimizing

Pm
i¼1ðfin=f U

i Þ or max16i6mðfin=f U
i Þ.
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Step 5. Compute k by (27).
Step 6. The contact forces fi, i = 1, 2, . . . ,m with minimum ru is computed by (4). The algorithm ends.
Step 7. Determine zb by (26) w.r.t. WM

� .
Step 8. Construct P1 by the elements wj of WM

� satisfying zT
b wj ¼ 1.

Step 9. Compute a by (28).
Step 10. The contact forces fi, i = 1, 2, . . . ,m with minimum rM is computed by (31). The algorithm ends.

In the online phase, Step 3 can be solved in O(ml) time. Step 4 takes O(ml) time to find wj, which are com-
monly much less than ml. In Step 5, k is obtained in O(1) time. In Step 6, fi, i = 1, 2, . . . ,m are computed in
O(ml) time. Totally, the time complexity of the online phase for minimizing ru is O(ml) and linear with the
number of the elements of Wu

�, essentially faster than the polynomial time complexity of Han et al. algorithm
[31] and the quadratic time complexity of Helmke et al. algorithm [32]. Similarly, its time complexity for min-
imizing rM is O(n1), where n1 is the number of the elements reserved in WM

� after Step 2.

5. Numerical examples

We implement the algorithms using the optimization toolbox of MATLAB on a Pentium-M notebook.

Example 1. It is required to grip a racket, as depicted in Fig. 4. First determine a grasp with three contacts
(see Fig. 5(a)–(e)). The contact positions and the physical conditions are as follows:
Fig. 4.
qM. Th
r1 ¼ ½ 0:13 cos /1 0:16 sin /1 �
T m; 0 6 /1 6 p; l1 ¼ 0:1; f U

1 ¼ 30 N;

r2 ¼ ½�0:68/3
2 � 0:015 0:8/2

2 � 0:315 �T m; 0 6 /2 6 0:5; l2 ¼ 0:1; f U
2 ¼ 60 N;

r3 ¼ ½ 0:68/3
3 þ 0:015 0:8/2

3 � 0:315 �T m; 0 6 /3 6 0:5; l3 ¼ 0:1; f U
3 ¼ 60 N.
Let / = [/1, /2, /3] denote the grasp configuration. Taking the initial configuration /(0) = [0, 0.5, 0.5], the ini-
tial step D/ = [p/4, 0.2, 0.2], and the termination tolerance e = [p/8, 0.1, 0.1], the proposed OGP algorithm
based on WM

c� turns out the optimal grasp /(4) = [p/4, 0.45, 0] in four iterations with the CPU time of
Optimal grasp planning for a racket with (a)–(e) three contacts or (f)–(l) four contacts. The data at the bottom of each grasp are qu/
e numbers in the top left and top right corners are the iteration numbers of the OGP algorithm based on qu and qM, respectively.



Fig. 5. Various grasps of a tile. The values of qu/qM are shown at the bottom. The iteration numbers of the OGP algorithm based on qu

and qM are given in the top left and top right corners, respectively.
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129.15 s. Fig. 4(a)–(d) describe the grasp configurations in process of the optimization. During the last two
iterations, the grasp configuration keeps unchanged. Only the steps get reduced. Using Wu

c� instead of
WM

c�, the OGP algorithm terminates at /(4) = [p/4, 0.5, 0] with the CPU time of 165.97 s (see Fig. 4(a)–(c)
and (e)).

Next we construct a four-finger grasp, as described in Fig. 4(f)–(l), with contacts at
Table
The re

Grasp

(d)
(e)
(k)
(n)
r1 ¼ ½ 0:12 cos /1 0:15 sin /1 �
T m; 0 6 /1 6 p; l1 ¼ 0:1; f U

1 ¼ 30 N;

r2 ¼ ½ 0:12 cos /2 0:17 sin /2 �
T m; �p 6 /2 6 0; l2 ¼ 0:1; f U

2 ¼ 30 N;

r3 ¼ ½ 0:68/3
3 þ 0:015 0:8/2

3 � 0:315 �T m; 0 6 /3 6 0:5; l3 ¼ 0:1; f U
3 ¼ 60 N;

r4 ¼ ½�0:015 /4 �
T m; �0:5 6 /4 6 �0:32; l4 ¼ 0:2; f U

4 ¼ 100 N.
The grasp configuration is given by / = [/1, /2, /3, /4]. The initial step and the termination tolerance are set
to D/ = [p/4, p/4, 0.2, 0.02] and e = [p/8, p/8, 0.1, 0.01]. With /(0) = [0, 0, 0.4, �0.42], the OGP algorithm
puts out /(5) = [p/8, � 3p/8, 0.225, �0.5] based on WM

c� (Fig. 4(f)–(k)) and /(5) = [p/16, � p/2, 0, �0.5] based
on Wu

c� (Fig. 4(f)–(h) and (l)–(n)). The CPU times are 434.58 s and 479.67 s, respectively.
Fig. 4 also displays the values of qu and qM. For force-closure grasps, the former are much greater than the

latter, such as (d) and (k). More valuably, while qM decreases in iteration, qu sometimes keeps unchanged or
even increases, such as (h)–(k). This implies that the descent directions of qu and qM are distinct; thus OGP
using the two criteria could result in different grasps, such as (d), (e) and (k), (n).

To test the DFD algorithm, assume that an external wrench wext = [�8 �10 6]T (N or N Æ m) exerts on the
above grasps (Fig. 4(d), (e), (k) and (n)). Table 1 lists the results of the DFD algorithm based on Wu

c� and
WM

c�. For the three-finger grasps (d) and (e), the two kinds of optimal contact forces are identical, while for the
four-finger grasps (k) and (n), they are not. In particular, for grasp (n), the contact forces with minimum ru are
over f U

i , whereas those with minimum rM are all below f U
i . (d) satisfies the traditional condition of force-

closure, but actually does not work because rM
min > 1.
1
sults of the DFD algorithm based on Wu

c� and WM
c� in Example 1

Wu
c� WM

c�

Max(fin=f u
i )

P
ðfin=f U

i Þ CPU time (ms) Max(fin=f u
i )

P
ðfin=f U

i Þ CPU time (ms)

1.3868 3.1099 26.58 1.3868 3.1099 29.34
0.9521 2.0623 25.15 0.9521 2.0623 28.76
0.8658 1.2280 24.23 0.8119 1.4159 28.04
1.1336 1.6728 27.54 0.9904 1.6945 28.94
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Example 2. The object to be grasped is a glazed tile for modern roofs and mosaics. Its upper and lower
surfaces are two parallel ‘‘monkey saddles’’, given by
Fig. 6.
Natura
in (b).

Fig. 7.
situatio
ru ¼ ½/ w 10ð/3 � 3w2/Þ þ 0:005 �T m; rl ¼ ½/ w 10ð/3 � 3w2/Þ � 0:005 �T m
where �0.2 6 / 6 0.2 and �0.2 6 w 6 0.2. Note that it is square and symmetric w.r.t. the x-axis, because the
third entries of the above vectors remain unchanged if w is substituted by �w. Therefore each side of the tile
can be connected smoothly with the proper side of another tile. In this way, the area covered seamlessly by
such tiles can be extended in the x and y directions to an arbitrary rectangular polygon whatever we like.
We put two contacts (C1 and C2) on the tile and two (C3 and C4) beneath. Their positions are specified by
[/i, wi], i = 1, 2, 3, 4 with constraints /2 = � /1, w2 = � w1, /4 = � /3, and w4 = � w3. Thus the grasp config-
uration is expressed by c = [/1, w1, /3, w3]. Assume that l = 0.2 and fU = 10 N at each contact. Take the
initial steps to be 0.2 m and the termination tolerances to be 0.001 m. Each friction cone is linearized into
a 10-side polyhedral cone, i.e., l = 10 in (3). Using c(0) = [0,0,0,0], the OGP algorithm returns
c(10) = [�0.2, 0.0375, 0.1992, �0.2] based on WM

c� (Fig. 5(a)–(f)) and c(11) = [�0.2, 0.0531, �0.2, 0.2] based
on Wu

c� (Fig. 5(a)–(d), (g), and (h)). The CPU times are 112.38 min and 53.67 min, respectively. Due to the
different descent directions of qu and qM, the latter result is just a value in the former iterations.

Next, let grasp (f) equilibrate a dynamic external wrench wext ¼ ½f T
ext mT

ext�
T, where
f ext ¼ ½�0:7 cos 0:2pt � 0:4 sin 0:2pt � 7:8 0:2 cos 0:2pt � 1:4 sin 0:2pt þ 2:2 �2:7 cos 0:2pt þ 2 �T;
mext ¼ ½�0:7 cos 0:2pt � 1:1 sin 0:2pt þ 0:8 cos 0:2pt � 0:8 sin 0:2pt � 1:2 0:7 cos 0:2pt þ 2:5 �T.
Comparison of the DFD algorithm results based on Wu
c� (dashed curve) and WM

c� (solid curve) for a certain external wrench.
lly the former aiming to minimize

Pm
i¼1ðfin=f U

i Þ is above the latter aiming to minimizing max16i6mðfin=f U
i Þ in (a) and under the latter

Note that the former exceeds the upper bound 1, while the latter goes well.

Comparison of the DFD algorithm results based on Wu
c� (dashed curve) and WM

c� (solid curve) for another external wrench. The
ns are similar to Fig. 6.
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Computing DFD based on Wu
c� and based on WM

c�, respectively, we obtain Fig. 6, which shows that the for-
mer contact forces exceed the upper bounds somewhere but the latter are always below. Originally, WM

c� has
14640 elements. Then the online phase takes over 2 s at a point. Using the method given in Section 4.2, we
pick out 275 elements with wext(t) at t = 1, 2, . . . , 10 and �

P10
t¼1wextðtÞ. The CPU time for a point is reduced

to 62.10 ms. We also try another external wrench as follow:
f ext ¼ ½� cos 0:2pt � 0:1 sin 0:2pt � 6:6 0:1 cos 0:2pt � 1:2 sin 0:2pt þ 0:5 � 2:2 cos 0:2pt þ 2:8�T;
mext ¼ ½� cos 0:2pt þ 0:3 sin 0:2pt � 1:3 0:2 cos 0:2pt þ 1:2 sin 0:2pt þ 0:3 0:7 cos 0:2pt � 2�T.
The results of the DFD algorithm based on Wu
c� and based on WM

c� are depicted in Fig. 7. The optimal
contact forces still differ significantly. The CPU times for computing them are 46.20 ms and 65.64 ms,
respectively.
6. Conclusions

When a system involves a number of the-less-the-better quantities of the same attribute, normally its overall
quality is determined by the maximum quantity, which we ought to limit and minimize. However, achieving
such a goal is often complicated and difficult. As an easier but approximate way, people may limit and
minimize their sum instead.

The multifingered grasp involving the contact forces is a typical system of this kind. In the early 1990s, tak-
ing the sum of the normal force components or their maximum as a measure of the overall force magnitude,
two grasp quality criteria were proposed without preference [22,23]. Since not the sum but the maximum is
directly related to the actuator power as well as the strength of the grasped object and the grasping mecha-
nism, of course the latter is the reasonable choice. Nevertheless, the previous literatures on OGP and DFD
always adopted the former as the optimization criterion [9,21–36]. Only [38] is an exception. Its approach
is totally different from the others.

This paper points out that the former cannot assess the grasp goodness appropriately. The convex hull Wu
c�

(resp. WM
c�) of the union (resp. Minkowski sum) of the primitive wrenches contains all the feasible resultant

wrenches under the limitation of the sum (resp. maximum). Due to the excessive restraint on the contact force
magnitude, the distance between the origin and Wu

c� is not suitable for evaluating the grasp goodness. Con-
trarily, the distance between the origin and WM

c� properly reflects the load capacity of a grasp and is an ideal
criterion. A precise and unified computational method is put forward. Because the different criteria have dif-
ferent descent directions, the proposed OGP algorithm with the same initial conditions may bring about dif-
ferent optimal grasps. Moreover, we show that DFD with the sum (resp. maximum) minimized can be
transformed into a convex analysis problem based on Wu

c� (resp. WM
c�). By solving the problem, a unified

DFD algorithm for minimizing the sum or the maximum is developed. It is demonstrated that the two kinds
of optimal contact forces are often quite different, especially for 3D multifingered grasps.
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Appendix A. The L2 distance between the origin and a nonempty compact convex set

Let 0 and S be the origin and a nonempty compact convex subset of Rd , respectively. The L2 distance

between 0 and S, denoted by q(0, S), is defined by
qð0; SÞ ¼
min
xb2S
kxbk; if 0 62 int S;

� min
xb2bd S

kxbk; if 0 2 int S;

8<
:

where k Æ k, int(Æ) and bd(Æ) denote the L2 norm of a vector, the interior and the boundary of a set. When 0 62 S,
the value q(0, S) is positive and equal to the radius of the largest open ball centered at 0 without intersecting S.
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When 0 2 bd S or 0 2 S with intS = Ø, q(0, S) = 0. When 0 2 int S, q(0, S) is negative and its additive inverse
equals the radius of the largest closed ball centered at 0 contained in S. In what follows, we derive a general
and efficient computational method of q(0, S).

Lemma 1. Suppose that B is a convex subsets of Rd . If int B 5 Ø and S \ int B = Ø, then there exists a

hyperplane H separating S and B.

Proof. See [39], p. 36. h

Lemma 2. Through each boundary point of S there is a hyperplane supporting S.

Proof. See [39], p. 41. h

Lemma 3. There exists a point xb 2 S (if 0 62 intS) or xb 2 bdS (if 0 2 intS) such that q(0, S) = kxbk or

q(0, S) = �kxbk. Moreover, there is a hyperplane of the form H ¼ fx 2 Rd jxTz ¼ �qð0; SÞg supporting S at

xb such that xTz 6 �q(0, S) for all x 2 S, where z is a unit normal to H.

Proof. The compactness of S and the continuity of the L2 norm imply the existence of such a point xb.
Case 1 (0 62 intS; then q(0, S) = kxbk). If xb 5 0, then there is a closed ball B centered at 0 such that

S \ B = xb, int B 5 Ø, and S \ intB = Ø. From Lemma 1, there is a hyperplane H separating S and B; thus H

supports S and B at xb. The supporting hyperplane of B at xb can be written as
H ¼ fx 2 Rd jxTð�xb=kxbkÞ ¼ �kxbkg, and obviously xT(�xb/kxbk) 6 �kxbk for all x 2 S. If xb = 0, then
0 2 bd S or 0 2 S with intS = Ø. From Lemma 2, there is a hyperplane supporting S at 0, or containing S;
anyway, there is a supporting hyperplane of S at 0. Properly selecting its normal z, we can also obtain xTz 6 0
for all x 2 S.

Case 2 (0 2 intS; then q(0, S) = �kxbk). The closed ball B of radius kxbk centered at 0 is contained in S such
that xb 2 bdS \ bd B. From Lemma 2, there is a hyperplane H supporting S at xb, which in turn supports B at
xb. The hyperplane can be written as H ¼ fx 2 Rd jxTðxb=kxbkÞ ¼ kxbkg, and clearly xT(xb/kxbk) 6 kxbk for
all x 2 S. h

Let pS denote the support function of S, which is the real-valued function defined by
pSðzÞ ¼ sup
x2S

xTz.
Lemma 4. Let z be a unit point of Rd and B the ball of radius jpS(z)j centered at the origin 0 of Rd . Then the

hyperplane H ¼ fx 2 Rd jxTz ¼ pSðzÞg supports S and B. Moreover, If pS(z) < 0, then H separates S and B. If

pS(z) P 0, then S and B lie in the same closed half-space determined by H.

Proof. Referring to [39], p. 206, the proof is straightforward. h

Theorem 1
qð0; SÞ ¼ �min
kzk¼1

pSðzÞ
Proof. From Lemma 3, there is a hyperplane H ¼ fx 2 Rd jxTz ¼ �qð0; SÞg supporting S at xb such that
xTz 6 �q(0, S) for all x 2 S. Thus pS(z) = �q(0, S) and minjzj¼1pSðzÞ 6 �qð0; SÞ. Assume pS(z 0) < �q(0, S)
for some unit z 0. Let B 0 be the ball of radius jpS(z 0)j centered at 0. If 0 62 int S, then q(0, S) = kxbk < jpS(z 0)j,
and xb 2 int B 0. From xb 2 S it next follows that S and B 0 cannot be separated. But from Lemma 4 there is a
hyperplane H 0 separating S and B 0, which is a contradiction. If 0 2 int S, then jpS(z 0)j < �q(0, S) = kxbk, and
B 0 � int S, which implies that S and B 0 cannot be supported by the same hyperplane. But from Lemma 4 there
is a hyperplane H 0 supporting S and B 0, which is also a contradiction. Therefore, minjzj¼1pSðzÞ ¼ �qð0; SÞ. h
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Appendix B. On computing the coefficients with the minimum sum in positive combination

Let S be a finite set of points xj, j = 1, 2, . . . ,n of Rd and w a point other than the origin. Assume that the
convex hull Sc of S contains the origin as an interior point. Then the point w can be expressed by
w ¼
Xn

j¼1

cjxj ¼ Ac; cj P 0 for j ¼ 1; 2; . . . ; n;
where A ¼ ½ x1 x2 � � � xn � 2 Rd�n and c ¼ ½ c1 c2 � � � cn �T 2 Rn. The problem is to find cj, j = 1,2, . . . ,n

with minimum r ¼
Pn

j¼1cj.
Let xe = w/r. Then xe 2 Sc and r = kwk/kxek. Clearly, r attains a minimum when xe is on the boundary

bd Sc of Sc. Furthermore, w can be restricted to a nonnegative combination of the elements of S that fall
on a hyperplane supporting Sc at xe. Partition A into A1 and A2 where A1 consists of such elements and A2

consists of the others. Correspondingly, c is partitioned into c1 and c2. Thus c can be calculated by
c1 ¼ Aþ1 w and c2 ¼ 0;
where Aþ1 is the pseudoinverse of A1.
To find a hyperplane supporting Sc at xe, we turn to the polar set S�c of Sc and the support function pS�c

of S�c ,
which are defined by
S�c ¼ fz 2 Rd jxTz 6 1 for all x 2 Scg;
pS�c
ðwÞ ¼ sup

z2S�c

wTz.
Theorem 2. Let zb be a point in S�c such that pS�c
ðwÞ ¼ wTzb. The following statements are true:

1. pS�c
ðwÞ�1

w 2 bdSc.

2. The hyperplane H ¼ fx 2 Rd jzT
b x ¼ 1g supports S at the point pS�c

ðwÞ�1
w.

Proof. See [10,36]. h

Theorem 2, point (1) implies that xe ¼ pS�c
ðwÞ�1

w and rmin ¼ pS�c
ðwÞ. Point (2) indicates that H is just the

hyperplane we are looking for. From Sc = convS it follows that S�c ¼ S� and pS�c
ðwÞ ¼ supz2S�w

Tz. Thus zb

is the optimal solution of the following problem:
Maximize wTz

subject to xTz 6 1; x 2 S.

�
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