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Abstract

Optimal grasp planning has been investigated for over two decades. Still some important weaknesses in the previous
work are worthy of notice: (i) The kinematic structure and the geometric configuration of a robot hand were ignored. Fin-
gers were assumed to be capable of contacting an object anywhere. This is unrealistic. (ii) The grasp quality criterion was
general and often did not match the task requirement. (iii) The criterion depends on the choice of unit and coordinate
frame and lacks a clear physical meaning. This paper tries to remedy them. First, a general technique is proposed to find
all feasible grasps on an object conforming to the robot hand. Next, for a specified external wrench or an external wrench
set of a certain task, the maximum equilibrating contact force is adopted as the grasp quality criterion. Having an evident
meaning, it is independent of the choice of unit and coordinate frame. Finally, an algorithm is presented for seeking the
globally optimal grasp for which the value of the criterion is minimal among the feasible ones.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Optimal grasp planning (OGP) is a topic of finding the optimal contact positions on an object such that a
robot hand can manipulate it with high performance quality. This topic has been investigated with great
enthusiasm since the pioneer work of Salisbury and Roth [1]. A number of significant results have been
obtained, mainly in the following three aspects:

1. Force-closure conditions and tests: The force-closure property, including form-closure as a frictionless case,
is prerequisite to stable grasping. It means the capability of a grasp to restrain any motion and to equili-
brate any external wrench on the grasped object. It is well-known that a grasp is force-closure if and only
if the primitive wrenches positively span the wrench space [1], or the origin of the wrench space lies strictly
in the convex hull of the primitive wrenches [2]. Murray et al. [3] deduced a condition in the contact force
0094-114X/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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space; that is, the grasp matrix is surjective and there is a strictly internal force. By the duality between the
infinitesimal motion and the wrench, Zheng and Qian [4] generalized the method of form-closure analysis
[5–7] to force-closure. Based on these conditions, testing algorithms were developed [8–12].

2. Grasp quality evaluation: To compare the goodness of force-closure grasps, the magnitude of the maxi-
mum external wrench in the worst direction that can be equilibrated with unit contact forces was sug-
gested to be a grasp quality criterion [13,14]. Borst et al. [15], Zhu and Wang [16], Liu et al. [17], and
Zheng and Qian [18] proposed different computational methods. Noticing that a wrench consists of a
force and a moment, which has different dimensions. Mirtich and Canny [19] treated them separately
in assessing the grasp quality. By doing this, the ambiguity in the physical meaning of the wrench mag-
nitude was eliminated.

3. Planning techniques: Formerly, study focused on synthesizing force-closure grasps on simple objects with
limited contacts. On polygonal objects, Nguyen [20] computed independent regions for two frictional or
four frictionless point contacts. Markenscoff and Papadimitriou [21] calculated the optimal grip. Park and
Starr [22] synthesized a three-finger grasp, while Tung and Kak [23] constructed a two-finger one. On
irregular 2D and 3D objects, Chen and Burdick [24] considered two-finger antipodal point grasps, and
Li et al. [25] developed a geometrical algorithm for computing three-finger force-closure grasps. Ponce
et al. [26] promoted Nguyen’s idea [20] to four-finger force-closure grasps on polyhedral objects. In recent
years, the planning scope becomes more general: the contact number is no more limited and the object
surface requires piecewise smooth only. Liu [27] computed 2D n-finger grasps, while Ding et al. [28] con-
sidered 3D n-finger grasps where k fingers are located in advance. Following the gradient flows of the
quality criterion [13,14], Zhu and Wang [16], and Liu et al. [17] synthesized optimal grasps on 3D objects
with piecewise smooth surface. Liu et al. [29] sought force-closure grasps on 3D objects represented
by discrete points. In addition, some algorithms for fixture design can be applied to grasp planning as
well [30].

In the OGP research to date, however, there are some hidden weaknesses:

1. It was assumed that fingers could make contact with an object at any locations. Actually, the working space
of a finger is restricted. Whether and where it contacts an object are relevant to its kinematic structure and
geometric configuration as well as the pose of the hand relative to the object. Therefore contacts cannot be
located so independently and freely. Even a dexterous hand with multiple degrees of freedom can hardly
fulfill this assumption.

2. An optimal grasp was required to equilibrate the external wrench in all directions as efficiently as possible.
But the external wrench on an object in a specific task is specified in certain directions, and some directions
need more attention. Thus a task-oriented grasp quality criterion should be used in order that the optimized
grasp owns the best performance quality indeed, such as the one presented in [31,32]. Shimoga [32] also
described several other quality criteria, which in certain cases might be more important.

3. The grasp quality criterion [13,14] depends on the choice of unit and coordinate frame. This problem
arises because the force and moment components of a wrench have different units and the latter is not
invariant to translations of the origin. Consequently, the calculated optimal grasps are unit and frame
dependent.

This paper aims to dispose of these problems. Firstly, by means of the L2 distance between compact sets, we
put forward a general method of seeking grasps on an object conforming to a robot hand. This method can be
applied to various 3D objects and robot hands. Rather than a single feasible grasp, all of them are figured out
for finding the best one. Next, given a specific manipulation task, in which the dynamic external wrench is
formulated or the set of external wrenches is specified, we utilize the largest contact force required for equi-
librium to assess the grasp performance quality. This criterion is irrelevant to the choice of unit and coordinate
frame. By extending our previous work on dynamic force distribution [18], an efficient method for computing
it is derived. At last, among the feasible grasps the global optimum for which the value of the criterion is min-
imal is searched out by an algorithm. Through these efforts, OGP is rid of the foregoing weaknesses
eventually.
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2. Feasible grasps on an object for a robot hand

2.1. Representation of a robot hand relative to an object

We first establish a mathematical model of grasping. For detailed knowledge about this part, one may refer
to [3]. Let O denote an object fixed with a coordinate frame FO, in which O is represented as a compact set.
Assume that an m-finger robot hand fixed with a coordinate frame FH is used to grasp O. Let pOH 2 R3 be the
position vector of the origin of FH in FO and ROH 2 SOð3Þ the orientation of FH relative to FO. The values
of pOH and ROH are determined by the robot arm that the hand is connected with.

Assume that each finger contacts the object at the fingertip. Let Fi for i ¼ 1; 2; . . . ;m be a coordinate frame
attached to fingertip i, so that fingertip i can be expressed in Fi by a compact convex set Fi. The motion of a
finger has to conform to its kinematic structure. Let bi be a vector comprising several variables that result in
the motion of Fi, and bi and �bi the lower and upper bounds of bi. Then Fi in FH can be written as a function of
bi, i.e.,
F iH ¼ piðbiÞ þ RiðbiÞF i ð1Þ

where piðbiÞ 2 R3 and RiðbiÞ 2 SOð3Þ. Consequently, Fi in FO is given by
F iO ¼ pOH þ ROH F iH ¼ pOH þ ROH piðbiÞ þ ROH RiðbiÞF i ð2Þ

Eq. (2) implies that the position of Fi relative to O is determined by pOH ;ROH , and bi. Thus the values of
pOH ;ROH , and bi; i ¼ 1; 2; . . . ;m determine the pose of the robot hand.

Moreover, motions of fingers may be restrained by each other. Such constraints can be generally formu-
lated as
gðb1; b2; . . . ; bmÞ ¼ 0 ð3Þ

There are other forms of grasps, in which not only the fingertips but also the palm and/or the phalanges

make contact with the object, such as power grasp. Fixed on the robot hand, the palm can be expressed in
FH by a compact set, which is transformed into FO by pOH and ROH . Each phalange can be represented as
a set in a coordinate frame attached to it, and the set can also be transformed into FO. Only one more thing
needs to be noted, that is, a phalange and a fingertip share some components of bi. Therefore the mathematical
models of other grasp forms are essentially identical with the one of fingertip grasp. For simplicity, hereinafter
we follow the foregoing assumption, but the proposed method is generally applicable.

2.2. Conformity of a grasp on an object to a robot hand

A grasp on an object is a set of points on the object surface, where the robot hand contacts the object with
its fingers. Let ri 2 R3; i ¼ 1; 2; . . . ;m be the position vectors of contacts in FO. Then the grasp is denoted by
G ¼ fr1; r2; . . . ; rmg ð4Þ
Because of the constraints (2) and (3), the contact points cannot be arbitrarily selected on the object surface.
They depend on the structure of the robot hand and its pose relative to the object. In what follows, we shall
introduce the mathematical formulations of contact and conformity of a grasp.

Proposition 1. The finger F iO can contact the object O if and only if there exist pOH 2 R3;ROH 2 SOð3Þ, and
bi 2 ½bi; �bi� such that F iO \ O 6¼ ; and int F iO \ int O ¼ ;, where intð�Þ denotes the interior of a set.

Proposition 2. The robot hand can grasp the object O with all the fingers if and only if F iO; i ¼ 1; 2; . . . ;m can

contact O subject to (3).

Definition 1. A grasp on an object is said to be feasible for a robot hand or conform to it if the hand can con-
tact the object by the grasp with all its fingers.

Only feasible grasps can be put into practice. Their existence is the prerequisite for OGP.
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3. General method of seeking feasible grasps

In this section, we first introduce the L2 distance between two sets, which can be used as an ideal measure of
contact. Then conditions and an algorithm for seeking feasible grasps are proposed.

3.1. The L2 distance between nonempty compact sets

In convex analysis and computational geometry, the distance between sets is often defined as the minimum
distance between their elements [33–35]. This traditional distance cannot distinguish penetration from contact
between sets because its value is zero in both cases. Although the growth distance [36] and the pseudodistance
[37] can, their values are usually not equal to the exact distance in the physical sense. Thus we prefer the L2

distance, which does not have these troubles. In our previous work [18], the L2 distance between the origin and
a nonempty compact convex set together with its computation was addressed. For use in this paper, herein we
extend its scope to two nonempty compact sets. Some extensions are inspired by [34,35].

Definition 2. Let S1 and S2 be compact convex sets with nonempty interiors and B0 the unit ball in terms of the
L2 metric centered at the origin 0. The L2 distance between S1 and S2 is defined by
qðS1; S2Þ ¼
min

kB0\ðS2�S1Þ6¼;; kP0
k; if S1 \ S2 ¼ ;

min
kB0�S2�S1; k60

k; if S1 \ S2 6¼ ;

8><>: ð5Þ
where S2 � S1 ¼ fx2 � x1jx1 2 S1; x2 2 S2g is the Minkowski difference between S1 and S2 (Fig. 1).

Theorem 1. Let S ¼ S2 � S1. Then the following statements are true:

1. S is a compact convex set with nonempty interior.

2. 0 2 S if and only if S1 \ S2 6¼ ;.
3. 0 2 int S if and only if int S1 \ intS2 6¼ ;.
Proof. The proof of parts (1) and (2) is straightforward. Part (3) follows from part (2) and
int S ¼ int S2 � int S1. h

According to Theorem 1, parts (1) and (2), qðS1; S2Þ can be rewritten as
qðS1; S2Þ ¼ qð0; SÞ ¼
min

kB0\S 6¼;;kP0
k; if 0 62 S

min
kB0�S;k60

k; if 0 2 S

8<: ð6Þ
Fig. 1. Illustrating the definition of the L2 distance.
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Theorem 2. The following statements are true:

1. qðS1; S2Þ > 0 if and only if S1 \ S2 ¼ ;.
2. qðS1; S2Þ ¼ 0 if and only if S1 \ S2 6¼ ; and intS1 \ intS2 ¼ ;.
3. qðS1; S2Þ < 0 if and only if int S1 \ intS2 6¼ ;.
Proof. It follows straightforwardly from (6) and Theorem 1. h
In words, Theorem 2(1) implies that S1 and S2 are separated, and qðS1; S2Þ is the radius of the largest open
ball centered at 0 without intersecting S. Part (2) means that S1 just contacts S2. Part (3) indicates that S1 and
S2 are penetrated, and �qðS1; S2Þ is the radius of the largest ball centered at 0 contained in S.

Similarly to the traditional distance [34], the L2 distance can be expanded into a rich family of nonconvex
sets which are the unions of compact convex sets and their spherical extensions. This will facilitate the appli-
cation of the L2 distance to the objects comprising some convex parts (see Examples 1 and 2) and having
round corners (see Example 2). Suppose that S1 and S2 are each the union of a finite number of compact con-
vex sets, i.e.,
S1 ¼
[

k12I1

Sk1
; S2 ¼

[
k22I2

Sk2
ð7Þ
where Sk1
and Sk2

are convex sets, and I1 and I2 are index sets. Then
qðS1; S2Þ ¼ min
k12I1;k22I2

qðSk1
; Sk2
Þ ð8Þ
The spherical extensions of S1 and S2 are defined by
Sr1
1 ¼ S1 þ r1B0; Sr2

2 ¼ S2 þ r2B0 ð9Þ
It is easy to know that
qðSr1
1 ; S

r2
2 Þ ¼ qðS1; S2Þ � r1 � r2: ð10Þ
More generally, let
S1 ¼
[

k12I1

S
rk1
k1
; S2 ¼

[
k22I2

S
rk2
k2

ð11Þ
where S
rk1
k1

and S
rk2
k2

are the spherical extensions of Sk1
and Sk2

, respectively. Then
qðS1; S2Þ ¼ min
k12I1;k22I2

fqðSk1
; Sk2
Þ � rk1

� rk2
g ð12Þ
Let pSðzÞ ¼ supx2SzTx denote the support function of S [33], where z is a vector. From (6) and the formula
for computing qð0; SÞ derived in [18], we directly obtain

Theorem 3. qðS1; S2Þ ¼ qð0; SÞ ¼ �minkzk¼1pSðzÞ:

The following theorem is quite useful for computing pSðzÞ.

Theorem 4. Let A and B be two compact sets. Then the following statements are true:

1. pA�BðzÞ ¼ pAðzÞ þ pBð�zÞ:
2. pconv AðzÞ ¼ pAðzÞ, where convð�Þ denotes the convex hull of a set.

3. pA[BðzÞ ¼ maxfpAðzÞ; pBðzÞg.
4. pRðAÞðzÞ ¼ pAðRTzÞ, where R is a matrix denoting a linear mapping.

5. Suppose that A and B are subsets of Rn1 and Rn2 , respectively. Let z ¼ ½zT
1 zT

2 �
T 2 Rn1þn2 , where z1 2 Rn1 and

z2 2 Rn2 . Then pA�BðzÞ ¼ pAðz1Þ þ pBðz2Þ:
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Proof. The proof is straightforward. Detailed explanation of parts 1–4 can be found in [34]. h

From Theorems 3 and 4(1), qðS1; S2Þ can be computed by
qðS1; S2Þ ¼ �min
zk k¼1
fpS2
ðzÞ þ pS1

ð�zÞg ð13Þ
Eq. (13) is illustrated in Fig. 2. The functions pS1
ð�zÞ and pS2

ðzÞ together with the vector z determine a pair of
parallel hyperplanes H 1 and H 2 that support S1 and S2, respectively, i.e.,
H 1 ¼ fxj � zTx ¼ pS1
ð�zÞg and H 2 ¼ fxjzTx ¼ pS2

ðzÞg ð14Þ
The value of pS1
ð�z) (resp. pS2

ðzÞ is the distance from 0 to H 1 (resp. H 2Þ along �z (resp. z). The value of pSðzÞ is
the distance from H 1 to H 2 along z. Thus �qðS1; S2Þ is the minimum value of the directional distances between
all such pairs of supporting hyperplanes given by (14).

Theorem 5. Suppose that ẑ is the vector such that qðS1; S2Þ ¼ qð0; SÞ ¼ �pSðẑÞ. Let Ŝ1 (resp. Ŝ2) be the set of all

points x 2 S1 (resp. x 2 S2) such that pS1
ð�ẑÞ ¼ �ẑT x (resp. pS2

ðẑÞ ¼ ẑTx). If qðS1; S2Þ ¼ 0, then Ŝ1 \ Ŝ2 consists

of the contact points of S1 and S2, and ẑ is the normal at contacts inward to S1 and outward to S2.

Compared with existing literature on the distance between objects, especially the outstanding achievements
of Gilbert and his colleagues [34–36], the formulas regarding qðS1; S2Þ in this subsection have a certain distinc-
tion in computing the penetration, which will be used in the algorithm for seeking feasible grasps. In addition,
Theorems 4(5) and 5 are new results of convex analysis.

3.2. Feasibility condition and searching algorithm

According to Theorem 2, the L2 distance can be used to detect penetration, contact, or separation between
the fingers and the object. If the object O is convex, then directly from Theorem 3 we may compute the L2

distance between the finger F iO and O by
qðF iO;OÞ ¼ �min
kzk¼1
fpOðzÞ þ pF iO

ð�zÞg ð15Þ
If O is composed of some convex parts, we compute qðF iO;OÞ by (8). With the help of Theorem 4, the
explicit expressions of pOðzÞ and pF iO

ð�zÞ can be derived from the formulations of O and F iO, respectively.
Consequently, qðF iO;OÞ can be computed by solving the optimization problem (15). Let z ¼
½cos a1 cos a2 cos a1 sin a2 sin a1�T, and then the problem (15) can be rewritten as
qðF iO;OÞ ¼ � min
�p=26a16p=2; 06a262p

fpOðzÞ þ pF iO
ð�zÞg ð16Þ
From Propositions 1 and 2 together with Theorems 2 and 5, we have
Fig. 2. Illustrating the computation of the L2 distance.
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Proposition 3. The finger FiO can make contact with the object O if and only if there exist

pOH 2 R3;ROH 2 SOð3Þ, and bi 2 ½bi; �bi� such that qðF iO;OÞ ¼ 0. Furthermore, the unit vector ẑ, for which

qðF iO;OÞ ¼ pOðẑÞ þ pF iO
ð�ẑÞ ¼ 0, determines the contact points and the normal therein.
Proposition 4. The values of pOH 2 R3;ROH 2 SOð3Þ, and bi 2 ½bi; �bi�; i ¼ 1; 2; . . . ;m, for which qðF iO;OÞ ¼ 0
and gðb1; b2; . . . ; bmÞ ¼ 0, determine a grasp on the object O feasible for the robot hand.

Algorithm 1 (Searching for feasible grasps)

Step 1. Set the initial values of pOH and ROH .
Step 2. Search the domain ½bi; �bi� for bi such that qðF iO;OÞ ¼ 0. Methods for solving equations, such as the

bisection method, are available for this purpose. The solution might be not unique; then denote them
by bi;ji

, ji ¼ 1; 2; . . . ; J i. If the solution does not exist for some i, then go to Step 5.
Step 3. Compute the values of gðb1;j1

; b2;j2
; . . . ; bm;jm

Þ for each ji ¼ 1; 2; . . . ; J i and i ¼ 1; 2; . . . ;m. If none of
them are zero, then go to Step 5.

Step 4. Calculate the contact points w.r.t. b1;j1
; b2;j2

; . . . ; bm;jm
, for which gðb1;j1

; b2;j2
; . . . ; bm;jm

Þ ¼ 0. Each set of
such contact points gives a feasible grasp.

Step 5. To seek other feasible grasps, change pOH and ROH , and return to Step 2; otherwise, the algorithm ends.
4. Optimal grasp planning for a specific manipulation task

4.1. Grasp quality criterion

Set a local coordinate frame at each contact point with the unit inward normal ni and the unit tangent vec-
tors oi and ti. The contact force f i (i ¼ 1; 2; . . . ;m) can be expressed in the local coordinate frame by
f i ¼ ½fin f io f it�
T 2 R3 ð17Þ
where fin, fio, and fit are the force components along ni; oi, and ti, respectively. To avoid separation and slip at
contact, f i must comply with the contact constraint:
fin P 0 and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2

io þ f 2
it

q
6 lifin ð18Þ
where li is the Coulomb friction coefficient. The overall magnitude of contact forces is measured by the index
r ¼ max
i¼1;2;...;m

fin

f U
i

� �
ð19Þ
where f U
i is the upper bound of fin, bounded by the material strength and/or the actuator power. To equili-

brate an external wrench wext on the object O, the resultant wrench w of f i; i ¼ 1; 2; . . . ;m must satisfy
w ¼
Xm

i¼1

G if i ¼ �wext ð20Þ
where G i is the grasp matrix:
G i ¼
ni oi ti

ri � ni ri � oi ri � ti

� �
2 R6�3 ð21Þ
There are many solutions of (20) in (18) for a given wext. Among them, we select the minimum contact forces,
whose r is minimal. Let rmin denote the minimum value of r. Then we have
rmin ¼ min
f i; i¼1;2;...;m satisfy ð18Þ and ð20Þ

r ¼ min
f i; i¼1;2;...;m satisfy ð18Þ and ð20Þ

max
i¼1;2;...;m

fin

f U
i

� �� �
: ð22Þ
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In some manipulation tasks, a specific motion of the object is given by a function of time t. Then the exter-
nal wrench is determined by the Newton–Euler equation [3], which is also specified as a function of time t. In
some others, how the object interacts with the environment is foreseen, and then the expected external wrench
can be described by a compact wrench set [31]. In the former case, the performance quality of a grasp G is
naturally assessed by the maximum (during the variation of wext) of the minimum contact forces (among
all possible solutions at choice) arising in the task, which can be formulated as
QðG;wextÞ ¼ max
w¼�wextðtkÞ; k¼1;2;...;K

rmin;k ¼ max
w¼�wextðtkÞ; k¼1;2;...;K

min
f i; i¼1;2;...;m satisfy ð18Þ and ð20Þ

r

� �
ð23Þ
where tk, k ¼ 1; 2; . . . ;K designate the sampling times during the task and rmin;k denotes the value rmin w.r.t.
wext at time tk. In the latter case, assume that the wrench set, denoted by W ext, is polyhedral and convex. If the
original external wrench set is not of this kind, a circumscribed polytope around it can be used instead. Every
external wrench in the original set can be equilibrated provided those in the circumscribed polytope can be
equilibrated. Let wk, k ¼ 1; 2; . . . ;K be the vertices of W ext. If these vertex wrenches can be equilibrated, then
every wrench in Wext can be equilibrated. Similarly to the former case, the performance quality of a grasp G in
this case is evaluated by the maximum of the minimum contact forces for equilibrating all external wrenches in
Wext. Notice that the maximum always arises at one of the vertices wk; k ¼ 1; 2; . . . ;K. Hence the grasp quality
criterion can be formulated as
QðG;W extÞ ¼ max
w¼�wk ; k¼1;2;...;K

rmin;k ¼ max
w¼�wk ; k¼1;2;...;K

min
f i ; i¼1;2;...;m satisfy ð18Þ and ð20Þ

r

� �
ð24Þ
where rmin;k denotes the value rmin w.r.t. wk. In addition, if the external wrench at some k cannot be equili-
brated, then let
QðG;wextÞ ¼ �1 or QðG;W extÞ ¼ �1 ð25Þ
If all the external wrenches can be equilibrated, then QðG;wextÞ or QðG;W extÞ is positive, and a smaller value
indicates better grasp quality. On the other hand, a value greater than unity means that at least one contact
force exceeds its upper bound. This should be avoided.
4.2. Computation of the criterion

From the above, the performance quality of a grasp w.r.t. a manipulation task can be evaluated by its effi-
ciency of equilibrating K external wrenches. Hereinafter, QðG;wextÞ and QðG;W extÞ are abbreviated to QðGÞ,
and wext at time tk is also denoted by wk. Then the key to computing QðGÞ is calculating rmin;k w.r.t. wk. This
can be solved by the method of distributing contact forces [18].

Substitute the friction cone by a polyhedral convex cone with edges
si;h ¼ f U
i ½1 li cosð2hp=lÞ li sinð2hp=lÞ�T; h ¼ 1; 2; . . . ; l ð26Þ
Then f i satisfying (18) can be represented by
f i ¼
Xl

h¼1

ki;hsi;h; ki;h P 0 for h ¼ 1; 2; . . . ; l ð27Þ
Combining (17), (26), and (27) leads to
r ¼ max
i¼1;2;...;m

Xl

h¼1

ki;h

 !
ð28Þ
Let wi;h ¼ G isi;h for h ¼ 1; 2; . . . ; l and i ¼ 1; 2; . . . ;m;Wi the set of wi;1;wi;2; . . . ;wi;l together with the origin 0
of the wrench space, and W the Minkowski sum of Wi, i ¼ 1; 2; . . . ;m except 0:
Wi ¼ fwi;hjh ¼ 1; 2; . . . ; lg [ f0g ð29Þ
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W ¼
Xm

i¼1

Wi

 !
n 0 ¼ fwjjj ¼ 1; 2; . . . ; ng ð30Þ
where n ¼ ðlþ 1Þm � 1. From [18] we first see that the overall magnitude rmin;k of the minimum contact forces
w.r.t. wk is equal to the optimal objective value of the linear programming problem:
Maximize � wT
k z

subject to zTwj 6 1; j ¼ 1; 2; . . . ; n

(
ð31Þ
Here, z 2 R6. Furthermore, let zk be the optimal solution of (31) and Pk the matrix whose columns are
wj; j ¼ 1; 2; . . . ; n satisfying zT

k wj ¼ 1. Then k ¼ ½ k1;1 k1;2 � � � km;l �T corresponding to rmin;k is given by
k ¼ �QkPþk wk ð32Þ

where Pþk is the pseudoinverse of Pk and Qk is a matrix whose entries are 0’s or 1’s [18].

From the above, we reason a new result as below.

Proposition 5. If the entries of Pþk wkþ1 are not positive, then Pkþ1 ¼ Pk and Qkþ1 ¼ Qk.

Proof. The constraints of the problem (31) define a family of closed half-spaces. The intersection of them gives
the polyhedral set W� dual to the set W. The objective function of (31) is a linear functional and attains its max-
imum value at an extreme point, namely zk, of W� if it is bounded on W�. Then�wk can be written as a nonneg-
ative combination of the elements of W dual to zk, namely the columns of Pk. If Pþk wkþ1 is not positive, then
�wkþ1 can be expressed by a nonnegative combination of the columns of Pk, and the function �wT

kþ1z on W�

reaches the maximal at the point dual to the columns of Pk, which is just zk. Hence Pkþ1 ¼ Pk and Qkþ1 ¼ Qk. h

Proposition 5 allows us to calculate rmin;kþ1 without solving (31). Especially in computing QðG;wextÞ;wext at
tk and tkþ1 differs slightly, and probably Pkþ1 ¼ Pk and Qkþ1 ¼ Qk. As a result, rmin;kþ1 can be directly com-
puted by (28) and (32).

Algorithm 2 (Computing the quality criterion QðGÞ)

Step 1. Let k = 1.
Step 2. Compute rmin;k and zk by solving (31) w.r.t. wk. If the problem (31) does not have a feasible solution,

then put out QðGÞ ¼ �1 and terminate the algorithm, which implies that wk cannot be equilibrated by
the grasp.

Step 3. Compute Pþk and Qk.
Step 4. If k þ 1 > K, then put out QðGÞ ¼ maxk¼1;2;...;Krmin;k and the algorithm ends successfully.
Step 5. If Pþk wkþ1 is not positive, then let Pkþ1 ¼ Pk and Qkþ1 ¼ Qk, and compute rmin;kþ1 by (28) and (32); set

k ¼ k þ 1 and return to Step 4. Otherwise, set k ¼ k þ 1 and return to Step 2.

The above formulation and computation of grasp quality criterion can be readily applied to frictionless
point contact, since mathematically this kind of contact is a special case of frictional point contact [3]. By
linearizing the soft finger contact constraint [38], they can also be extended to such contact.
4.3. Algorithm for computing the globally optimal grasp

After Algorithm 1 turns out the feasible grasps, finding the global optimum among them needs just to com-
pare the values of QðGÞ for them and pick out the one for which QðGÞ is the smallest. To avoid exhaustively
computing QðGÞ by Algorithm 2, a pretty trick is used (see Step 4), which speeds up the comparison.

Algorithm 3 (Seeking the globally optimal grasp)

Step 1. Use Algorithm 1 to find all feasible grasps, acting as candidates (note: geometrically equivalent grasps
cannot be omitted because their performance qualities w.r.t. a task are probably different).
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Step 2. Compute QðGÞ by Algorithm 2 for a candidate, marked by bG. Let k̂ be the point, for which
QðGÞ ¼ rmin;k̂. Let Q̂ ¼ QðbGÞ.

Step 3. If Q̂ < 0, then remove bG from the candidates and return to Step 2.
Step 4. Compute rmin;k̂ by solving (31) w.r.t. wk̂ for the other candidates (note: wj; j ¼ 1; 2; . . . ; n are calculated

for each candidate respectively). If (31) for a candidate does not have solution, then the candidate can-
not equilibrate wk̂. If rmin;k̂ for a candidate is not less than Q̂, neither is QðGÞ. Thus such candidates can
be removed without computing their QðGÞ.

Step 5. Search for a candidate whose QðGÞ is less than Q̂ in the remaining. Remove those encountered in the
searching process, for which QðGÞ < 0 or QðGÞP Q̂. If no such remainders exist, then bG is the glob-
ally optimal grasp; otherwise, update k̂; Q̂, and bG, and return to Step 4.
5. Case study: a robot hand with three fingers and one palm

Fig. 3 sketches a hand, whose palm is fixed at the end of an axle and fingers are equally hinged around the
axle and driven by a single actuator not shown. It looks somewhat humanoid, but all the balls are fixed joints
except that the three balls attached to the axle are hinges. Thus the hand has only 1 DOF. Contacts with an
object are made by only the fingertips, namely the hemispheres at the ends of fingers. Each one is of radius
r = 5 mm. Let piH, i ¼ 1; 2; 3 be the position vectors of the ends of fingers relative to frame FH , which are
expressed by
p1H ðb1Þ ¼ ½ L sin b1 þ R 0 L cos b1 �
T

p2H ðb2Þ ¼ ½ ðL sin b2 þ RÞ cosð2p=3Þ ðL sin b2 þ RÞ sinð2p=3Þ L cos b2 �
T

p3H ðb3Þ ¼ ½ ðL sin b3 þ RÞ cosð4p=3Þ ðL sin b3 þ RÞ sinð4p=3Þ L cos b3 �
T

where L = 60 mm, R = 10 mm, and b1; b2; b3 are the rotation angles of the fingers, as indicated in Fig. 3. Let
diH, i ¼ 1; 2; 3 be the vectors giving the directions of fingertips, which relative to frame FH are
d1H ðb1Þ ¼ ½ sinðb1 � aÞ 0 cosðb1 � aÞ �T

d2H ðb2Þ ¼ ½ sinðb2 � aÞ cosð2p=3Þ sinðb2 � aÞ sinð2p=3Þ cosðb2 � aÞ �T

d3H ðb3Þ ¼ ½ sinðb3 � aÞ cosð2p=3Þ sinðb3 � aÞ sinð2p=3Þ cosðb3 � aÞ �T
where a ¼ p=3.
Fig. 3. Robot hand as a case study.



586 Y. Zheng, W.-H. Qian / Mechanism and Machine Theory 43 (2008) 576–590
To grasp an object, first, let the palm contact the object such that the z-axis of frame FH is parallel to the
inward normal at contact. Denote the contact position by rp. Then pOH and ROH can be adopted as
pOH ð/;wÞ ¼ rpð/;wÞ � hnpð/;wÞ
ROH ð/;w; hÞ ¼ ½ op tp np �RðhÞ
where / and w are the parameters of the object surface, h = 30 mm, and RðhÞ 2 R3�3 gives a rotation of the
hand about np:
RðhÞ ¼
cos h � sin h 0

sin h cos h 0

0 0 1

264
375
where h 2 ½0; 2p=3Þ. Next, actuate the fingers to approach the object. For easier computation, we formulate
the fingertip Fi in frame FH as a sphere of radius r centered at piH , instead of a hemisphere. Then
pF iO
ð�zÞ ¼ �zTðpOH þ ROH piH Þ þ r
From Propositions 3 and 4, a feasible grasp exists w.r.t. /, w, and h if and only if the following conditions are
satisfied:

1. There exist b̂i and ẑi for all i ¼ 1; 2; 3 such that qðF iO;OÞ ¼ pOðẑiÞ þ pF iO
ð�ẑiÞ ¼ 0.

2. ẑT
i ROH d iH < 0 for all i ¼ 1; 2; 3.

3. gðb̂1; b̂2; b̂3Þ ¼ ðb̂1 � b̂2Þ2 þ ðb̂2 � b̂3Þ2 þ ðb̂3 � b̂1Þ2 ¼ 0:

Condition 1 can be fulfilled by means of the bisection method with (16). It together with condition 2 ensures
that the fingertip Fi contacts the object by its open hemisphere. Since the fingers share one actuator, condition
3 finally makes certain the feasibility of a grasp. Furthermore, if the above conditions are satisfied, then the
feasible grasp w.r.t. /;w, and h can be written as
G ¼ ri ¼ pOH þ ROH piH � rẑi; r4 ¼ rpji ¼ 1; 2; 3
	 

The vector �ẑi is just the unit normal at the contact point ri towards the interior of the object O.
From the above arguments, the feasible grasps on an object can be sought in the domains of /;w; h. The

proposed algorithms are implemented using MATLAB on a PC with P4 2.8 GHz processor, 1 MB cache mem-
ory, and 512 MB RAM. Assume that the friction coefficient li = 0.2 and the force upper bound f U

i ¼ 10 N for
each contact. Each friction cone is linearized into a 10-side polyhedral cone, i.e., l = 10 in (26).

Example 1. It is required to manipulate a bulb (Fig. 4), whose surface contains a sphere S of radius
R0 = 20 mm and a cone C. The origin of frame FO is selected at the center of S. The cone C is expressed in
frame FO by
C ¼ conv
[2
k¼1

r 2 R3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

x þ r2
y

q
¼ Rk; rz ¼ hk

���n o !

where R1 ¼ R0 cos a0; h1 ¼ R0 sin a0;R2 ¼ R1 þ H 0 tan a0; h2 ¼ h1 � H 0; a0 ¼ �p=6, and H0 = 18 mm. Two dy-
namic external wrenches will be applied on the bulb, which are specified in frame F O by
wa
ext ¼

0:5 cos 2:4pt þ 10

ð2þ 0:5 sin 2:4ptÞ sin 0:4pt

ð2þ 0:5 sin 2:4ptÞ cos 0:4pt

cosðsin 1:2ptÞ sinðcos 0:4ptÞ
sinðsin 1:2ptÞ

cosðsin 1:2ptÞ cosðcos 0:4ptÞ

2666666664

3777777775
and wb

ext ¼

0:5 cos 2:4pt � 10

ð2þ 0:5 sin 2:4ptÞ sin 0:4pt

ð2þ 0:5 sin 2:4ptÞ cos 0:4pt

cosðsin 1:2ptÞ sinðcos 0:4ptÞ
sinðsin 1:2ptÞ

cosðsin 1:2ptÞ cosðcos 0:4ptÞ

2666666664

3777777775

They are periodical and their periods are both 5 s. We take 500 sampling times, i.e., K = 500 in (23).



Fig. 4. Optimal grasps on a bulb for different manipuation task.
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Using Theorem 4 and setting z ¼ ½ cos a1 cos a2 cos a1 sin a2 sin a1 �T, we obtain
pSðzÞ ¼ R0

pCðzÞ ¼
R2 cos a1 þ h2 sin a1; if a1 < a0

R0; if a1 ¼ a0

R1 cos a1 þ h1 sin a1; if a1 > a0

8><>:

and then
pOðzÞ ¼ max pSðzÞ; pCðzÞf g ¼
R2 cos a1 þ h2 sin a1; if a1 < a0

R0; if a1 P a0

�

Accordingly, the L2 distance between the finger F iO and the bulb can be computed by (16).

Locate the palm on S. Then
rp ¼ ½R0 cos / cos w R0 cos / sin w R0 sin / �T; np ¼ �½ cos / cos w cos / sin w sin / �T

op ¼ ½� sin / cos w � sin / sin w cos / �T; tp ¼ ½� sin w cos w 0 �T
where / 2 ½0; p=2� and w 2 ½0; 2pÞ. The steps of /;w, and h are taken to be p=8, p=4, and p=12, respectively.
Using Algorithm 1 to search the domains for /;w, and h satisfying the above three conditions, we obtain 176
feasible grasps on the bulb with the CPU time of 55.40 min.

Running Algorithm 3 w.r.t. wa
ext yields the optimal grasp bGa (Fig. 4a) at / ¼ 0;w ¼ p, and h ¼ 0, for which

QðĜa;wa
extÞ ¼ 0:8322. Then b̂1 ¼ b̂2 ¼ b̂3 ¼ 0:0724p and the contact positions r1 ¼ ½ 6:764 0 18:820 �T;

r2 ¼ ½ 6:764 �16:299 �9:410 �T; r3 ¼ ½ 6:764 16:299 �9:410 �T, and r4 ¼ ½�20 0 0 �T. Running Algo-

rithm 3 w.r.t. wb
ext, we obtain grasp bGb (Fig. 4b) at / ¼ 0;w ¼ 0, and h ¼ 0, for which QðbGb;wb

extÞ ¼ 0:8321. At

that time, b̂1 ¼ b̂2 ¼ b̂3 ¼ 0:0724p, and r1 ¼ ½�6:764 0 18:820 �T; r2 ¼ ½�6:764 16:299 �9:410 �T;
r3 ¼ ½�6:764 �16:299 �9:410 �T, and r4 ¼ ½ 20 0 0 �T. The required CPU times are 113.08 min and
126.21 min.

Example 2. The object O to be manipulated is a bottle (Fig. 5), which consists of an intercepted ellipsoid E

and the spherical extension H of a hexahedron. The origin of frame FO is selected at the center of E. The piece
of surface E can be formulated in frame FO as
E ¼ conv ½ a cos c1 cos c2 a cos c1 sin c2 b sin c1 �
Tj � p=6 6 c1 6 p=6; 062 6 2p

n o



Fig. 5. Optimal grasps on a bottle for different manipulation tasks.
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where a ¼ 10 mm and b ¼ 20 mm. The vertices of the hexahedron are
v1 ¼ ½ 12 16 �12 �T; v2 ¼ ½�12 16 �12 �T; v3 ¼ ½�12 �16 �12 �T; v4 ¼ ½ 12 �16 �12 �T

v5 ¼ ½ 8 12 �50 �T; v6 ¼ ½�8 12 �50 �T; v7 ¼ ½�8 �12 �50 �T; v8 ¼ ½ 8 �12 �50 �T
The radius of its spherical extension is r0 = 2 mm. Let z ¼ ½ cos a1 cos a2 cos a1 sin a2 sin a1 �T. Then
pEðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 cos2 a1 þ b2 sin2 a1

p
; if � a0 6 a1 6 a0

a cosðp=6Þ cos a1 þ b sinðp=6Þ sin ja1j; if a1 < �a0 or a1 > a0

(
pH ðzÞ ¼ max

k¼1;2;...;8
zTvk � r0
where a0 ¼ tan�1ða tanðp=6Þ=bÞ. From (8), the L2 distance between FiO and O can be computed by
qðF iO;OÞ ¼ minfqðF iO;EÞ; qðF iO;HÞg

where qðF iO;EÞ and qðF iO;HÞ are computed by (16) w.r.t. E and H, respectively.

Let the palm make contact with the upper face of E. Then
rp ¼ ½/ cos w / sin w 10 �T; np ¼ ½ 0 0 �1 �T; op ¼ ½ 0 1 0 �T; tp ¼ ½ 1 0 0 �T
where / 2 ½0; 8� and w 2 ½0; 2pÞ. The steps of /;w, and h are taken to be 2, p=8, and p=12, respectively. By
Algorithm 1 we find 110 feasible grasps on the bottle with the CPU time of 184.65 min.

Suppose that the external wrench wext ¼ ½ fx fy fz mx my mz �T is limited by fx 2 ½�2; 1�;
fy 2 ½�1; 1�; fz 2 ½�3; 1�;mx 2 ½�1; 1�;my 2 ½�1; 1�, and mz 2 ½�1; 1�. Thus the external wrench set W a

extis

given by the convex hull of 64 points in the wrench space. Using Algorithm 3, we find the optimal grasp bGa

(Fig. 5a) with QðbGa;W a
extÞ ¼ 0:9844 at / ¼ 4;w ¼ p; h ¼ p=2. Then b̂1 ¼ b̂2 ¼ b̂3 ¼ 0:0614p; r1 ¼

½ 11:326 0 �18:576 �T; r2 ¼ ½�11:179 �15:777 �18:567 �T; r3 ¼ ½�11:178 15:778 �18:567 �T, and
r4 ¼ ½�4 0 10 �T. Changing the limitations of fx into fx 2 ½�1; 2�, we have another set W b

ext. Running
Algorithm 3 again yields the optimal grasp bGb (Fig. 5b) with QðbGb;W b

extÞ ¼ 0:9844 at / ¼ 4;w ¼ 0; h ¼ p=6.

Then b̂1 ¼ b̂2 ¼ b̂3 ¼ 0:0614p, r1 ¼ ½ 11:177 15:779 �18:567 �T; r2 ¼ ½ 11:177 �15:779 �18:567 �T; r3 ¼
½�11:326 0 �18:576 �T, and r4 ¼ ½ 4 0 10 �T. The CPU times for yielding bGa and bGb are 118.70 min and
128.64 min, respectively.
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In Example 1, bGa and bGb are geometrically equivalent, but by Algorithm 2 we see QðbGa;wb
extÞ ¼

1:1020 > QðbGb;wb
extÞ ¼ 0:8321 and QðbGb;wa

extÞ ¼ 1:1022 > QðbGa;wa
extÞ ¼ 0:8322. Both QðbGa;wb

extÞ and

QðbGb;wa
extÞ are over unity. A similar result is obtained in Example 2, where QðbGa;W b

extÞ ¼ 1:3321 >

QðbGb;W b
extÞ ¼ 0:9844 and QðbGb;wa

extÞ ¼ 1:3321 > QðbGa;W a
extÞ ¼ 0:9844. This means that an optimal grasp for

wrench a is a bad grasp for wrench b, and vice versa.
6. Conclusion and future work

This paper suggests remedies for some significant weaknesses in the previous OGP research. First, using the
L2 distance between sets, we present a method of seeking feasible grasps on an object conforming to a hand.
This method can compute various forms of grasps (e.g. fingertip grasp and power grasp) on a family of objects
(comprising some convex parts and having round corners) conforming to different grasping mechanisms (espe-
cially multifingered hands). It should be noted, however, that the decomposition of a nonconvex object into
convex parts still relies on human intervention, rather than artificial intelligence. Besides, a task-oriented grasp
quality criterion together with the computational method is given. It is invariant under a change of unit and
coordinate frame. Finally, we develop an algorithm for picking the globally optimal grasp among the feasible
ones by the criterion. The resulting grasp possesses the best performance quality in a task.

Future work may focus on other practical conditions, such as the stiffness which plays an important role in
the compliance of a grasp. Attention could also be concentrated on quality criteria. In addition to the effi-
ciency of a grasp to equilibrate external wrenches in a task, the properties summarized in [32] deserve notice
as well, such as dexterity and stability. Grasp planning with multiple optimization goals was rarely referred to
until now. In addition, when none of the feasible grasps is competent for the whole task, one has to divide the
task into several phases and use different grasps. Then the strategy of regrasping, i.e., changing the grasp from
one phase to another, should be considered.
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