
Reinforcement Learning of Cooperative Behaviors
for Multi-Robot Tracking of Multiple

Moving Targets
Zheng Liu

Electrical & Computer Engineering
National University of Singapore

10 Kent Ridge Crescent
Singapore 119260

zhengliu@nus.edu.sg

Marcelo H. Ang Jr.
Mechanical Engineering

National University of Singapore
10 Kent Ridge Crescent

Singapore 119260
mpeangh@nus.edu.sg

Winston Khoon Guan Seah
Institute for Infocomm Research

Agency for Science Technology and Research
21 Heng Mui Keng Terrace

Singapore 119613
winston@i2r.a-star.edu.sg

Abstract— Traditional reinforcement learning algorithms
learn based on discrete/finite states and actions, thus limit
the learned behaviors to discrete/finite space. To address this
problem, this paper introduces a distributed reinforcement
learning controller that integrates reinforcement learning with
behavior based control networks. This learning controller can
enable the robot to generate appropriate control policy which
combines different elementary behaviors. In addition, to address
the problems in concurrent learning, a distributed learning
control algorithm is proposed to coordinate concurrent learning
processes. The distributed reinforcement learning controller and
learning control algorithm are applied to multi-robot tracking
of multiple moving targets. The efficacy is demonstrated by
simulations.

Index Terms— Reinforcement learning; concurrent learning;
behavior based control; multi-robot cooperation.

I. INTRODUCTION

For multi-robot systems, one of the key research problems
is to achieve cooperation among robots by decentralized
(distributed) control methodology [1]. Normally, the desired
cooperation is in the task level [2], which means that the
common mission is broken down into tasks, and robots choose
different tasks (roles) according to the state and behave
differently. However, the design for the task level controller
is quite difficult. Therefore, in recent years, machine learning
techniques have been proposed and studied for multi-robot
systems that aim to enable the robots to learn how to
cooperate without the need for human design or coding.

In last two decades, reinforcement learning has been exten-
sively studied for multi-robot concurrent learning of cooper-
ative behaviors. However, traditional reinforcement learning
assumes discrete and finite state/action spaces; therefore it
can hardly be applied to most real applications that inherently
involve with continuous and infinite space. Furthermore, even
the states and actions can be discretized and defined; the
learned elementary behaviors are still discrete. At one time,
the robot can only perform one elementary behavior. This
contradicts the human reasoning that usually the optimal
behavior is the execution of several elementary behaviors

to accomplish a task. In addition, the switching of discrete
behaviors usually results in the control of the robots becoming
unsmooth, which is undesirable in most cases.

To address this problem, some methods are proposed
to enable reinforcement learning in continuous space. For
example, function approximation approach [3] and HEDGER
[4] can apply a generalizing function approximator to estimate
the state-action value instead of using discrete lookup table.
However, these approaches usually assume the environment
model is known, and have heavy computational burden if the
training data set is large.

For multi-robot concurrent learning, the assumptions for
single agent/robot learning may not still be valid. Reinforce-
ment learning and most other machine learning algorithms
assume the learning process is Markovian and the learning
environment is stationary [5]. However, if the robots learn
concurrently, the distributed learning processes will interfere
with each other. Then, during multi-robot concurrent learning,
in the view of an individual robot, the process and environ-
ment are neither Markovian nor stationary. This might lead
to the undesired learning results as sub-optimal local control
policy or the cyclic switching of control policies.

One class of solutions to address this problem is to estimate
the influence of other robots, and therefore make the pro-
cess semi-Markovian and pseudo-stationary for an individual
learning robot [6]. Another class of solutions is to coordinate
or schedule the distributed learning processes to reduce the
interference [7]–[9]. However, the coordination and schedul-
ing of learning processes usually have to be deliberatively
designed and require explicit intercommunications among
the robots. This degrades the applicability of the learning
coordination or scheduling algorithms.

In this paper, a reinforcement learning controller integrating
reinforcement learning and behavior based control networks
is proposed to address the limitation of traditional reinforce-
ment learning of discrete and finite behaviors. In addition, a
distributed learning coordination algorithm is introduced to
solve the problems in multi-robot concurrent learning. The
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learning controller and learning control algorithm are applied
to multi-robot concurrent tracking of multiple moving targets.

This paper is organized as follows. Section 2 presents the
concept of our approach. Then, Sections 3 introduces the
implementation of the proposed learning in the multi-robot
tracking of multiple moving targets. Section 4 shows the
simulation results and discussion. Finally, Section 5 concludes
this paper and introduces the future work.

II. REINFORCEMENT LEARNING OF
CONTINUOUS BEHAVIORS WITH COORDINATION

In this paper, we aim to address two problems of multi-
robot concurrent learning of cooperative behaviors: 1) to
generate optimal combination of elementary behaviors for
cooperation based on low level input states and output ac-
tions; and 2) to coordinate concurrent learning process by
distributed methodologies. Specifically, the aims are:

• Enable the robot to learn based on low level input and
output without the need for deliberate definition of high
level states and actions.

• Let the robot learn based on existing behavior based
controller - utilizing human knowledge of robot, mission,
and environment.

• Let the robot learn cooperative behaviors that combine
elementary behaviors.

• Coordinate concurrent learning processes to generate
optimal control policy. In other words, increase the
probability that the robots learn cooperative behaviors.

• Minimize the requirement for inter-robot communica-
tions to coordinate concurrent learning processes.

With regards to discrete and finite space limitation, we
propose the integration of reinforcement learning with behav-
ior based control networks. The architecture of this learning
controller is shown in Figure 1. It has two main parts, the
behavior based control network module and reinforcement
learning module.

Control Network
Output = weight 1 * behavior 1

            + weight 2 * behavior 2 

            +…… 

            + weight n * behavior n 

Environment
action

Reinforcement Learning Module
(To adjust the weight value) 

   Weight 

   (weight 1, weight 2, ……, weight n) 

discrete state 

continuous state 

Reward

(reward 1, reward 2, ……, reward n) 

Fig. 1. Architecture of Proposed Learning Controller

The behavior based control network is created according to
human knowledge of the robot, environment, and the mission.
In this network, the elementary behaviors are represented
by control rules and equations. Each elementary behavior

can retrieve input signal and generate corresponding output
command both in continuous and infinite space. The overall
output of the controller is the summation of weighted outputs
of all elementary behaviors. In this behavior based control
network, the weight is the key to combine different elemen-
tary behaviors: if the weight of one behavior is large, the
robot is more likely to perform this behavior; otherwise the
robot is reluctant to this behavior.

The reinforcement learning module is the key of the con-
troller. It is integrated with the control networks, the aim is to
adjust the weight inside the control network; therefore affect
the combination of elementary behaviors. This is the key
to generate optimal combination of behaviors. By retrieving
states and rewards, the learning module can gradually find
the appropriate weight value for each elementary behavior. It
should be noted that the reinforcement learning module needs
to retrieve rewards corresponding to each behavior; other-
wise the learning module cannot estimate the performance
or results of taking the behavior. For example, regarding
behavior “avoid obstacles”, if the performance is unsatisfac-
tory, a negative reward should be given to indicate that the
weight of “avoid obstacles” needs to be adjusted. Regarding
the learning, the main research issues include state/action
definition, reward generation, state-action value update, and
action selection. Since these issues are related to the robot,
mission, and environment, we will elaborate them in the next
section when introducing the implementation of this learning
controller in multi-robot tracking of multiple moving targets.

In general, the proposed learning controller has following
properties:

• The behavior-based control network is designed based
on human experience. The control rules or equations are
the representation of elementary behaviors.

• For the control network, the overall output behavior is
the summation of weighted elementary behaviors. The
output control command is in continuous and infinite
space.

• The aim of the reinforcement learning module is to
adjust the weight in the control network to achieve
optimal combination of elementary behaviors. In other
words, the output is not the “selection” of exclusive
discrete behavior, but the way to “combine” them to
generate optimal behaviors.

• While the reinforcement learning module still works in
discrete and finite space. In the macro view, the learning
controller works in continuous space in that it can learn
based on low level inputs and outputs (continuous and
infinite).

In addition to the continuous behavior space problem,
another research issue is coordinating concurrent learning
processes. To address this problem, we propose a solution
inspired by natural human behaviors. Assuming two humans
are approaching the same corridor and they want to avoid
collision, if both of them are trying, they may “struggle”
several rounds to pass. So, in real life, usually one of them
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(say A) fixes the policy first, e.g., keeping left, then the
other one (say B) can choose another side. In this case,
the cooperation is the behavior that the two people choose
opposite sides. Whatever A chooses initially, if B can learn
to correspond to A’s action, the resultant control policy
is optimal. Many real world applications have the same
property: even if the learning process of one robot/agent stops
very early, the resultant control policy of the whole system can
still be optimal because other learning robots can eventually
find appropriate control policy to respond to the former one.
Our distributed learning coordination algorithm is proposed
based on this consideration. For a robot, if in one state, the
best action’s value is much larger than other actions, the robot
will stop learning in this state and after that it will always
choose this best action for this state. In other words, a robot
will fix its control policy when it feels that it has learned
enough; and the future improvement of the group performance
is left to other learning robots.

III. LEARNING IN MULTI-ROBOT TRACKING OF
MULTIPLE MOVING TARGETS

A. Multi-Robot Tracking of Multiple Moving Targets

In robotics research, multi-robot tracking of multiple mov-
ing targets is also referred to as the “museum problem” or “art
gallery problem”, which aims to find the best control solution
of a group of robots to maximize the number of targets being
simultaneously observed [10], [11]. In our work,

• The number, distribution and motion pattern of the
moving targets are unknown.

• The size and map of the environment are unknown.
• The robots cannot localize themselves in the environ-

ment. The robots have no intercommunications (e.g., no
wireless communications).

In current research for the museum problem, Artificial
Potential Field (APF) control is mostly used. The concept
of APF is simple: map the targets as sources of attractive
force, and map the robots and obstacles as sources of repulsive
force. Then, let the robot move under the vector sum of the
attractive and repulsive forces. However, pure APF (purely
summing the attractive and repulsive forces) may not achieve
desired cooperation in most cases. For example, if two robots
detect a same target, both of them will track this target and
therefore they will form a triangular pattern. This is not the
optimal cooperation; the robot force is wasted because one of
the robots can leave and search for other targets to maximize
the number of observed targets.

A solution to avoid the triangular pattern of pure APF is
giving a weight WTarget

Ri
to the attractive force for each robot

as shown in (1). In this equation, �FRi
means the summation

of the attractive and repulsive forces for Ri; �TRi,Tj
means

the attractive force to target Tj ; �RRi,Rl
means the repulsive

force from neighbor robot Rl; dt means the set of detected
targets; dr means the set of the detected neighbor robots.

�FRi
=

∑

j∈dt

wTarget
Ri

· �TRi,Tj
+

∑

l∈dr

�RRi,Rl
(1)

Examining (1), it should be noted that if the weight of
attractive force is zero, the robot will only have one behavior
to avoid neighboring robots; if the weight of attractive force
is infinity, the robot will only have one behavior to track
targets. Changing the value of the weight means changing the
preference to the two behaviors “tracking target” and “leaving
neighboring robots”. In previous research, two classes of
algorithms are proposed to adjust the weight. One is the all-
adjust heuristic [10] that lets one robot decrease the weight
when it finds another robot is also tracking the same target.
The other solution is selective-adjust heuristic [11], whereby
only the further robot(s) decreases the weight. These two
heuristics of pure potential field based control are proved
effective; however, to make them work, the designer needs
to carefully select appropriate weight decrease ratio for each
robot. This is extremely difficult when the scenario is complex
and the robot team is heterogeneous. A natural modification
is to find optimal weight value through learning. Hence the
museum problem is well suited to the implementation of our
learning controller.

B. Applying Our Learning Controller in Museum Problem

As introduced previously, the main research issues for the
reinforcement learning module include state/action definition,
reward generation, state-action value update, and action se-
lection.

For museum problem, one robot may meet many situations.
To make the learning simple, yet not lose generality, we
define the input state as the number of targets and robots
detected. For example, if two targets and one robot neighbor
are detected, the state is (2, 1). The output of the learning
module (action) is the weight of the attractive force. In this
approach, we have three kinds of weight: small, mid, and
large.

For reinforcement learning, one important issue is the gen-
eration of rewards. To enable the robots to learn cooperative
behaviors, the following behaviors should be encouraged: 1)
track target; 2) leave the target being tracked by other robots.
For this purpose, four kinds of rewards are defined as follows
(rewards are generated by the robot’s local sensing):

• Reward TT: track target reward (positive) - if the robot
tracks targets.

• Reward NR: near robot reward (negative) - if the robots
detect other robots.

• Reward SC: state change reward (positive or negative) -
if the new state has less neighbor and more targets, the
reward is positive, otherwise negative.

• Reward WT: waste time reward (negative) - if the robot
tracks a target being tracked by others.

For reinforcement learning, the learning process needs to
update the state-action value Q(s, a) based on the reward
received. In our approach, this value is updated by the
following Q-function (2), in which s, a, r, α, γ, s′, and a′

means state, action, reward, learning rate, discount rate, next
state, and next action, respectively [12].

Q(s, a) ← Q(s, a) + α(r + γmaxa′Q(s′, a′)−Q(s, a)) (2)
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Every time state changes, the robot will reselect the action
(weight). Furthermore, if the state is unchanged for a long
period of time, i.e., N simulation steps, the robot also
reselects action (weight) to accelerate learning speed. When
selecting an action, the robot both explores and exploits the
action space: an exploration factor is added to the real state-
action value, and then the action having highest resultant
value will be chosen. This exploration factor is just for action
selection, and will not affect the state-action value.

Regarding the coordination of distributed learning pro-
cesses, we propose a distributed algorithm to coordinate
learning processes: for a robot, if for one state, the best
action’s value is much larger then other actions, the robot will
stop learning for this state and it will always choose this action
in future. By this method, the concurrent learning is more
likely to generate cooperative behaviors. It should be noted
that this distributed learning coordination algorithm does not
require the robots to communicate to share any information.

As a summary, the learning module in the proposed con-
troller has three main difference to the traditional reinforce-
ment learning process [12]:

• The reinforcement learning is integrated with control
networks.

• During the learning process, the update of state-action
value may take place if the state does not change for a
long time

• During the learning process, the robot may stop learning
when it “feels” it has learned enough for a given state.

IV. SIMULATION AND DISCUSSION

A. Simulation Methodology

In this paper, we aim to let the mobile robots learn through
the interaction with environment and other robots, hence
generating appropriate behaviors to cooperate. This aim has
three aspects:

• The learning approach can generate cooperative behav-
iors.

• The performance of the learning system should be com-
parable to other approaches that have been deliberatively
hardcoded and tuned.

• The learning controller with the proposed coordination
algorithm should achieve better performance than the
controller without coordination.

To justify the efficacy of our approach, we simulate four
control modes as follows: 1) Pure Artificial Potential Field
(APF) based control; 2) All-adjust heuristics to pure APF; 3)
Selective-adjust heuristics to pure APF; and 4) Robot learning
controller: with and without coordination.

These control modes are tested in both homogeneous and
heterogeneous robot group. “Homogeneous” means the robots
are identical; “heterogeneous” means one of the robots is
30% faster than the other. Regarding the learning controller,
“coordination” means the distributed learning coordination
algorithm proposed by us.

B. Simulation Settings

The parameters and settings of the environment are as
follows:

• Simulator: Webots.
• Environment: 4m x 4m square plain area; robots/targets:

0.1m in diameter.
• For each control mode, run about 30 episodes to get the

average. Each episode has 20000 simulation steps. One
simulation step is about 0.1s long in real time.

For the all-adjust heuristics of pure potential field based
control, in the simulation, we test two all weight decrease
ratio (AWDR): 0.95 and 0.80. For the selective-adjust heuris-
tics, we test two selective weight decrease ratio (SWDR): 0.1
and 0.5.

The settings of the learning controller are as follows:

• The initial value of all state-action is 10.
• Reward TT = 0.005 * track target time.
• Reward NR = - 0.01 * near robot time.
• Reward SC = (m-a)*0.5 - (n-b) * 2.0 (m, n are the

current target/robot number; a, b are the previous tar-
get/robot number).

• Reward WT = - 0.1 * waste time.
• For learning “with coordination”, under one state, if one

action’s value is 25% above the average, stop learning
in this state. “Without coordination” means never stop
learning for any state.

• During learning, if the state is unchanged for N = 100
simulation steps, the robot reselects the action.

• When selecting action, a number uniformly distributed
in [-1, 1] is added to the real state-action value as the
exploration factor.

C. Simulation Results and Discussion

1) Simplest Scenario: One target and two robots.
We evaluate the performance of the controller by following

three metrics:

• Learned weight difference - how much is the difference
in learned weight between two robots.

• Track target length - percentage of the time that the target
is tracked.

• Waste time length - percentage of the time that 2 robots
both track 1 target.

For the museum problem, to maximize the number of
observed targets, the robot force needs to be fully utilized that
the robots should both track detected targets and try to search
for targets. In our learning controller, to achieve this kind of
cooperation, the two robots should learn different weights for
tracking target when they detect one target and one robot
neighbor, i.e., in state (1, 1).

The simulation results show that the concurrent learning
processes with and without coordination will generate quite
different learning results. Figure 2 shows the “learned weight
difference” for homogeneous and heterogeneous robot groups
in state (1, 1) without (left) and with (right) the proposed
learning coordination algorithm. The x-axis represents the
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difference level, and the y-axis represents the frequency (%
of trials) that the two robots result in such difference. The
results show that without coordination, the robots sometimes
learn the same weights, while with coordination, none of the
robot pair results in the same weights. This difference in
weight is the key to generate desired cooperation: the robot
with large weight will keep tracking the target; the robot
with small weight will tend to leave. Obviously, the learning
with coordination performs better than the learning without
coordination. In the following parts of this section, all the
results related to learning are for learning with coordination.

0%

20%

40%

60%

No difference Small

difference 

Large

difference

homogeneous

heterogeneous

0%

20%

40%

60%

No difference Small

difference

Large

difference

homogeneous

heterogeneous

Fig. 2. Learned Weight Difference - Without Coordination (left), With
Coordination (right)

Observing Figure 2, we also find that in both homogeneous
and heterogeneous groups, the learning results in various
levels of weight difference; but not a fixed one. This may
be due to the fact that there is no exact “optimal” solution
for this kind of mission and environment, e.g., different start
points or motion patterns of the targets may have different
optimal tracking policies. Another possible reason is that the
partial observation of the environment and the interference
among concurrent learning robots make the environment non-
Markovian and dynamic for the learning robot. Even the
coordination of learning can “encourage” the robots to coop-
erate; however, sometimes the robots cannot avoid the selfish
behavior because the “coordination” of learning process is
only by the local sensing of the robots.

Another notable result is that the learned weight difference
in homogeneous and heterogeneous robot groups is different.
This reflects the adaptation capability of our learning con-
troller: in homogeneous robot team, all robots are exactly the
same, therefore to generate cooperative behaviors (one robot
keeps tracking and the other robot leaves), a large weight
difference is required; while in heterogeneous team, one of
the robots is 30% faster than others, therefore not as large
weight of attractive force (compared to the homogeneous
robot case) can enable the faster robot to keep tracking the
target and force the slower robot to leave the tracked target.
Also, simulation shows that in heterogeneous robot group,
the faster robot is more likely to become the tracker who will
keep tracking (60% chance); while in homogeneous group,
the two robots have almost the same chance to become the
tracker (46.7%). The reason may be that the faster robot is
more competitive so that it has more chance to win in the
struggle for tracking and thus it is reinforced to be the tracker.

Now we compare our learning approach with other ap-

proaches. Simulation results show that for all four control
modes, the track target duration is almost the full duration
of the simulation episode: whatever the control mode is,
the track target duration is around 98% of the total time.
This is because there is only one target; once this target
is tracked, it will be continuously tracked, by one or both
robots. In this case, the waste time duration becomes an
important metric for evaluating the performance of the control
algorithms. The shorter the waste time duration is, the better
the cooperation between robots is. Figure 3 shows the waste
time duration under different control modes. We may find that
the pure potential field based control is unacceptable. The
all-adjust and selective-adjust heuristics can greatly shorten
the waste time duration. However, different weight decrease
ratios (AWDR and SWDR) results in different performance.
If the parameter is appropriate, the outcome is satisfactory;
otherwise the outcome may be unacceptable. However, by
learning, we do not need to decide such parameters. Instead,
the robots can automatically generate desired cooperation by
learning. Simulation results show that the outcome of our
learning approach is as good as the two heuristics; and even
slightly better in the heterogeneous robot group.

0%

30%

60%

90%

pure APF AWDR = 0.95 AWDR = 0.80 SWDR = 0.1 SWDR = 0.5 Learning (with

stop)

homogeneous heterogeneous

Fig. 3. Waste Time Duration (percentage of total time)

2) Extended Scenario: More robots and targets.
The settings in the extended scenario are the same as the

simplest scenario except for the following:

• Environment: 6m x 6m.
• For the all-adjust heuristic, AWDR = 0.8; For the

selective-adjust heuristic, SWDR = 0.5.
• For the learning controller, only the “with coordination”

mode is tested.

In the extended simulation scenario, we evaluate and com-
pare the performance of the controllers by the following two
metrics:

• Average number of tracked targets.
• Average number of busy robots - in average, how many

robots are used for tracking targets. The lower this
number is, the better the performance.

We keep the target number as three, and then choose
different simulation scenario including three, six, nine, and
twelve robots, respectively. Simulation results are shown in
Figures 4 and 5.

Since the number of robots is no less than the number of
targets (3:3, 6:3, 9:3, 12:3), in the simulation, almost all the
targets are being tracked and therefore the average number
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Fig. 4. Average Number of Tracked Target
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Fig. 5. Average Number of Busy Robot

of tracked target is quite similar in the four control modes
(Figure 4). In this case, the average number of busy robot
becomes an important metric to evaluate the performance.
As shown in Figure 5, pure potential field based control
requires more robots than the two heuristics and the learning
controller. The outcome of our learning controller is as good
as the all-adjust heuristic and selective-adjust heuristic.

Observing the simulation results, a question may arise
that why the performance of the learning control mode is
sometimes worse than the selective-adjust weight heuristic of
the pure potential field based control. This happens in both
the simplest scenario and the extend scenario. A reasonable
explanations is that the selective-adjust weight heuristic [11]
is theoretically more optimal than the learning controller
because it also concerns the distance between robots and
targets.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a distributed learning controller
that integrates reinforcement learning with behavior based
control networks. This controller can enable the robot to
generate cooperative behaviors in continuous space. We also
propose a distributed learning control algorithm to coordinate
the concurrent learning processes. This algorithm can help
eliminate the interference among the learning robots without
explicit intercommunications. This learning approach is tested
in multi-robot tracking of multiple moving targets. The effi-
cacy is proved by simulation results.

However, in our learning controller, the reinforcement
learning module still needs to retrieve discrete input state
(target/robot number) and perform discrete actions (weights).
A more challenging work is to design a totally continuous

learning algorithm, or at least, let the robot do state/action
discretization by itself through learning. This is an important
research issue to be studied.

Another problem of the learning controller is that the
behavior based control network coded by us is specific for
the tracking task. It will be much better if the behavior based
control network in our learning controller can be generic and
effective for all kinds of control problem. This is another
important research issue to be studied.

In addition, due to the interference among the concurrent
learning robots, the distributed learning controller sometimes
generates unsatisfying results even though we have applied
a distributed learning coordination algorithm. How to per-
fectly coordinate concurrent learning processes by minimal
intercommunications is still a critical research topic for future
research.
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