
ME4245 Quiz 1.2 – 13 October 2014, 16:00-17:00

- 1. Figure 1 shows a cart supporting an inclined plane via joint driven by a motor. The motor rotates the plane about joint A (planar rotation). A block slides down the inclined plane. Frame C is attached to the cart, and Frame B is attached to the block. Frame U is fixed to the ground. At a certain instant of time, shown in Figure 1, the following are known:
 - Position and orientation of Frame C in U, UTC
 - Position and orientation of Frame B in C, ^CT_B
 - Translational and angular velocity of C in U, Uuc and Uwc, respectively
 - Block is moving down the inclined plane at 2 m/s
 - Inclined plane rotating at 30 degrees/s counterclockwise when it is an angle of 45 degrees with respect to the horizontal (AB makes an able of 45 degrees with respect to the Yc axis.)

- (a) Determine the expression for the translational velocity of the origin of Frame B with respect to Frame U as a function of the known quantities.
- (b) Determine the expression for the angular velocity of block B with respect to Frame U as function of the known quantities.

2. Figure 2 shows a planar robot with 2 joints: the first is rotational, moving the 1st link about the z axis in a counter-clockwise fashion; the 2nd joint is translational and moves the 2nd link along the longitudinal axis of the 1st link. Frame U is attached to the ground and its origin coincides with the location of the 1st joint.

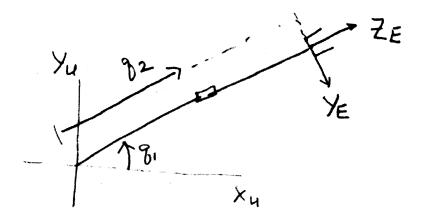
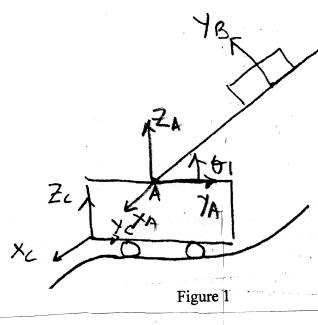



Figure 2

- (a) Determine the expression for the full manipulator Jacobian relating the translational and angular velocity of the end-effector (Frame E) with the joint velocities.
- (b) The end-effector is carrying a tool with Frame B attached to the tool tip. Frame B is attached to the end-effector with ET_B known and fixed (constant). Determine the expression of the full manipulator Jacobian relating the translational and angular velocity of Frame B in Frame U, as a function of the manipulator Jacobian in (a)
- (c) If the task of the robot is for its end-effector to translate along the XY plane of Frame U, determine the joint coordinates in which the robot becomes singular, if any.
- (d) If the task of the robot is for its end-effector to translate along an axis parallel to Xu and rotate about Zu, determine the joint coordinates in which the robot becomes singular, if any.
- (e) If the task of the robot is for its end-effector to only translate along an axis parallel to Xu, determine the joint coordinates in which the robot becomes singular, if any.

Let Frome A be also
attached to cant with

Frome A parallel to Frome a

CP A must be given!

A UB = UUC + UWC × UKC PB + UKA + WB × (UPB - UPA)

Mohin contribution

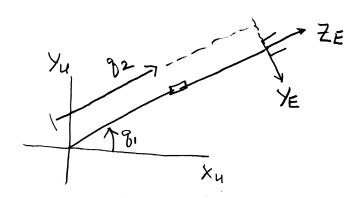
B' WC

Mohin contribution

Mohin c

Note: Need to know PA

A RC = I3x3


 $A W_B = \begin{pmatrix} 30 \times \frac{11}{180} \\ 0 \\ 0 \end{pmatrix}$

 ${}^{\prime\prime}P_{A} = {}^{\prime\prime}P_{C} + {}^{\prime}P_{A}$

(6) uwg = uwc + uRc cwg

1/4

(a) Another method: using Transformation matrices. UTB = UTC CTA A TB uTB = uTc eTB + uTc cTA ATB were us = (wcrc uc) (RB PB) + ORA PA (A WERBUS) aug= "Wc "Rc'PB + uuc + up, Aug AUB = FWBX APB. + -26145 -25145 MUB = MWCX URC PB+ MC+ URA MWBX MPB+ MKA (-25my)

(a)
$$x = g_2 coog_1$$
 $\dot{x} = g_2 coog_1 - g_2 song_1 g_1$
 $y = g_2 song_1$ $\dot{y} = g_2 song_1 + g_2 coog_1 g_1$
 $y = g_2 song_1$ $coog_1$
 $y = g_2 song_1$ $coog_1$
 $y = g_2 song_1$ $coog_1$
 $y = g_2 song_1$ $volume = g_1$
 $volume = g_1$
 $volume = g_2 coog_1 - g_2 song_1 g_2$
 $volume = g_2 coog_1 g_1$
 $volume = g_2 coog_1$
 $volume = g_2$
 vol

(c) 1st 2rous & Jacobian
$$U_{x}, U_{y}$$
 Tah
 $det(J) = -929m^{2}9, -926m^{2}9, = 0$
 $= -92 = 0$ $92 = 0$

$$dut(j) = -ar j_1 = 0$$

$$g_1 = 90^{\circ} \text{ or } 270^{\circ}$$

$$g_{2} sug_{1} = 0$$
 $cos g_{1} = 0$

$$g_{z}=0$$
, and $g_{1}=90$ /