
Please print clearly your name (as it appears in your student ID card) and Matric Number in your answer sheets.

- 1. **(40 marks)** Figure 1 shows a 1-DOF robot with a rotational joint. The link AE is always at an angle of 60° with respect to Z_A . The link rotates about the axis Z_A . Frame A is a fixed frame that serves as the base of the robot. The joint coordinate q_1 is zero when the link is in the YZ plane of Frame A. Frame E is attached to the link as shown. The length of link AE is 2 m.
 - a) Assign Frames to this robot according to the DH convention given in class
 - b) Determine the 4 DH parameters for the link.
 - c) Derive an expression for the position and orientation of Frame E in Frame A, ${}^AT_{E,}$ as a function of q_1 . Express this as a 4×4 homogeneous transformation matrix. You do not need to simplify the expression.

- d) A load of 10 N is attached to Frame E. The direction of the gravitational force is along the negative Z_A axis. Determine the torque needed to carry this load.
- e) Derive the 6×1 Jacobian that relates the joint velocity with the end-effector (Frame E) velocity. You do not need to simplify your expression for the Jacobian.
- f) Does this robot have any singularities? If so, what are the singularities? (Describe the robot configuration(s) that is (are) singular.)
- 2. **(30 marks)** The robot in Figure 1 is placed on top of another robot that is moving. Frame U is a fixed frame. At a certain instant of time, the following are known:
 - Translational velocity of Frame A with respect to Frame U, Uu_A
 - Angular velocity of Frame A with respect to Frame U, ${}^{U}\omega_{A}$.
 - Position and Orientation of Frame A in Frame U, ^UT_A.
 - Position and Orientation of Frame E in Frame A, ^AT_E.
 - Joint velocity, \dot{q}_1

Determine expressions for the following. You do not need to simplify the expressions.

- a) Angular velocity of Frame E with respect to Frame U, ${}^{\rm U}\omega_{\rm E}$
- b) Translational velocity of Frame E with respect to Frame U, UuE
- 3. **(30 marks)** Frames, A, and B, are fixed with ${}^{A}T_{B}$ known. Frame C is initially at ${}^{A}T_{C}$ and moves in the following sequence:
 - (1) Rotation about Z_A by q_1 .
 - (2) Rotation about Y_C by q_2 .
 - (3) Rotation about X_B by q_3 .

Determine the expression for the final position and orientation of Frame C with respect to Frame A, $^{A}T_{C}$. You do not need to simplify the expression.