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Abstract

This paper investigates the relative target-object (rigid
body) pose estimation for vision-based control. A closed-
form target pose estimation algorithm is developed and
implemented. Moreover, PI-based visual control was de-
signed and implemented in the camera (sensor) frame to
minimize the effect of errors in the extrinsic parameters of
the camera. The performance of the vision-based control
algorithm has been veri£ed on a 7-DOF industrial robot.

1. Introduction

Industrial robots are designed for tasks such as pick and
place, welding, and painting. The environment and the
working conditions for those tasks are well set. If the work-
ing condition changed, those robots may not be able to
work properly. Therefore, external sensors are necessary
to enhance the robot’s capability to work in a dynamic en-
vironment. A vision sensor is an important sensor that can
be used to extend the robot’s capabilities. The images of
objects of interest can be extracted from their environment,
then information from these images can be computed to
control the robot. The control that uses the images as feed
back signals is known as vision-based control. Recently,
vision-based control has became a major research £eld in
robotics.

Vision-based control1 can be classi£ed into two main
categories. The £rst approach, feature based visual control,
uses image features of a target object from image (sensor)
space to compute error signals directly. The error signals
are then used to compute the required actuation signals for
the robot.The control law is also expressed in the image
space. Many researchers in this approach use a mapping
function (called the image Jacobian) from the image space
to the Cartesian space. The image Jacobian, generally, is
a function of the focal length of the lens of the camera,
depth (distance between camera (sensor) frame and target
features), and the image features. In contrast, the position-
based visual control constructs the spatial relationship, tar-
get pose2, between the camera frame and the target object
frame from target image features. Many construction algo-
rithms have been proposed. Each algorithm has different
assumptions and limitations.

1Some researchers use the term visual servo control.
2The position and orientation of target-object.

There are numbers of works on those two approaches.
Feddema et al. [1], Hashimoto et al. [2] [3], and Pa-
panikolopoulos et al. [4] are some of interesting works on
the feature-based approach. In the position-based approach
Chaumette et al. [5], Wilson and colleagues [6] [7] [8], and
Martinet and Gallice [9] reported the works on position-
based approaches that could achieve the same performance
as feature-based approaches.

In this paper, a position-based approach is presented.
The advantage of this approach is that the servo control
structure is independent from the target pose reconstruc-
tion. Usually, the desired control values is speci£ed in the
Cartesian space, so they are easy to visualize. One main
issue on position-based approach is target pose reconstruc-
tion. To construct the pose of a target object from two-
dimension image feature points, two cameras are needed.
Image feature points in each of the two images have to
be matched and 3-D information of the coordinates of the
target object and its feature points can then be computed
by triangulation. One-camera systems can, however, de-
termine 3-D information if the geometry of the target ob-
ject is known beforehand. The distance between the feature
points in the target object, for example, can be used to help
compute the 3-D position and orientation of the target with
respect to the camera.

Several estimation methods were proposed using dif-
ferent techniques. Moving a camera to different positions
(and orientations) can extract the depth information from
target image without knowledge of the actual target object
geometry (e.g., dimensions). This method, however, has
a signi£cant depth estimation error. To reduce the error
many different camera positions should be used. Thus, the
method is not suitable for tracking a moving object. An-
other method, which was proposed by Wilson et al. [8],
derives the relationship between target pose and image fea-
ture points in a recursive form; based on the assumption
that the actual target object features, i.e. position of fea-
ture point with respect to the target frame, are known. The
target pose can be estimated by using Kalman £lter. This
method gives an accurate estimation when the vision sys-
tem can be operated at high sampling rate, e.g. 61 Hz [8].
The main disadvantage of Wilson’s method is the plant er-
ror covariance is needed in the Kalman £lter and this is not
easy to identify. In addition, the plant error covariance can
only be estimated for some speci£c cases. Hashimoto et al.
[2] used the closed-form pose estimation method to £nd the
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depth information, which is needed for the image Jacobian.
The estimation method is based on the assumption that the
camera parameters and the position and orientation of the
target feature(s) with respect to the target frame are known.
Although the closed form estimation may be sensitive to
noise, the robustness of this method can be improved by
using redundant feature points.

The vision-based control in our work is implemented
on the Mitsubishi PA-10 robot. The camera is mounted on
the end-effector of the robot, i.e., an eye-in-hand con£gu-
ration. The closed-form target pose estimation is discussed
and used in the position-based visual control. The control
system consists of two control loops. The outer loop is the
visual control, and the inner is the robot servo control. The
visual control is expressed in the camera frame, therefore
the system can tolerate errors in calibrations such as the
eye-hand relationship (the relationship between the camera
frame and the end-effector frame of a robot). This is very
useful when the eye-hand relationship cannot be calibrated
precisely. In the following sections, we discuss details of
our implementation and present the experimental results.

2. Closed-Form Target Pose Estimation

The pinhole camera model (Fig. 1) is used for relating the
object (spatial) space to the image space (2 dimensional
space). Assuming all distortion effects, quantization effects
and blurring effects are negligible, the transformation from
the object space space to the image space can be written in
a matrix form as
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where (Ixi,
Iyi) is the coordinate of the object point i in

the image space, wi is a scaling factor that can be cancelled
when calculating Ixi and Iyi, (CXi,

CYi,
CZi) is the coor-

dinate of the object point i in the object space, αx and αy
are the pitch length of the image pixel in x-axis and y-axis
of a camera, respectively.

Figure 1. Pinhole camera model.

Equation 1 can be simpli£ed to:
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Thus, the inverse transformation from the image space to

the object space can be written as
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where Ix∗i =
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.

Figure 2. Target and camera coordinate frame.

The target pose estimation aims to reconstruct a spatial re-
lationship between the target object and the camera. We
refer to points in a target object that are used in the target
pose estimation as feature points. The points in the object
space are called target feature points and the points that are
transformed to the image space are called image feature
points.

Suppose that the target object is a rigid body with
known geometry, i.e., its shape and size are known. A tar-
get feature point i, in Figure 2, can be transformed from the
target frame TPi to the camera frame CPi as

CPi =
CRT
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In our work, we use a target with all target feature
points on a plane. We de£ne the target plane such that all
target feature points are in the XY-plane, thus TZi = 0.
Substituting Equation 3 into Equation 4, the simpli£ed
equations are:
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Equation 5 can be rearranged in a matrix form
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It can be seen from Equation 6 that at least four points
(8 equations) are needed to solve for a solution M̄ (which
has 8 unknowns/elements). By stacking each point to-
gether, the solution can be determined as

M̄ = A−1B (7)

where A = [ A1 A2 A3 A4 ]
T

and B =

[ B1 B2 B3 B4 ]
T

.
Although only four feature points can be used to solve

for the solution, the result M̄ from Equation 7 may be in-
accurate when the feature points data from the image are
corrupted by noise (due to the image quantization errors
for example). To overcome this problem, redundant feature
points are introduced in order to reduce the pose estimation
error. Data from the additional redundant feature points are
stacked together and correspondingly appended to matri-
ces A and B The solution is calculated by the least squares
method:

M̄ = (ATA)−1ATB. (8)

This solution minimizes the squares of errors.
Once M̄ is computed, the orthogonal property of the

rotation matrix is used to solve for the value of Z:
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The magnitude of Z must be much greater than the focal
length of a lens (f) and Z must always be a positive value.
Using Equation 9, therefore, Z can be computed as
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where M̄i is the ith element of vector M̄ (Equation 6). The
magnitude of Z from Equation 10 are not always equal,
hence the average value of Z (from those two values above)
can be used to determine any other values, i.e. X, Y, and
rotational matrix R.

3. Position-Based Visual Control Design

The frame assignment for vision-based control system is
depicted in Figure 3 where {0} represents the base frame,

Figure 3. Frame assignment for vision-based control.

Figure 4. Visual control system structure.

{E} represents the current end-effector frame, {C} repre-
sents the current camera frame, {Ed} represents the de-
sired end effector frame, {Cd} represents the desired cam-
era frame, and {T} represents target frame. Since a cam-
era is mounted on the robot end-effector, the homogenous
transformation matrix from the camera frame to the end ef-
fector frame, ETC , is constant.

Although the desired target pose can be computed di-
rectly from the kinematic model, the performance of the
vision system may not be stable when the eye-hand rela-
tionship is signi£cantly inaccurate. This paper, therefore,
uses the PI control scheme in the visual control loop (as
depicted in Figure 4) to stabilize the vision system. The
PI controller generates velocity commands for the camera
frame with respect to the camera frame itself. The required
velocities are computed from the errors between the desired
target pose and the estimated target pose. Advantages of PI
control scheme are its simplicity for implementation and
non-computational intensive nature. The use of this outer
loop control makes the visual control robust to noise from
image data.

The velocities of the camera frame CUC can be gen-
erated by a PI control law as

CUC = KPet +KI

∑

et (11)

where CUC represents the linear and an angular velocities
of the camera frame with respect to the camera frame itself,
et is a vector of position and orientation errors of the target
frame with respect to the camera frame at each sampling
period. KP and KI are proportional and integral gain ma-
trices, respectively. The velocities generated represent the
velocity commands to the robot.

The velocity commands that are generated from the
visual controller in Equation 11 can be transformed to the



robot end-effector frame as
0ωωωE = 0RE
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where 0RE is the orientation matrix of the robot end-
effector frame with respect to the base frame, ERC and
EPC are orientation and position of the camera frame with
respect to the robot end-effector frame, S(0ωωωE)is an angu-
lar velocity screw matrix:
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Figure 5. Hardware con£guration for vision-based control
system.

4. Experiment Results

Two sets of personal computers were used in our vision-
based control system, as shown in Figure 5. Both comput-
ers communicate though TCP/IP network system. The £rst
computer, PII-300 MHz, was used for planning the trajec-
tory sent to the PA-10 robot controller at a trajectory update
period of 1.5 ms. The second computer, Celeron-300 MHz,
was used for image processing and visual controller calcu-
lations.

The Mitsubishi PA-10 robot, which has seven rotating
joints, was used in this experiment. The PA-10 robot servo
control scheme was chosen to be velocity control. In this
mode, the robot is moved by giving velocity commands to
each joint. (The robot servo control scheme uses resolved
motion rate control to compute the joint motion from the
task-based velocity commands.) The camera was mounted
on the end-effector of the PA-10 robot. Before conducting
the experiment, the eye-hand calibration was carried out
using the algorithm in [10].

The target object, in this work, consisted of nine black
dots on white paper but only eight dots were used in the tar-
get pose estimation. The center of area of each dot was used
as a feature point by processing the whole image inside a
camera view. The resolution of the image was 300 × 220
pixels. The achievable frame rate (including image pro-
cessing time) was about 20 frames per second.

The visual controller gains, (K)P and (K)I , were
manually tuned to optimize the response of the whole sys-
tem. Keeping the target object £xed, the proportional and

integral gains were tuned until the system can be driven to
steady state as fast as possible, while minimizing the over-
shoot response.

Stationary Target Object

In this experiment, the robot was tracking a £xed target ob-
ject. The response of the robot was observed while adding
the error to the relationship between the camera frame and
the robot end-effector. The results were compared with
those results using pure kinematics calculations alone from
the relative target-object pose estimation. The desired tar-
get pose was £xed at the position (x, y, z) = (0, 0, 300) mil-
limeter and the orientation (Row,P itch, Y aw) = (0, 0, 0).
The tracking errors were computed as the difference be-
tween the desired target pose and the estimated target pose.

The results when using kinematic model to calculate
the desired target pose are shown in Figures 6 and 7. It
can be seen that the accuracy of the eye-hand relationship
can affect the performance of the vision system. The visual
control is implemented to control the position and orien-
tation of the target in the camera frame. It has the same
advantage as the feature-based approach that the tracking
performance robust to the error of the eye-hand relation-
ship. The results in Figures 8 and 9 show that the tracking
performance is not affected even when the eye-hand rela-
tionship is not accurate.

Moving Target Object

The target was moved by human hands to verify the ca-
pability of the target pose estimation and the control algo-
rithm. The robot hand is to maintain a constant position
and of (0, 0, 300) mm and orientation of (Row, Pitch, Yaw)
= (0, 0, 0) relative to the target.

The tracking errors, depicted in Figs. 10 and 11, show
that the maximum position tracking error is 35.5 millime-
ter in X-direction of the camera frame and the maximum
orientation error is 16.5 degree in pitch-angle of the cam-
era frame. The video clip of this experiment can be down-
loaded from [11] .

5. Conclusions

The implementation of the closed-form target pose estima-
tion has been presented. The capability of the target pose
estimation method gives three-dimensional information on
the relationship between the target and the camera with ac-
ceptable accuracy. Furthermore, the position-based visual
control has been implemented. The control signals are ex-
pressed in the camera (sensor) frame. Consequently the
control system is robust to errors in robot kinematics and
eye-hand calibration errors. Moreover, the control design is
expressed in the Cartesian/task space and this allows spec-
i£cation of the desired target pose naturally without lost of
visualization.
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Figure 6. Relative target pose error when using kinematics
calculation: accurate eye-hand relationship.

Figure 7. Relative target pose error when using kinematics
calculation: inaccurate eye-hand relationship.

Figure 8. Relative target pose error when using PI control
in visual control loop: accurate eye-hand relationship.



Figure 9. Relative target pose error when using PI control
in visual control loop: inaccurate eye-hand relationship.

Figure 10. Target relative position error when moving the
target.

Figure 11. Target relative orientation error when moving
the target.




