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Abstract – The new approach to utilize information from an 
omnidirectional image is presented in this paper. We describe 
the integration between the image matching and the Monte-
Carlo localization that can be implemented in a large indoor 
environment. The robot is able to localize with reasonable 
accuracy despite no metric measurements from the image. 
Furthermore, the algorithm can recover quickly from 
localizing a robot at a wrong place. 

I INTRODUCTION 
Omnidirectional vision systems become popular options 

of vision systems among the vision-based navigation 
research recently. This may be due to its low cost relative to 
other vision systems. Moreover, the benefit of having 360° 
horizontal field of view assists a robot to sense the whole 
environment in one snapshot regardless of robot's heading 
directions. Typical usage of the omnidirectional vision in 
robot navigation involves projecting an original image to 
either a perspective plane or a cylindrical surface [1, 2, 3]. 
Although the image projection does not require intensive 
computations, it is quite inefficient to incorporate this 
methodology in the online robot navigation. In contrast, we 
develop the algorithm to utilize an original image from an 
omnidirectional camera for navigation without having to 
project them to any two-dimensional surfaces. 

Our image matching algorithm for an omnidirectional 
image is inspired by the image retrieval methods that 
exploit the local properties of an image. These methods 
seem to have several advantages; in particular, they are 
robust to occlusion. The methods normally involve 3 major 
steps: 

1. Local feature point extraction. 
2. Descriptor assignment to the feature point. 
3. Matching the feature points between the query and 

the database. 
In the first step, pixels in the image are identified based 

on some peculiar properties. For example, Schimid and 
Mohr [4] used Harris's corner detection to detect interest 
points. Bres and Jolion [5] identified interest points based 
on contrast property of an image. Lowe [6] used the 
difference of Gaussian functions to detect keypoints. His 
method is known as the scale-invariant feature transform 
(SIFT). Loupias et al [7] adopted the wavelet transform to 
obtain salient points. The second step assigns local 
properties such as image texture or color to describe those 
extracted pixels from the first step. The third step compares 
a query image to database images and identifies images 
from the database that resemble the query image. 

We present details of our image matching algorithm, 
which is a crucial part in our vision-based localization. 
Furthermore, we elaborate the integration between the 

image matching and the Monte-Carlo localization. Our 
approach does not emphasize the accuracy of the location 
of a robot. Instead, we are interested in knowing roughly 
where the robot is currently at. Therefore, we develop the 
image matching to indicate similarity between the query 
image and the map database images without obtaining 
metric information between a robot and an environment.  

In recent years, similar appearance-based localization 
algorithms have been proposed [2, 3, 8]. Among several 
algorithms, the work by Andreasson et al [8] is closely 
related to our work.  They adopted the SIFT algorithm for 
matching images and incorporated the image matching with 
the Monte-Carlo localization. Nonetheless, our approach 
has some significant differences from their method. In 
particular, we introduce two levels of image matching that 
are seamlessly integrated into the localization algorithm. 
Those two levels of matching help reducing time spent in a 
matching process especially with a large map database. 
Furthermore, we develop the localization technique that 
requires less reference images while maintaining reasonable 
accuracy.  Therefore, our localization can be easily 
extended to large scale indoor environments.  

The paper is organized as follows. In the first section, we 
explain the methods of extracting feature points from an 
omnidirectional image. Next, we elaborate two levels of 
image matching that are performed, i.e., in the global and 
local levels, respectively.  In the third section, we discuss 
our localization technique with the Monte-Carlo 
localization. The experiments are shown in the subsequent 
section.   

II FEATURE EXTRACTION 
Some portions of an image that contain key information 

are obtained to form local features describing the image. 
The overview of the feature extraction process is depicted 
in Fig. 1. The feature extraction from the omnidirectional 
image involves three major steps. Firstly, some salient 
locations in the image are determined. Next, neighborhood 
pixels around each salient location are extracted. Finally, a 
feature descriptor is computed from each neighborhood 
region. The origin of the image in our implementation is 
located at the apex of a mirror in the image plane. 

The final feature point from the extraction process 
consists of a salient location in the image and a descriptor 
vector. 

A Salient Location Identification 
We modified the algorithm from [7] to suit our 

application. The Haar wavelet decomposition is used 
because of its computational simplicity.  The decomposition 
algorithm is based on the non-standard decomposition 
procedure reported in [9]. The wavelet decomposition of 
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an input image yields three coefficient matrices, namely the 
Horizontal ( H ), Vertical ( V ), Diagonal ( D ), and the 
compressed image (to a quarter of the size of the original 
image). The decomposition can be recursively performed 
by using the output image from the previous iteration as the 
input. At each decomposition level, three wavelet 
coefficient matrices are combined into one signal matrix S:  

      ),(),(),(),( nmDnmVnmHnmS jjjj ++=             (1) 

The salient-location-candidates are identified by 
“tracking” each element of the last signal matrix (last 
wavelet decomposition) to the untransformed input image. 
The example of this process is illustrated in Fig. 2. In this 
example, the signal point from the second level can be 
viewed as it is produced from four signal points of the first 
level. Hence, the signal track of point “a” is coming from 
four points in the top-left corner of the first level of the 
signal matrix. The highest signal value among those four 
points is determined, i.e. point “b”. The process is repeated 
using the same analogy in case of more decomposition 
levels.  The exact salient-location-candidate is obtained 
from the location of an image pixel that has highest gradient 
magnitude. The signal values along each signal track are 
also accumulated to indicate the strength of a salient-
location-candidate.  

The required number of salient locations can be set equal 
to or less than the number of candidates by sorting the 
signal strength of each candidate. The candidates that have 
high signal strength are selected until the number of salient 
locations is fulfilled. The fixed number of salient locations 
gives each database image equal opportunity to be matched 
with a query image in the matching process.  

B Neighborhood Pixels Extraction 
The salient locations obtained must be assigned with 

some unique properties to distinguish them from salient 
points of other images. Unfortunately, there is no suitable 
feature description that can distinguish a pixel. Therefore, 
we extract a region around each salient location to form a 
sub image. This sub image can be represented by any image 
properties such as texture or color moment.  

 
Our localization approach determines the location of a 

robot when it travels near the place that a reference image 
was taken. Hence, the current query image is different from 
the corresponding reference image by certain rotation 
angles. The neighborhood region (sub-image) around each 
salient location is extracted to make it rotationally invariant 
using the coordinates transformation in (2). As a result, the 
sub-images of the same salient point extracted from this 
method are having the same appearance regardless of 
rotational deviations from an original image. 
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where ),( vu are the transformed (new) coordinates,  
),( nn yx are untransformed coordinates in the original 

image, and  ),( ff yx  is the coordinate of the salient point. 

( )fff xytan 1−=α . nI is the sub-image obtained from 
the original image.   
 

C Feature Description 
We adopted the idea from [6] which creates the feature 

description from the histogram of the image intensity 
gradient magnitudes. However, we choose to construct a 
descriptor based on the histogram of image color gradients 
instead. The advantage of using the color components is 
that they are more robust to illumination changes in images. 
In particular, we calculate the gradient on the YUV color 
components. The gradients of 3 color components are 
computed individually for each sub-image.  

 
 The histogram of each color component is created by 

accumulating the corresponding gradient magnitude 
according to the gradient direction.  In our application, we 
choose to accumulate the gradient magnitude into 8 
direction bins covering 0  to π2 . Finally, each histogram is 
normalized; the feature descriptor vector is formed by 
concatenating each normalized histogram together. Thus, 
the descriptor vector has 24 elements. 

Figure 2 
Salient point location from two levels of signal matrices. Every pixel 
from last signal matrix (on the right most) is tracked to determine the 

locations of salient point candidates in the original image. 
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Figure 1 
The overview of the feature extraction process from an omnidirectional 
image. The sub-image are obtain from the neighbourhood region, and 

the descriptor vector are computed from each sub-image. 
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III IMAGE MATCHING 
Our appearance-based localization relies on the ability to 

assess the degree of similarity between a query image and 
reference images in the map database. Consequently, we 
implement two levels of image matching: Global Matching 
and Local Matching.   

In the following sections, each image is extracted a fixed 
number of feature points, i.e. 80 feature points.  The feature 
points are derived from the salient locations described in 
previous section. Each feature point consists of the gradient 
descriptor vector (24 elements) and the position of the 
salient location in the image.   

A Global Matching 
The map database is a collection of feature points 

obtained from reference image. This database generally 
contains large number of feature points, so matching the 
query image (feature points) exhaustively with the database 
is computationally demanding. Therefore, we embrace the 
tree search algorithm from [10] to speed the global 
matching process. The search algorithm requires a 
construction of the KD-tree from the feature descriptor 
vectors of the database. The algorithm, in brief, 
approximates the nearest neighborhood area from a large 
portion of the tree, and then does finer searching for 
feature-descriptor-candidates of the database that are closer 
to the query feature descriptor on a smaller portion. The 
search duration is specified by the number of maximum 
feature-descriptor-candidates to be retrieved. 

A fixed number of feature-descriptor-candidates are 
obtained after submitting each descriptor vector of a query 
image to the global matching. The Euclidean distances 
between the query feature vector and its corresponding 
candidates are computed, and the smallest distance is 
identified. The cut-off threshold is set at 1.25 times the 
smallest distance. Matched candidates that have distances 
smaller than the cut-off threshold are marked, and their 
corresponding distances are also recorded. The process is 
repeated with different query descriptor vector. If there is a 
candidate feature point matches with more than one query 
point, only the pair that has smallest distance is kept while 
other pairs are dismissed. Reference images are sorted 
according to their number of matched pair, and the 
reference images that have matched-pairs higher than 85% 
of the highest matched pairs are selected.  

We assume that the query image and the corresponding 
reference image are taken at the same position but may be 
at different angles. Therefore, each initial matched image is 
examined further to eliminate outliers through the rotation 
constraint in (3). The rotation angles from pairs of feature 
points are grouped into 8 angle bins covering 0 to π2 . The 
bin that has highest number of match pairs is obtained, and 
the number of matched pairs in the particular bin is 
considered as the inliers. 
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where ),( qq yx  and ),( dd yx  are the coordinates of the 
query feature point and the coordinate of the database 
feature point, respectively. 

The maximum number of matched pairs among the 
matched reference images after applied (3) is the global 
score for the particular query image.  The outputs of the 

global matching are those matched reference images and 
the matched pairs of the top reference image. 

B Local Matching 
The local matching performs similar steps as the global 

matching except that the local matching compares the query 
image with a single reference image. Each feature 
descriptor of the query image is matched with all feature 
descriptors from the reference image. The pair that has 
minimum Euclidean distance is recorded as the initial 
matched pair. If there is more than one query descriptor that 
matches with the same descriptor of the reference image, 
only the pair with smallest Euclidean distance is recorded. 
After all feature descriptors of the query image are 
matched, the outliers are being eliminated by (3). The 
outliers are regulated by the same method as the global 
matching. The number of inliers is the local similarity score 
between the query image and the corresponding reference 
image.  The rotation angle is determined by averaging the 
rotational angles of those inliers.  

IV APPEARANCE-BASED  LOCALIZATION 
The result from image matching is very noisy due to 

several possible causes such as occlusion, changing in 
lighting condition, or a query image is taken at a location 
not perfectly at the same location where the reference 
image was taken. As a result, using only image matching 
alone to localize a robot almost always does not give 
consistent results. We, therefore, take uncertainties into 
account by incorporating a probabilistic model into our 
localization problem. In particular, we implement the 
Monte-Carlo localization with our image matching 
algorithm. 

The Monte-Carlo localization (MCL) represents the 
belief of a robot state by a set of random samples. Each 
sample comprises the dynamic model of a robot and the 
importance weight factor. The MCL algorithm is briefly 
explained in the following steps: 

1. Prediction: The samples are drawn according to the 
transition model   of the robot's dynamics given the 
action   executed since the previous robot state. 

2. Importance weight update: The new observation is 
used to update the importance weight of each 
particle. The weight updating is based on the 
observation model. We use the local matching to 
evaluate importance weights of the particles.  

3. Re-sampling: Particles are re-sampled according to 
their updated weights; this is to prevent degeneration 
problem in the particle filter.  

Our localization determines the location of a robot 
relative to the “place” where the reference image was taken. 
A hybrid map between topological and metrical maps is 
constructed from a collection of images taken from various 
locations. The map is represented by the graph where nodes 
are encoded with image feature data, and edges indicate the 
feasible path between nodes. In addition, the edge metrical 
information is extracted from a robot odometry reading. 

A Robot Dynamic Model 
The robot state in our system is modeled as 

                [ ]rrr yxnt θ=)(ξ                   (4) 



where n  is the reference node, and ( )rrr yx θ,,  is the 
relative position of a robot with respect to the coordinate 
frame of the node. 

The state of each particle is updated based on the reading 
of robot odometry. To simulate motion noises, each particle 
is subjected to uniform random motion errors. In particular, 
the noise is added to the state of each particle; noise 
magnitude is up to %10± of the measured motion. 

B Observation Model 
The characteristic of the local image matching is 

observed by (local) matching several query images taken 
from various distance away from the reference image. The 
prominent characteristic of our local similarity score is that 
more than 80% of the query images taken within 20 cm 
range from the corresponding reference image have 
similarity scores above 15, whereas the similarity scores of 
the query images taken farther from this area have very 
wide fluctuations. Therefore, we develop the localization 
technique to perform (actual) weight updating only when 
any particle is within 20 cm radius from its reference node.  

When a robot is in the sensitive area (within 20 cm 
range) of any map node, the similarity score between the 
query image and the reference image of the particular map 
node is likely to be much higher than the score of other map 
nodes. Therefore, particles in the true reference node are 
updated with higher importance weight than the others. 
Moreover, rotational angle from local matching is added in 
the importance weight updating to decrease matching 
ambiguities, i.e. other reference nodes have high similarity 
score as the true reference node. The false reference node is 
often to have a random rotational angle with the query 
image even though their similarity score is high. The weight 
updating function is given by: 

    ( ) 
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where ),( inqS is the local similarity score between the 

query node q  and the node in . The similarity score is 

being clipped at 15 if it is more than 15. ),( inqφ  is the 
rotational angle between the query image and the reference 
image. a and b are the arbitrary positive constants. The 
weights of samples outside the range are calculated from 
the last actual updated weight with a linear discounting 
factor proportional to the distance from the reference node. 
 

C Disbelief Algorithm  for Re-localization 
To add the ability for a robot to recover from localization 

at the wrong place, we introduce the disbelief algorithm to 
re-initialize the states of some particles. After applying the 
standard re-sample algorithm, the number of particles at 
each map node is examined.  If one of the map nodes has 
particles concentrated significantly higher than other map 
nodes, some particles from that particular node are 
randomly removed. The removed particles are then re-
initialized to new states according to the output nodes from 
the global matching. However, the disbelief algorithm is 
activated only when the global similarity score is higher 
than the “disbelief” threshold. This disbelief threshold 
indicates whether the robot is currently within the sensitive 
area of any map node or not. The empirically value of the 

disbelief threshold is given as a function of number of map 
nodes )(N  as: 

                     )05.0exp(105 NTdb −+=                         (6) 

V EXPERIMENTAL RESULTS 
The first experiment was conducted to evaluate the 

accuracy of the global matching. The robot was manually 
controlled to travel along the corridor of our laboratory 
building; the size of the building is approximately 50100×  
meter.  A total of 304 images were collected to create a 
database, and 80 feature points were extracted from each 
reference image. The location of each reference image was 
also recorded in the database. 

Another set of images were taken by controlling the 
robot to move along the same corridor but in the opposite 
direction. Forty-one images were used as query images to 
the global matching function. The accuracy of the matching 
function was verified by comparing the location of output 
images obtained from the global matching to the location of 
the query images. Each trial was regarded as a successful 
matching when the location of the query image was within 
100 cm range from one of the output candidates. 

The accuracy of the global matching when varying the 
number of maximum search feature-point-candidates is 
depicted in Fig. 3. Moreover, the time spent in matching 
process is illustrated in Fig. 4. The result in Fig. 3 suggests 
that the global matching accuracy is above 50% even when 
a small number of maximum search candidates are applied. 
Increasing the number of maximum search candidates 
improves the matching accuracy. However, we do not find 
any significant improvements when using the maximum 
search candidates more than 10% of the total feature points 
in the database.  

 
In Fig. 4, the time spent in the global matching is 

increasing with the number of maximum search candidates.  
Nonetheless, large number of maximum search candidates 
reduces the maximum number of matched reference 
images; hence, the local matching requires less time to 
match every output image. As a result, the optimal 
percentage of the maximum search candidates to the total 
database feature points is approximately 10%. 
Consequently, we continued using this ratio in the 
subsequent experiments. 

Figure 3 
Global matching accuracy vs. maximum searched candidates. The 

total database feature points are 24320 points.



 
The second experiment was carried inside our laboratory. 

The objective of this experiment was to observe the 
performance of our localization algorithm. The map 
database was constructed from 72 images taken at about 
100 cm interval while the robot moved along the route 
depicted in Fig. 5. The number of feature point extracted 
from each image was fixed at 80 points.  

Two weeks after the map was created, the localization 
was performed on-line from the on-board computer; the 
Intel Pentium M 1.73 GHz notebook PC with 1024 MB 
memory was placed on top of the robot as shown in Fig. 6. 
The query images were taken every time the robot had 
moved by 10 cm or turned by 30 degrees.  

Two localization scenarios were conducted. In both 
scenarios, the robot traveled through all nodes except that it 
moved in different direction. In particular, the robot 
traveled from reference node number 1 to 72 in first 
scenario, whereas the robot traveled in reversed order in the 
second scenario. The video clips of the second experiment 
can be downloaded from the following url:  

http://guppy.mpe.nus.edu.sg/~manna 
The video clips show the user interface program while 

the robot was traveling and localizing. The big green dot in 
the map shows the estimated reference node of the robot, 
and the blue dot indicates the true location. The estimated 
reference node was determined from the map node that 
particles converged more than 30% of the total particles. 

Table 1 summarizes the performance of our localization 
algorithm. The correct reference node was verified when 
the actual robot location was within 200 cm, otherwise the 
reference node was marked as a false reference node. The 
loss time was count when the estimated reference node has 
less than 30% of total particles. 

 

 

 
The result in Table 1 shows that our localization 

algorithm is able to localize the robot within the position 
error range of 200 cm.  However, both scenarios indicate 
some false localization (the estimated robot location is 
farther than 200 cm from the true location). This is because 
our reference node selection method is based on identifying 
the node with maximum number of particles.   Sometimes 
the true reference node has lower number of particles than 
other nodes. 

Table 1 
The performance of the localization algorithm  

Localization Outcome (100%) Scenario 
No. Correct False Loss 

1 79.9 16.2 3.9 

2 66.9 28.3 4.8 

 
The kidnapping problem was demonstrated in the last 

experiment. Fig. 7 depicts the distribution of particles 
during the first kidnapping attempt. The result in Fig. 7 has 
shown that our algorithm has the ability to perform global 
localization despite the absence of absolute position 
information in our map. The success in global localization 
is from global image matching.  

VI CONCLUSION 
We present image matching algorithm based on our 

modified version of the wavelet-based salient point 
detection. The matching algorithm has two parts: the global 
matching selects the reference image-candidates that are 
similar to the query image, and the local matching 
determines the similarity score and the rotation angle 
between a single reference image and the query image. 
Furthermore, the integration of the image matching with the 
Monte Carlo localization enables the robot to localize with 
reasonable accuracy. 

Future development is to implement the algorithm for a 
robot to be able to incrementally build the map from scratch 
when it is operated in an unknown indoor environment. 
Moreover, the robot must be able to update the map nodes 
with latest sensor data. 
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Figure 6 
Our robot with the omnidirectional camera 
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Figure 7 
Snapshots of particles distribution during the kidnapping trial. The robot was kidnapped after time steps 80.  




