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Abstract

Mobile robots with omni-directional motion capabilities are very useful especially in
mobile manipulation tasks and tasks in human environment. In this paper, we present
the kinematics and dynamics of one class of omni-directional mobile robots that is driven
by a 2 axis powered caster wheels with non-intersecting axes of motions (caster wheels
with offset). Our derivation approach treats the each caster wheel as a serial manipulator
and the entire system as a parallel manipulator generated by several serial manipulator
with a common end-effector, following the operational space formulation by Khatib

1 Introduction

Omnidirectional wheeled mobile robots have been an active research area over
the past three decades. The advantages over the legged mobile robots are the ease
of manufacture, high pay load, high efficiency, and the ability to perform tasks in
congested and narrow environment.

There are three types of wheels [1]: the conventional wheels, the omnidirectional
wheels, and the ball wheel. The conventional wheels are the wheels that we see
everyday, such as those on the cars and trolleys. An omnidirectional wheel is a
disk-like wheel with a multitude of conventional wheels mounted on its periphery.
The ball wheel is one that’s shaped like a ball.

The ball wheel [2, 3] is difficult to implement as it is not possible to place an
axel through the ball without sacrificing the usable workspace. It is difficult to
transmit power to drive the wheel. There is also the practical need of keeping it
robust from collected dust and dirt from the floor. There has been a lot of effort
in the development of omnidirectional wheels [4, 5, 6]. Due to multiple number of
small rollers on the periphery of the wheel, an undesirable vibration often exists
in the motion.

The conventional wheel is probably the simplest and most robust among the
designs. However, not all conventional wheels are capable of providing omnidirec-
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Figure 1: An offset or caster wheel. This design was chosen to provide an omni-
directional motion capability to the mobile platform. Shown in this figure is the
instantaneous model of the caster wheel.

tional motion capability [1] [7] [8]. Chosen in our design was an offset wheel or
what is often described as caster wheel [9] [10] (see Figure 1). It has been widely
accepted that caster design provides full mobility [11].

The kinematics and dynamics of the mechanism is not new [12]. However,
our derivation approach follows the conventional methods in treating open chain
(serial) and closed chain (parallel) manipulator, by using DH convention, the op-
erational space formulation [13] and the augmented object model [14] [15]. The
augmented object model was utilised to represent the mobile robot as a system of
cooperating manipulators, where each wheel module is modelled a serial manip-
ulator. The objective of the design is to obtain an omnidirectional mobile robot
(with 3 DOF motion capability).

2 Kinematics Modelling of a Single Caster Wheel

In the formulation of kinematics model, we treat the wheel module as a serial
link manipulator with two revolute joints and one prismatic joint in instantaneous
time. The point of wheel contact with the floor is taken as a revolute joint (σ).
This is a passive joint with no position feedback, as this is the twist angle between
the wheel contact and the floor. With the assumption of no slippage, the forward
rolling motion of the wheel is treated as a prismatic joint (rρ) where r is the wheel
radius and ρ is the angular displacement is radians. The steering joint is the last
revolute joint (φ) of the system. See Figure 1.

By instantaneous, we mean that the prismatic joint (rρ) provides an instanta-
neous linear translation that pushes the end-effector forward with respect to the
floor. At the same time, the mechanism has a set length of b (the wheel offset)
between the rotation axes of σ and φ. The D-H parameter for the single caster
wheel modelled as a serial manipulator is shown in Table 1.

The Frame O is an instantaneous frame that is always parallel to the world
(absolute) frame, but moves together with the wheel. In other words, it is attached
to the contact point between the wheel and the floor.



Table 1: D-H parameters of the single caster wheel
Joint i αi ai θi di

1 −π/2 0 σ 0
2 π/2 0 0 rρ
3 0 0 φ 0

The position of the end-effector with respect to Frame O is:

0pE =


 rρcσ + hcσ+φ

rρsσ + hsσ+φ

0


 (1)

where r is the wheel radius, cσ = Cos(σ) and cσ+φ = Cos(σ + φ). The same
applies to the sines. The end-effector is located at the center of the mobile base,
therefore the length of the second link of the model above is taken as h, where h
is the radius of the mobile base.

When differentiated, the position vector x will provide the velocity vector of
the end-effector, or upon rearranging, the Jacobian matrix and the joint velocity
vector. Note that when differentiating rρ with respect to σ and φ, it is taken as
the constant value of the offset b, which is the real physical distance. However,
when differentiating it respect to ρ, it is taken as a variable with respect to time,
resulting in δ(rρ)

δt
= rρ̇.

Adding the rotational components (the rotational axes of σ and φ) into the
Jacobian matrix, we obtain:

0J =


 −hsσ+φ − rρsσ rcσ −hsσ+φ

hcσ+φ + rρcσ rsσ hcσ+φ

1 0 1


 (2)

where

ẋ =


 ẋ

ẏ

θ̇


 = J


 σ̇

ρ̇

φ̇


 (3)

This is the Jacobian matrix with respect to Frame O. Notice that the Jacobian
is a function of σ and φ. Since σ is not a measurable nor controllable variable, it
is desired to have a Jacobian matrix that is not a function of σ. This is obtained
by expressing the Jacobian with respect to the end-effector frame (Frame {E} in
Figure 1).

To do so, the Jacobian is pre-multiplied by a rotational matrix:

EJ =E R0.
0J (4)

where ER0 is a rotation matrix derived from angle (σ + φ).



Figure 2: The common frame {B} is attached at the center of the mobile base. All
the forward kinematics from each individual wheel module is transform to reflect
the end-effector at frame {B}.

The resulting Jacobian for a single wheel module with respect Frame {E} is:

EJ =


 −bsφ rcφ 0

bcφ + h rsφ h
1 0 1


 (5)

3 Kinematics of Mobile Base

To find the Jacobian matrices of the rest of the wheels, it is only necessary to
express them in the common frame (Frame {B}), which is attached to the center
of the mobile base:

BJi =B REi.
EiJ (6)

where i denotes the caster wheel of interest, N is total number of wheel module in
the mobile base and BREi is the rotation matrix derived from angle β, as shown
in Figure 2. This results in the Jacobian of wheel i with respect to common Frame
{B} at the center of the mobile base:

BJi =


 hsβi + bsβi+φi rcβi+φi +hsβi

hcβi + bcβi+φi −rsβi+φi hcβi

1 0 1


 (7)

and

BJ−1
i =

1
rb


 rsβi+φi rcβi+φi −rhcφi

bcβi+φi −bsβi+φi bhsφi

−rsβi+φi −rcβi+φi r(b + hcφ)


 (8)

This derivation yields the same result as the geometric approach found in [12]
and [14]. Note that the inverse always exists for rb �= 0.



3.1 Implementation Issue: Forward Kinematics

In the expression of the Jacobian matrix (Equation 7), we assume that we are
able to obtain the joint variable σ̇ for the purpose of forward kinematics. In the
real application, σ is not measurable.

In the inverse kinematics, however, it is possible to remove the σ component
(see Equation 8). The inverse of Jacobian matrix without the σ component for
any wheel i is obtained by simply removing the last row of BJ−1

i .

BJ−1
i =

1
rb

[
rsβi+φi rcβi+φi −rhcφi

bcβi+φi −bsβi+φi bhsφi

]
(9)

which means [
ρ̇i

φ̇i

]
=B J−1

i


 ẋ

ẏ

θ̇


 (10)

The Jacobian inverse of all the individual wheel modules can be combined to
form an augmented Jacobian inverse J−1

aug:




φ̇1

ρ̇1

φ̇2

ρ̇2

...

φ̇N

ρ̇N




=




J−1
1

J−1
2

...
J−1

N




︸ ︷︷ ︸

.


 ẋ

ẏ

θ̇




q̇aug = J−1
aug. ẋ

(11)

The forward kinematics can be obtained by solving for (ẋ, ẏ, θ̇)T from Equation
11, which represents a 2N equations with 3 unknowns (N ≥ 2), for which in
general, there may not be a solution. But in this case, the wheel modules are held
together by physical constraints:


 ẋ

ẏ

θ̇


 = J1.

[
φ̇1

ρ̇1

]
= J2.

[
φ̇2

ρ̇2

]
= . . . = JN .

[
φ̇N

ρ̇N

]
(12)

therefore an exact solution exist using the left pseudo inverse of J−1
aug, i.e.:

JLPI = ((J−1
aug)

T .J−1
aug)

−1.(J−1
aug)

T (13)



where


 ẋ

ẏ

θ̇


 = JLPI .




φ̇1

ρ̇1

φ̇2

ρ̇2

...

φ̇N

ρ̇N




(14)

Note that J−1
LPI always exists for rb �= 0.

When the operational space velocity command vector is obtained from the con-
trol law, it can be immediately used in Equation 11 to produce the joint rate
command vector to be sent out to the high level controller for each joint to obtain
the desired motion.

4 Kinematic Analysis

The aim of kinematic analysis is to determine the optimal design parameters that
exert, as much as possible, equal effort in joint space to produce any motion in task
space. In a serial manipulator, this is often reflected in a manipulability ellipsoid
[16] at the end-effector. This is directly related to the singularity issues whereby the
end-effector loses the ability to move in certain direction (the degenerate direction).

In the case of caster wheel in a mobile base system, singularity is not an issue,
as it is already shown above Equation 8 that the inverse of the Jacobian matrix
always exists, as long as r �= 0 and b �= 0. The exception to this would be when
passive joints are included in the system and only 3 joints are actuated to produce
motion in 2D plane.

A manipulability ellipsoid, or more appropriately, the maneuverability ellipsoid,
shows the velocity generated in task space with bounded joint velocities. Please
note that it is not appropriate to use the Jacobian matrix in Equation 7, because
it still reflects the contribution of the imaginary joint σ. The appropriate anal-
ysis should be performed on the J−1 matrix without the contribution of σ (from
Equation 9) or the Jacobian matrix obtained from Equation 13.

The joint space of a caster wheel, however, only contains two joints: the steer
and the drive and it is obvious that when the mobile base diameter is much larger
than the wheel radius, then one rotation in steer angle produces a much larger
motion than one revolution of the wheel.

5 Dynamic Modelling

The caster wheel is treated as a serial link manipulator, each subjected to:

τττ = A(q)q̈ + b(q, q̇) + g(q) (15)

where τττ is the torque to be sent to joint actuators, A is the inertia matrix, b is
vector that contains the Coriolis and Centrifugal effects, and g is the gravitational
effect on the joints.



Figure 3: Dynamic model of a wheel module, with three actuators and two centers
of mass m1 and m2.

The A matrix is for individual wheel module is derived by:

A =
K∑
i

miJ
T
vi
Jvi

+ JT
ωi
ICJωi

(16)

where the individual caster wheel is modelled as having a center of masses (m1

and m2) (Figure 3) and K is the total number of centres of masses (K = 2). The
task space kinetic energy matrix ΛΛΛi is obtained for each wheel module i as:

ΛΛΛi = (BJ.
iA

−1
i .BJT

i )−1 (17)

where BJi is a 3 × 3 matrix of Equation 8.
The combined dynamics of the mobile base at its centre, expressed in Frame {B}

is obtained by combining the dynamics of all the individual “serial manipulators”
reflected at the end-effector (augmented object model [13] [14]):

ΛΛΛaug(q) =
N∑

i=1

ΛΛΛi(q) (18)

6 Dynamic Analysis

The aim of the analysis is to come up with an optimised set of design parameters
so that there will be equal effort in producing motion in all directions. This
could be done by analysis the ellipsoid formed by the singular values and singular
vectors of the ΛΛΛaug matrix, which is the inertia of the mobile base in 2D task
space [17]. Since the analysis for translational and rotational motion are to be
analysed separately, it is necessary to form separate ΛΛΛ matrix for translational
and rotational motion:

ΛΛΛvi
= (Jvi

A−1
i JT

vi
)−1

ΛΛΛωi
= (Jωi

A−1
i JT

ωi
)−1 (19)

where Jvi
is the top two rows of the Jacobian matrix (for translational motion

ẋ and ẏ) and Jωi
is the bottom row of the Jacobian matrix for orientation (θ̇). It



Figure 4: The inertial ellipsoid of ΛΛΛ−1
vi

for translational motion of the combined
mobile platform. The major principal axis of the ellipsoid shows the direction
that reflects minimum inertia in the motion, hence it is easier to move in those
directions.

Figure 5: The effect of the design parameters: r and b. Offset of the caster wheel
plays a major role below a certain threshold value.

is also possible to perform the analysis on ΛΛΛ−1
vi

and ΛΛΛ−1
ωi

to avoid performing the
extra inversion. An example of the visual representation of the reflected inertia in
the 2D planar motion is shown in Figure 4 for translational motion for a mobile
base comprised of four sets of wheel module (therefore eight actuated joints).

It is the ideal case when a mobile base is capable of moving in all directions with
equal “ease”. In this case, the inertial ellipsoid will become a circle. Condition
number of ΛΛΛ can be utilised to show the ratio between the major and minor
principal of the ellipsoids. A condition number of 1 means that the major and
minor principal axes are of the same length.

Figure 5 shows the plot of condition numbers of the combined mobile base (with
4 wheel modules) for various values of radius and offset of the wheel. It is shown
that the wheel offset plays a major role below a certain threshold value. The result
was produced with example values of h = 0.325m (radius of the mobile platform),
m1 = 1kg for each of the wheels, and m2 = 50kg for each of the wheel module.

Our dynamic analysis shows that dynamic isotropic configurations can be achieved
when identical powered caster wheels (identical ΛΛΛ) are distributed in a polar sym-
metric configuration around the centre of the base. Mathematical proof will be
shown in future paper, but we show some numerical results here. Figure 6 shows



Figure 6: The effect of number of identical wheels on the condition number of ΛΛΛ
as a function of steering angle φ for translational motion (therefore all wheels
faces the same direction). The result is shown for mobile base with (a)3 wheel

(b)four wheel (c)five wheel configurations distributed in polar symmetry.

the condition numbers of ΛΛΛ in polar plot as a function of steering angle φ. The
polar angle is the steering angle φ and the radial length is the condition number
of ΛΛΛ. A good design would be one where condition number is close to 1 for all
steering angle. The circle with radius 1 represents the condition number of 1. The
figure shows dependency of the condition number on steering angle, with the 5
wheel configuration showing least dependency. It is also interesting to note that
the four wheel configuration achieves condition number 1 only at ±45o, and ±135o,
although the condition number changes more for different steering angles. This
plot could be used as a tool for designing a mobile base to achieve isotropic effect
with different design parameters.

7 Conclusion

This paper presents the kinematics and dynamics of a mobile platform. It models
each wheel module as a serial manipulator, where all the serial manipulators have a
common operational point, which is attached at the center of the mobile platform.
Dynamic analysis was performed to determine the effect of the design parameters
on the maneuverability of the mobile platform. It was found that an optimal
length of offset for the caster wheel was essential so that motion in all direction
can be produced with equal effort.
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