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Abstract 
 

 In this paper, a neural network controller for 
constrained robot manipulators is presented.  A feed-
forward neural network is used to adaptively compensate 
for the uncertainties in the robot dynamics. Training 
signals are proposed for the feed-forward neural network 
controller. The neural network weights are tuned on-line, 
with no off-line learning phase required. It is shown that 
the controller is able to deal with the uncertainties of the 
robot, which include modelled undertainties (dynamic 
parameter uncertainties, etc.) as well as unmodelled 
uncertainties (frictions, etc). The suggested controller is 
simple in structure and can be implemented easily. The 
controller has the Proportional-Integral (PI) type force 
feedback control structure with a low proportional force 
feedback gain. Detailed experimental results show the 
effectiveness of the proposed controller. 

 
 

1   Introduction 
 

    To apply robot manipulators to a wider class of tasks, it 
is necessary to control not only the position of a 
manipulator but also the force exerted by its end-effector 
on an object or environment. 
    Force control of manipulators has been studied by 
many researchers [1]-[3]. Constrained motion control has 
been extensively studied in recent years. In constrained 
motion control, the robot’s end-effector is assumed to be 
in contact with rigid frictionless surfaces [5]. As a result, 
kinematic constraints are imposed on the manipulator 
motion, which correspond to some algebraic constraints 
among the manipulator state variables. It is necessary to 
control both the motion of the robot’s end effector on the 
constraint surfaces and the generalized constrained forces. 
    A general theoretical framework of constrained motion 
control is rigorously developed in [5]. The proposed 
controller is based on a modification of the computed 
torque method. In [4], linear descriptor system theory is 
applied to design control laws for constrained motion 
control. The controller is derived based on a linearized 
dynamic model of the manipulator. In [6], state feedback 
control and dynamic state feedback control are used to 

linearize the robot dynamics with respect to motion and 
contact force subsystems respectively. 
    The above methods of controller design are based on 
the knowledge of the exact dynamic model of constrained 
robot systems. From a practical point of view, in many 
applications, robot models have many uncertainties in the 
values of the parameters describing its dynamic 
properties, such as unknown moments of inertia. In 
addition, there is also the problem of unmodelled 
dynamics (e.g., friction). It is hard to estimate the exact 
form of the model and the values of the dynamic 
parameters, thus complicating the control design problem 
significantly. This has motivated the use of adaptive 
control, sliding mode control, robust control, etc for 
controller design for constrained robots. 
    The ability of the neural network (NN) to approximate 
arbitrary non-linear functions and to learn through 
examples lends it to many useful applications in control 
engineering. Many researchers have applied the NN in 
robot motion control with substantial success [8-10]. Few 
research works have also dealt with NN controller design 
in robot force control [11,12,13].  
    In this paper, we consider the design of NN controllers 
for force control in constrained robots. A nonlinear 
transformation similar to [7] is used to decouple the robot 
dynamics into two subsystems – motion subsystem and 
force subsystem respectively. A NN control law is 
proposed based on the decoupled dynamic equations, and 
a suitable online update law for the NN is derived. 
Experimental results illustrate the effectiveness of the 
proposed controller. 
     

 
 

2   Dynamic Model of Constrained Robot 
Manipulators 
 
    The dynamic model of a robot in constrained motion is 
described by a set of nonlinear differential and algebraic 
equations [5] 

       ufqqgqqqCqqM f +=+++ )()(),()( &&&&& τ              (1) 
0)( =Φ q     (2) 

             λ)(qJf T=                    (3) 
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where nRq ∈ is the vector of joint positions, nRu ∈ is the 
vector of generalized torque inputs, nnRqM ×∈)( is the 
inertia matrix, nRqqqC ∈&&),(  is the vector characterizing 
Coriolis and centrifugal forces, nRqg ∈)( is the 
gravitational force vector, and n

f R∈τ  is the friction force 
vector. Equation (2) represents a set of m  independent 
kinematic equations that describe the constrained 
surfaces. These functions are assumed to be twice 
continuously  differentiable  with a  Jacobian  denoted  by  

q
qJ

∂
Φ∂

=)( . 

     The constraint force vector nRf ∈ , is expressed in 
terms of a generalized multiplier mR∈λ  by (3).  
    The actual position of the robot end effector along the 
free motion 1z (in task space) can be described as  

          )(11 qhz =                    (4) 
while satisfying (2) (i.e., the robot maintains contact on 
the constrained surface). The actual contact forces 2z  is 
described as 

                         λ=2z .                                     (5) 
    The manipulator is required to track a time-varying 
position trajectory )(1 tr  and a time-varying force 
trajectory )(2 tr . The control objective is to find a feedback 
control law so that the constrained manipulator’s actual 
position and force track the desired position and force 
trajectory )(1 tr and )(2 tr respectively, i.e. 

0)())(()()( 1111 →−=− trtqhtrtz ,  as ∞→t  
0)()()()( 222 →−=− trttrtz λ .      as ∞→t . 

    Here we present the fundamental task space control law 
[7], in which a nonlinear state transformation is used 
firstly to decompose the constrained system (1)-(2) into 
two subsystems, one describing the motion control 
subsystem, and the other describing the force control 
subsystem. Secondly, a nonlinear state feedback is 
determined to exactly linearize these subsystems. Then, 
linear system control theory is applied to control the 
resulting linear systems. 
    The nonlinear coordinate transformation is selected as 
[7] 
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where 
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    From its inverse, we obtain  
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where  
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Furthermore 
     aa xqQxqQq &&&&&& )()( +=                  (9) 

    Substituting (3), (7), (9) into (1), and multiplying both 
sides by )(qQT , the dynamic equation (1) can be 
expressed in terms of the new coordinates as 

λτ )()()()(),()( qJqQuqQqgxqqCxqM TTT
faa +=+++ &&&&  

(10) 
where  

 )()()()( qQqMqQqM T=                (11) 
      )(),()()()()(),( qQqqCqQqQqMqQqqC TT &&& +=      (12) 
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If we now define the following partitioning matrix  
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then, using the fact that ,0~0)( 1 =⇒=Φ xq 0~~
11 == xx &&& , 

we have 
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Thus the dynamic equation (10) can be expressed as two 
subsystems: 

    λτ +=+++ uQEEgExECExEME T
f

TT
111121121

&&&          (17) 

   uQEEgExECExEME T
f

TT
222122122 =+++ τ&&& .            (18) 

In obtaining (17) and (18) we have used the fact 
that λλ =)()(1 qJqQE TT , 0)()(2 =qJqQE TT . 
    Consider the fundamental constrained robot control law 
[7] 

12111112
ˆ))()((ˆ xECQrxKrxKrEMQu TT

pv
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where )(ˆ qM , ),(ˆ qqC &  and )(ˆ qg  are the estimates of )(qM , 
),( qqC &  and )(qg  respectively, )(ˆ qM , ),(ˆ qqC & and )(ˆ qg are 

estimates of )(qM , ),( qqC &  and )(qg  respectively, vK , 
pK  are diagonal  positive definite matrices of dimension 

(n-m), fK  is a diagonal  positive definite matrix of 
dimension m. 
    Let 111 )()( xtrte −=  and )()( 22 trte −= λ . 
    Substituting the control law (19) into (17), (18), we 
obtain  

12211122 ()(ˆ xMQEQEeKeKeQEMQE TT
pv

TT &&&&& ∆=++  

        )1212 f
TT gxCQExEQM τ+∆+∆+∆+ &&&           (20) 

TTTT
f QEqqCxEQMxQEqMQEeKI 2121212 ),()(()( &&&&& ∆+∆+∆=+    

   )()(ˆ) 11121 eKeKeQEqMQEtg pv
TT

f ++−+∆+ &&&      (21) 

where )(ˆ)( qMqMM −=∆ , ),(ˆ),( qqCqqCC && −=∆ , and 
)(ˆ)( qgqgg −=∆ .  

If we define 
121212 ),()( xQEqqCxEQMxQEqM TTT &&&&&& ∆+∆+∆=Ψ  
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                   fg τ+∆+                                                     (22) 
then we can rewrite (20) and (21) as 

     Ψ=++ − TTT
pv QEQEqMQEeKeKe 2

1
22111 ))(ˆ(&&&           (23) 

          =+ 2)( eKI f  
   Ψ−Ψ − TTTTTT QEQEqMQEQEqMQEQE 2

1
22211 ))(ˆ()(ˆ   (24) 

    In the ideal case where 0=∆=∆=∆ gCM , and 0=fτ  
then 0=Ψ , so equation (23) becomes  

   0111 =++ eKeKe pv &&& ,               (25) 
and equation (24) becomes  

   0)( 2 =+ eKI λ  .               (26) 
    Thus in the ideal case, the control law (19) applied to a 
constrained robot results in the closed loop system 
described by (25), (26). From (25) and (26) we find that 
with the control law (19), the position error approaches 
zero exponentially, and the force error is identically equal 
to zero, so the robot satisfies the required objectives. 
    Since there are always uncertainties in the robot 
dynamic model, the ideal dynamic model assumption is 
not valid in general, that is 0≠Ψ . Thus with the control 
law (19), the position and force error will not go zero, but 
are governed by (23) and (24) whose performance is 
degraded and unpredictable. Thus the fundamental 
constrained robot force and position control law (19) is 
not robust in practice. To improve the robustness of the 
control law (19), a neural network controller can be added 
to (19) to compensate for effects of model uncertainities 
in (20) and (21).  

 
 

3   Proposed NN Controller Scheme 
 

    Here a neural network (NN) controller is proposed for 
the constrained robot system using two-layer feed-
forward neural network. Let the NN output be denoted 
as v . A new control law is defined as 

gxQECxEQMrxKrxKrQEMu TT
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1212111112 +++−−−−= &&&&&&&  

    τλλ drKJvrKJrJ
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where M̂ , Ĉ  and ĝ are estimates of )(qM , ),( qqC &  and 
)(qg , vK , pK  are diagonal positive definite matrices of 

dimension (n-m), fK , IK  are diagonal  matrices of 
dimension m. 
    Substituting the controller (27) into (17) and (18) yields 
the corresponding closed loop error system as 
        =++ 111 eKeKe pv &&&  
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1
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        =++ ∫ τλ deKeKI
t
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Define an error signal ζ  as 

111 eKeKe pv ++= &&&ζ .                    (30) 

    The NN control objective is to generate v to reduce ζ in 
(30) to zero. Therefore here we useν  as the training 
signal for the NN. The ideal value of v  at 0=ζ  is 

     f
TTT gxCQExEQMxMQEv τ+∆+∆+∆+∆=Ψ= 121212
&&&&& .  (31) 

Clearly minimizing the error signal ζ allows us to achieve 
the required force and motion tracking control objectives. 
 
 
4   Neural Network Compensator Design 
 
    The two-layer feedforward neural network (with 

)(3 mn −  inputs and n outputs) shown in Fig. 1 is used as 
the compensator. It is composed of an input buffer, a non-
linear hidden layer, and a linear output layer.  

 
 
 
 
 
 
 
 
 
 
 

    The inputs TTTT txtxtxX ])2()1()([ 111 −−= are 
multiplied by weights 1

jiw  and summed at each hidden 
node, then the nodes are activated through a nonlinear  
(sigmoid) function )(•f  that is bounded in magnitude 
between 0 and 1; i.e. 

                  
))(exp(1

1)(
•−+

=•f .                              (32) 

    The activated signals are multiplied by weights 2
kjw  and 

summed at each output node. Thus, the output kv at a 
linear output node can be calculated from inputs as  
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where )(3 mnnI −= is the number of inputs, Hn is the 
number of hidden units, ix is the i th input of vector X , 

1
jiw  is the first layer weight between i th input and  j th 

hidden neurons, 2
kjw  is the second layer weight between 

j th hidden neuron and k th output neuron, 1
jb is a bias 

weight for j th hidden neuron, and 2
kb  is a bias weight for  

k th output neuron. 
    The weight updating law minimizes the objective 
function J , which is a quadratic function of the training 
signals ζ , i.e. 
                               ζζ TJ 2

1=                                        (34) 
    Differentiating (34) yields the gradient of J as follows: 
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Fig. 1. NN Controller Structure 
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and ζ  is obtained from (28) and (30) as 
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    The back-propagation update rule for the weights with 
a momentum term is now chosen as 
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where η  is the update rate and α  is the momentum 
coefficient. In order to evaluate (38), note specifically that 
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where js  is the output of j th hidden neuron. Thus, by 
substituting (39)-(45) into (38), we can update the weights 
of the neural network compensator. 
 
 
5   Experimental Results 
 
    Real-time implementation of the NN controller has 
been carried out using the five-bar linkage parallelogram 
robot with two degrees of freedom (DOF) as shown in 
Fig. 2. The robot was designed and built at our laboratory 
for our experimental work. Experiments have been 
performed on this robot to evaluate the effectiveness of 
the proposed neural network controller.  
    The robot dynamic coefficient matrices (1) and its 
forward kinematics are given by 
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    The robot is in contact with a rigid surface as shown in 
Fig. 2. It satisfies the constraint equation     

055.0)( =−=Φ xx when expressed in task space. The 
constraint can also be expressed in joint variables as 
Φ(q)= 055.0)cos(61.0)cos(4.0 21 =−− qq . It then follows that 

)]sin(61.0)sin(4.0[)( 21 qqqJ −= .  
 
 
 
 
 
 
 
 

 
 
 

 
 
    The nonlinear transformation given by (5) is selected as 

               







−

−−
=








=

21

21

1

1

sin61.0sin4.0
55.0cos61.0cos4.0~

qq
qq

x
x

xa .        (50) 

    The position output given by (4) is 
                2111 sin61.0sin4.0)()( qqqhxty −=== .           (51) 
    The velocity and acceleration of the joint motion are 
approximated using the backward difference method and 
a low-pass filter. 
    The algorithm for an estimate of the motion velocity is 
given by 

        
st

txtxx )1()( 11
1

−−
=∗&     ; ∗+−= 111 2.0)1(8.0 xtxx &&&       (52) 

and the algorithm for an estimate of the motion 
acceleration is given by 
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where st denotes a sampling time interval of 2ms for the 
measurement. 
    A force filter is also used to filter the noise in the force 
measurements and is given by 
                            )1()1()( −−+= kfKfKkf ss              (54) 
where f is the measured force from the force sensor.  
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Fig. 2. Configuration of the robot 



 

 

    The NN controller consists of three input neurons, six 
hidden neurons and two output neurons. All the weights 
and biases are set to zero initially, the momentum 
coefficient 9.0=α  and the learning rate is chosen as 

01.0=η . The weights are updated at each sampling time 
on-line. The controller gains in (27) are selected 
as 200=pK , 5=vK , 4=fK  and 10=iK . Sampling time 
is 2ms. The performances of the proposed scheme are 
tested by tracking desired motion and force trajectories 
under different conditions. 

 
Case 1: 
    To include model uncertainties, we just choose the 
nominal dynamic model parameters of the robot as 
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    The robot is required to move along the constraint 
surface tracking a time varying position with trajectory 

)1.0sin(1.035.0)(1 ttr π−= , while simultaneously exerting 
a constant force of N10  on the constraint surface. The 
experiment results are shown in Figs. 3-5. The time 
responses of the position tracking error )(1 te with and 
without NN are shown in Fig.3. Fig. 4 shows the force 
tracking error )(2 te of the robot with and without NN. In 
Fig. 5 we also plot the output of neural network )(tv .  
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Fig. 4.  Plots of force error 
(With NN: solid-line, Without NN: dotted-line) 
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Fig. 5. Outputs of the neural network 
( 1v (t): solid-line, 2v (t): dotted-line) 

 
Case 2:  
 
    Here we just choose the nominal dynamic model 
parameters of the robot as 
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    The control parameters and the desired trajectory are 
the same as in case 1. 
    The experimental results are shown in Figs. 6-8. The 
time responses of tracking error )(1 te with and without 
NN are shown in Fig. 6. In Fig. 7 the force error )(2 te of 
the robot with and without NN is plotted. In Fig. 8 the 
output )(tv of neural network is plotted.  
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(With NN: solid-line, Without NN: dotted-line) 
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Fig. 7.  Plots of force error 
(With NN: solid-line, Without NN: dotted-line) 
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Fig. 8. Outputs of the neural network 
( 1v (t): solid-line, 2v (t): dotted-line) 

    From the experimental results above, we find that in 
presence of the model uncertainties, the suggested NN 
controller can efficiently compensate for the parameter 
uncertainties and the unmodelled uncertainties (frictions, 
etc). The NN controller has good tracking capability, 
especially in position tracking. 
  
 
6   Conclusions 
 
    A simple and effective neural network controller, 
which uses the two-layer feed-forward neural network, is 
proposed for the constrained robot in the task space. 
Experiments have been carried out on a 2DOF direct-
drive robot manipulator to evaluate the performance of 
the proposed controller. The experimental results show 
that the proposed neural network controller is able to 
effectively compensate for the uncertainties in the 
parameter values of the robot dynamics as well as for 
unmodelled dynamics.  
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