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Abstract 
   This paper presents an operational space 
observer-controller for non-redundant robot manipulators 
to achieve trajectory tracking. The controller uses an 
observed integrator backstepping procedure for 
operational space trajectory tracking control without 
actual velocity measurements, and the overall 
observer-controller system achieves a semi-global 
exponential stability (SGES) result for the position and 
orientation tracking errors, velocity tracking errors as well 
as velocity observation errors. Simulations results 
indicate that, compared with the conventional 
computed-torque PD control using backwards difference 
approach to estimate velocities, the proposed controller 
has better position tracking performance under parametric 
uncertainty and payload variations.  
 

1. Introduction 
   Adaptive control of robot manipulators based on joint 
position and velocity measurements has been dealt with in 
great detail in the literature. In practice, many robotic 
systems are equipped with only link position 
measurement devices. Sensors to measure joint velocity 
are expensive and often contaminated by noise. Thus, a 
common practice is to approximate the velocity using 
backwards difference algorithm based on the joint 
position information. However, this approach cannot 
guarantee the closed-loop stability of the overall system. 
Moreover, it ignores the dynamic effect because of the 
position linearization across each sampling interval.    
   To overcome this drawback, some researchers have 
proposed robot controllers that did not rely on link 
velocity measurements [1], [2], [3] and  [4], all these 
controllers were designed in joint space. 
   However, in many robotic applications, tasks are 

defined in operational space [5]. Thus, it is more 
convenient to design a controller in the same space. But, it 
seems that little work has been done with regards to the 
development of observer-controllers in operational space. 
Recently, a method for task space position tracking via 
quaternion feedback was presented in [6]. An 
observer-controller design for task space tracking control 
using unit quaternion was proposed in [7].  
   Based on the joint space observer-controller proposed in 
[4], we developed an observer-controller for operational 
space trajectory tracking. Simulation results verify the 
good tracking performance of the proposed controller.  

2. Robot Dynamic Model 
   The joint space general form of the dynamic equation of 
a serial link robot can be written as: 
 

Γ=++ )(),()( qGqqqVqqM rm &&&&  (1)
 

where Γ  is the 1×n  vector of joint torques, q  is the 1×n  

vector of joint positions, )(qM  is the nn×  inertial matrix, 

),( qqVm &  is the nn×  vector of centrifugal and Coriolis 

matrix, and )(qGr  is the 1×n  vector of gravitational 

torque. 
      In operational space, the end-effector equation of 
motion can be expressed as: 
 

FxGxxxBxxA =++ )(),()( &&&&  (2)
 
where F  is the 1×n  operational force vector, x  is the 

1×n  vector describing the position and orientation of the 

end-effector, )(xA  is the nn×  kinetic energy matrix, 
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),( xxB &  is the nn×  centrifugal and Coriolis matrix, and 

)(xG  is the 1×n  vector of gravitational force. 

   In the nonsingular region of a robot, the relationship 
between the above two equations can be expressed by: 
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where J  is the basic Jacobian of the robot. 

3. Properties of the Robot Dynamic Model 
   The following three properties of the robot dynamic 
model will be used for the proposed observer-controller 
stability analysis. 

Property I : The nn×  kinetic energy matrix )(xA  defined 

in (2) satisfies the following inequality [9]: 
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where 1m and 2m are known positive scalar constants, 

and 
2

.
i

represents the matrix induced two norm. 

Property II :  ),( qqVm &  in (1) satisfies [3]: 

n
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Property III : ),( xxB &  in (2) satisfies: 
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where 
cζ  is a known positive scalar constant and 

∞i
.  

represents the matrix induced infinity norm [10]. 

4. Observer-Controller Formulation 
   Our objective is to develop an end-effector position and 
orientation tracking controller for the robot described by 
(2) with position and orientation information only.  
   Define the 1×n  end-effector position and orientation 
tracking error as: 
 

xxe d −=  (8)
 

where 
dx  represents the desired end-effector position and 

orientation trajectory. We assume that 
dx  and its first and 

second derivatives are all bounded function of time. For 
the desired velocity, we place the following bound: 
 

ddx ζ≤&  (9)

 

where 
dζ  is a known positive scalar constant. 

4.1. Velocity Observer Formulation 
   To estimate the end-effector velocity, we use the 
following second order velocity observer [3]: 
 

xkyx ~ˆ +=&  (10)
)](ˆ)ˆ,()[(1 xGxxxBFxAy −−= − &&&  (11)

where 
xxx ˆ~ −=  (12)

 

y  is an 1×n  auxiliary variable, and k  is a positive scalar 

constant defined by: 
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where F  is the force generated by the controller indicated 

in (15) and will be explained in Section 4.2. ,0k  
sk  and 

nk  being positive scalar control gains,  
cζ , and 

dζ  are 

declared in (7) and (9) respectively. To facilitate the 
development, differentiate (12) with respect to time to 
form the following velocity observation error: 
 



xxx &&& ˆ~ −=  (14)
 
4.2. Controller Formulation 
   Based on the structure of the above observer, we use the 
following controller to generate the required force: 
 

epnds wkkF ++= η)(  (15)
 

where 
ndk  is a positive controller gain defined as: 

 
nscnnd kkmmkkkk 2

220 )(2 +++= ζ  (16)
 

and the 1×n  auxiliary terms,
pη  and 

ew  are defined as: 

xekx sdp
&& ˆ−+=η  (17)

)())(ˆ,()]ˆ()[( xGekxxxBxxkxxAw sddsde +++−+= &&&&&&  (18)

 
   The commanded force F  will be used by velocity 
observer indicated by (10) and (11). The torque used for 
driving an actual robot or simulation can be obtained by: 
 

FJ T=Γ  

5. Stability Analysis 
   For the observer and controller presented in the 
previous section, if the exact model of a robot is known, 
then the position tracking error defined in (8) is SGES 
according to the following theorem. 
Theorem I: Provided the observer-controller gains satisfy 
the following sufficient conditions: 
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the closed-loop observation tracking error system is 
SGES as illustrated by: 
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The following procedure is used to prove this theorem. 
 
5.1. Observer Stability Analysis 
   First, take the time derivative of (10) and then substitute 
(11) into the resulting expression to yield: 
 

FxxkAxGxxxBxxA =−++ &&&&& ~)()(ˆ)ˆ,(ˆ)(  (23)
 
Subtract (23) from (2), use property (6) and (14) to yield 
the following closed-loop observer error system: 
 

0~)(~)ˆ,(~),(~)( =+++ xxkAxxxBxxxBxxA &&&&&&&  (24)
 
Define the following sub-Lyapunov function: 
 

xxAxV T && ~)(~
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Differentiate 
0V  along (24) and use property (5) to yield: 

 
xxkAxxBxV T &&&& ~)]()ˆ,([~
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Use (4) and (7) to get the upper bound of 
0V& : 
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Substitute for x&̂  from (17) into (27), and (9) was used to 

get the new upper bound for 
0V& : 
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5.2. Position Tracking Stability Analysis 
   The position tracking error system can be formed by 
differentiating (8) with respect to time to yield: 
 

xxe d &&& −=  (29)
 
Since x&  is not measurable, the estimated term x&̂  was used 
to eliminate x&  and get the following equation: 
 

xxxe d
&&&& ~ˆ −−=  (30)



Add and subtract a fictitious controller [8] to the 
right-hand side of (30) to yield: 
 

xxekxekxxe sdsdd
&&&&&& ~ˆ][][ −−+++−=  (31)

 
Simplify (31) using (17) to get: 
 

xeke ps
&& ~−+−= η  (32)

 
Select the following sub-Lyapunov function: 
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The upper bound for the time derivative of 
1cV  along (32) 

is given by: 
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5.3. Controller Stability Analysis 
   The tracking error system for 

pη  can be formed by 

differentiating (17) with respect to time, multiplying both 

sides of the resulting expression by )(xA , and substituting 

the right-hand side of (23) for x&&̂  to yield: 
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Substitute the force input given by (15) into (35) , use the 

definitions of 
ew  and 

pη  to get: 

pspndsp xxBxxAkkkkxA ηηη )ˆ,(~)()()()( &&& −+−+−=  (36)

 

Rewrite the term 
pxxB η)ˆ,( &  on the right-hand side of (36) 

in terms of x&~ , and use (6) and (14) to yield: 
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Select the following sub-Lyapunov function: 
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Differentiate 
2cV  along (37), and use property (5) to get: 
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From (39), use (4) and (7), we can obtain: 
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5.4. Overall System Stability Analysis 
   To prove the stability result of Theorem I as stated at 
Section 5, we utilize the following composite Lyapunov 
function: 

210 cc VVVV ++=  (41)

Using the definition of 21,λλ  and err  in (21) and (22), we 

place the following bounds on V : 
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Using the upper bound of 
10 , cVV &&  and 

2cV& , the upper bound 

on V&  can be formed by utilizing (13), (16), and (22): 
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By using the nonlinear damping tool in [8] on the terms in 
the second and third lines on the right-hand side of (43), a 
new upper bound for V&  is formed: 
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From (44), we can get: 
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where 
3λ  and err  were defined in (21) and (22). 

Finally, from (42), we can obtain: 
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Standard Lyapunov arguments [11] can now be applied to 
(42) and (46) to yield the result indicated by (19) and (20). 

6. Simulation Results 
   The simulation was performed using the dynamic model 
of a three-link revolute planar robot, with each link 
assumed to be a rod of uniform mass.  
   In all the simulations presented in this paper, (1), (2), 
and (3) are used as the dynamic model of the robot. For 
the model of the robot, the following parameters are used: 

mlllkgwww 0.1,0.1 321321 ======  

   For the actual robot’s dynamics, different values of links 
masses are used. 
   Our task is to move the end-effector in the XY plan with 
the following desired trajectory and at the same time, 
control the orientation of the end-effector so that it always 
points to X direction.  
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6.1. Results with Exact Model Knowledge 
   Assume that the robot start to move from standstill. 
Since the end-effector position and orientation are 
measurable, we can let the estimated position and 
orientation values equal to the actual measurements, and 
set the estimated end-effector velocity to zero so that the 
initial position, orientation and velocity estimation errors 
are all zeros. 
   The following observer-controller gains are selected for 
simulation: 
 

150,200,400 === snd kkk  (48)
 
   From simulation results, we can get the maximum 

position and orientation tracking errors, and the maximum 
velocity tracking errors as shown in Table 1.     
   For comparison, under the same torque level, the 
simulation results of computed-torque PD control using 
backwards difference are also shown in Table 1.   
 

Table 1 Max. tracking errors 
 xxd −  

(mm) 
yyd −  

(mm) 
θθ −d

 
(◦) 

Observer 1.43e-5 1.54e-4 1.20e-5 
PD control 0.97 1.09 0.27 

 
 xxd && −  

(mm/s) 
yyd && −  

(mm/s) 
θθ && −d

 
(◦/s) 

Observer 0.065 0.70 0.053 
PD control 12.70 17.95 3.18 

 
   From the results, it is clear that, with a perfect robot 
model and zero initial estimation errors, the proposed 
observer-controller can achieve a much more accurate 
trajectory tracking compared with that of PD controller 
using backwards difference.  
 
6.2. Results with Parametric Uncertainty 
   In order to simulate parametric uncertainty, use the 
following parameters for the actual robot model. 
 

mlllkgwkgwkgw 0.1,2.1,8.0,0.1 321321 ======  (49)
  
Using the same observer-controller and PD controller as 

indicated in Section 6.1, the simulation results are shown 
in Fig. 1 and Table 2, respectively. 
 

 
Fig. 1 Position tracking errors using observer-controller 



Table 2 Max. tracking errors 
 xxd −  

(mm) 
yyd −  

(mm) 
θθ −d

 
(◦) 

Observer 0.15 0.17 0.019 
PD control 0.86 13.69 1.12 

 
 xxd && −  

(mm/s) 
yyd && −  

(mm/s) 
θθ && −d

 
(◦/s) 

Observer 1.43 7.69 0.56 
PD control 9.26 62.38 6.68 

 
   Table 2 shows that, in Y direction, the maximum 
position tracking error using observer-controller is about 
80 times smaller than that of using PD controller. 
 
6.3. Results with Payload Variations 
   To examine the robustness of the proposed controller 
under payload variations, a payload of 1kg was used for 
simulation.  
   Still use the same controllers as indicated in Section 6.1, 
the maximum tracking errors are shown in Table 3. 
 

Table 3 Max. tracking errors 
 xxd −  

(mm) 
yyd −  

(mm) 
θθ −d

 
(◦) 

Observer 0.25 1.02 0.029 
PD control 9.17 53.16 2.92 

 
 xxd && −  

(mm/s) 
yyd && −  

(mm/s) 
θθ && −d

 
(◦/s) 

Observer 1.95 31.22 0.87 
PD control 35.67 218.89 10.18 

 
   Table 3 shows that, in Y direction, the maximum 
position tracking error using observer-controller is about 
52 times smaller than that of using PD controller.  
   The results indicate that computed-torque PD control 
scheme has limitation in compensation of parametric 
uncertainty and payload variations. This is because of the 
linear behavior of the computed-torque control and 
backwards difference. While the observer-controller tries 
to mimic the dynamic behavior of a robot, the position 
and orientation tracking performance can be better.  

7. Conclusions 
   In this paper, we proposed an operational space 
observer-controller, simulation results verify that, under 

parametric uncertainty and payload variations, the 
observer-controller has better tracking performance than 
computed-torque PD control using backwards difference.  
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