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Abstract

It is known that the performance of a robot can be
improved with the incorporation of robot dynamics into
its controller. However, derivation and implementation
of a complete robot dynamic model is not widely used
in practice mainly because of the difficulty in modelling
dynamic behavior and the lack of information about the
parameters that describe such behavior, especially link
inertias. Furthermore, most industrial robots do not al-
low modification of their control algorithms, with only a
few allowing the Proportional and Deriwvative (PD) gains
of their controllers to be altered, that further hampers
robot full dynamics control implementation. In this pa-
per, we present a method to identify the lumped inertial
parameters together with an estimate of viscous friction,
and the derivation and implementation of a full dynamic
model of an industrial robot. We provide details of the
method, discuss implementation issues and show experi-

mental results on a 7-DOF Mitsubishi PA-10 robot.
I. INTRODUCTION

Implementing full dynamic control on a robot still
remains a challenge to robot scientists and researchers
today. The complexity and more importantly, the lack
of knowledge about the dynamic parameters of the ro-
bot, lead robots to be controlled mostly by PD ( “pro-
portional, derivative”) or PID (“proportional, integral,
derivative”) control, where the control is done indepen-
dently for each joint. Although it is known that incorpo-
rating the physical information of the robot to its control
algorithm improves the performance of the robot, so far,
the most convenient component of the physical model of
the robot that can be easily derived and included in its
control are the gravitational parameters. The robot con-
troller relies mostly on its large gains to compensate for
the coupling between robot links and achieve the robot’s
desired response. Almost all industrial robots today are
position controlled and hence PD or PID method has
been extensively used. The need to fully implement dy-
namic control on a robot arises when the inclusion of
the robot’s dynamic properties would give a significant
improvement in its performance capabilities. Examples
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include force and compliant motion control when the
robot is interacting with the environment, mobile ma-
nipulations, and when the robot is required to move at
high velocities.

In this paper, we present a method to experi-
mentally identify the lumped inertia parameters of an
industrial robot and estimate of the robot joint’s vis-
cous friction. We provide details of the method, discuss
implementation issues and show experimental results on
a 7-DOF Mitsubishi PA-10 robot.

Full dynamic control for the PUMA 560 at our
control laboratory has been done due to the availability
of the PUMA dynamic parameters as stated by Khatib
in [1], with good results. No other robot has been
extensively studied dynamically than the PUMA. But
when it comes to the PA-10 Mitsubishi Robot, the non-
availability of the inertial parameters was a challenge.
The specification of the Mitsubishi robot only provides
the mass and center of gravity. By implementing Khati-
b’s method of experimentally identifying the lumped in-
ertia parameters of each link and the viscous friction of
each joint, significant improvement on the PA-10 robot
performance is observed.

II. THE DOMINANT INERTIA IDENTIFICATION

The full dynamic model of a robot is given by:
T=A0+H(,0) +G(0) (1)

where T is the vector of joint torque, @ is the vector of
joint angles, A is the inertia matrix, H is the Coriolis
and centrifugal vector, and G is the gravity vector. 6,
é, and 0 are the joint position, velocity and acceleration
vectors, respectively.

Next, we define the dominant inertia of the robot
link as the total inertia measured at the joint in question.
For this purpose, all the other joints are locked, treat-
ing the lumped links as a single link and consequently,
without coupling effects.

The dynamic model of the lumped link is

10+ k, 0+ g(6) = u, (2)

where I is the link dominant inertia, &, is the viscous
friction coefficient (damping), g(f) is the gravity term
and u is the actuation input.

The PD control on the joint in question is given
in [2] as

w=—ky(0 —0a) — ky(0 — 6a) +9(6).  (3)



The subscript d indicates the desired joint value, k, and
k, are derivative and proportional gains in appropriate
units, respectively, and G(6) is the gravitational com-
pensation estimate. Assuming §(0) ~ ¢(f), the closed
loop system becomes:

10 + Ky 0 = —kp(0 — 0g) — ky(0 — g).  (4)

By setting the desired angular displacement and
angular velocity to zero and dividing by the inertia con-
stant I to both sides of equation (4), the resulting equa-
tion would be,

(k'Un, + kv) h

N k,
4 et 29 0, (5)

which is a typical second order system [3] given by

(82 + 2lwps + w2)b(s) =0, (6)
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Each of the robot link’s dominant inertia can be
measured directly from the robot response. The easiest
way to do this is by cancelling the effect of the viscous
friction of the robot joint, resulting in the robot achiev-
ing undamped oscillation, and measuring the dominant
link inertia from there.

To achieve undamped oscillation we need to set
equation (6) with ¢ = 0. Thus the equation becomes,

(s* +wh)f(s) =0, (9)
which means,
ko, + ko
-4%1—:0 or  ky, +k, =0 (10)

Note that this can only be achieved if we use a negative
k, value, and the friction coefficient is then

ko, = —ky. (11)

From here, we can measure the period of the natural
oscillation of the robot and the undamped natural fre-
quency of the robot, w,. The dominant inertia is then
solved from equation (8).

The experimental procedure to determine the
dominant inertia of each link is as follows:

1. Lock all joints of the robot except for the joint
where the dominant inertia is to be measured.

2. To decide on the value of k, to achieve pure oscil-
lation, it is best to start with k, = k, = 0 for the
link to be measured, i.e., apply a torque equal to

the gravity term only.

3. Physically moving the released link by hand, the
link should be able to move freely with some damp-
ing. The gravity terms are computed automatically
as the robot moves, thus the effects of gravity are
cancelled when the control law is applied. The ro-
bot should behave like it’s floating in gravity-free
environment. The resisting force felt is mainly due
to the friction in the motors and transmission mech-
anism. The higher the gearing ratio, the higher the
resisting force.

4. By slowly decreasing the value of k, (making the
value more negative), applying the torque and per-
turbing the robot again, one should be able to feel
less and less damping at the joint. For safety, care
should be taken to start at very small values of k,
and slowly taking decrements at very small values
so as not to make the robot unstable.

5. Decreasing further the value of k, until the point
where there is virtually no more resistance (damp-
ing) on the joint as the link is perturbed. This is
the point where k, cancels the effect of the kinetic
friction coefficient, k,, , that is, k, = —ky,,. Since

kp = 0, the robot behaves like a unit mass system

without damping. Here the robot link moves with

a push of the hand and continues to move without

stopping. The force exerted by the hand to move

the robot link represents the static friction of the

joint.
6. The proportional gain kj, can now be increased to a

value large enough to easily measure the continuous
but constant oscillations of the link.

7. Recording the angular displacement of the link and
taking the period of oscillation T, the dominant
inertia of the link can be computed as,

ke, T
42’

I= (12)
where, I is the dominant inertia of the link mea-

sured from the experiment.

8. Repeating the same process for each of the link,
locking all the other joints and releasing only the
joint to be measured, the dominant inertia for each
link can be found. The k,, value experimentally
determined from the —k, value to achieve natural
oscillation is the experimentally derived value of
ky,, to be used in the actual control of the robot.

The dominant inertia identification for each joint
of the robot would lead to the identification of all the
unknown lumped inertias of the whole robot structure.
It is noted, however, that the dominant inertia is config-
uration dependent. And the identified value is valid only
at the configuration where the identification experiments
are done.



III. THE ROBOT MODEL AND THE LUMPED
INERTIAS

By taking the robot to different configurations, the
relationship between the dominant inertia and the robot
configuration can be established. This relationship is
explicitly expressed in the simplified symbolic form of
the robot model.

The simplified symbolic form of the full dynamic
model for the PUMA was first published in [1]. The sim-
plified full dynamic model was a revolutionary expres-
sion of a robot model that not only makes the calculation
cycle time faster but also spells out the relationship be-
tween the dynamic terms. A similar procedure was done
on the PA-10 model.

The simplified symbolic form of the dynamic
model of the PA-10 was obtained using the Lagrange-
Euler equations as discussed in [4]. Symbolic simplifica-
tion of the robot model was derived using Mathematica.
Its correctness was verified with a Robotics Matlab Tool-
box developed by Peter Corke [6].

The following are the key relationships of the dy-
namic terms crucial to the identification of the inertia
parameters.

1. Inertia parameters can be expressed as lumped in-
ertias [1]. For example,

Im4 + Izz4 + Iyy5 + IzzG - (Iny
—Ioos — M %126 + Lize — Loe)*
sin(05)%;

= Im4+114—120*555;

aq4 =

1. where, a;; is the component of the A matrix, I,,;
is the motor inertia, [z, [yy;, and I,.; are the
inertias of the link measured with reference to the
center of gravity, I14 = I .4 + Iyys + I..6, 120 =
Iyy5 — Lpus — Mg % 7‘36 4+ I..6 — I;zg,and SS5 =
sin(652).

2. All lumped inertial parameter of the off-diagonal
terms of the A matrix and the Coriolis and cen-
trifugal terms can be derived from the diagonal
terms of the A matrix, i.e., a;;. Once we have iden-
tified the inertia parameters in a;;,we have already
derived the full dynamic model. This is supported
by the fact that all dynamic parameters can only
be excited at the joints and that there are no new
dynamic parameters that cannot be excited at the
joint. The dominant inertia of a particular joint

is a function of the robot configuration and of the

subset of the dynamic parameters at that particular
joint. From the different configurations assumed by
the robot, the full set of lumped inertia parameters
of the joint can be found as long as the chosen set
of lumped inertia parameters is the minimal set,
which means the equations generated are indepen-
dent. This is always guaranteed since it is known
that the robot dynamic model is linear in the pa-
rameter space [3].

3. The numerical values of the lumped inertias a;; can
be found from the dominant inertia experiment dis-
cussed above. By letting the robot assume different
configurations a unique value of the dominant iner-
tia can be found. Each of these configurations can
generate the necessary number of equations to solve
for the numerical values of the unknown lumped in-
ertias (e.g., [14 and Iop).

4. The experiment to solve for the unknown lumped
inertias should start from the last link then proceed
to the next and down to the first link because the
lumped inertias of the link in question is a function
of the lumped inertias of the previous links and the
lumped inertias that are to be solved on that link
[5]. Once all the lumped inertias are solved the
whole robot model is already known.

The simplified dynamic model and the values of
the lumped inertia parameters of the PA-10 can be found
at this web site [8].

IV. Tue MiTsuBisal PA-10 RoBoT

The Mitsubishi PA-10 Robot (See Figure 1) is
a seven degree-of-freedom anthropomorphic robot that
It has a
total arm weight of 35 kgf and is capable of carrying a

has alternately rotating and pivoting joints.

payload up to 10 kgf.
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Figure 1 — The Mitsubishi PA-10 Robot

The PA-10 robot uses AC servo motors with
brakes and brushless resolvers. Implementing a con-
troller on the robot is possible through its “open archi-
tecture” control design. The robot itself comes with its
own controller that communicates to the power ampli-
fiers through the RS485 based ARCNET network. The

controller consists of Intel 80386SX-25 MHz and Intel



Intel
Pentium Il
300 MHz

Amplifier
1

Amplifier
2

Amplifier
3
Amplifier
4

|

Intel |
80386SX |
|

|

TmncC
-—mz0Ox>»

32 MHz

VME i
Bus
Intel

|
|
80486DX I
32 MHz i

Bypassed Manufacturer’s
Controller

Figure 2 — The PA-10 Control Architecture

80486DX-32 MHz microprocessor boards. The 386 com-
puter serves as a high-level controller that links the user
to the low level controller, whereas the 486 computer
serves as the low-level controller that is linked directly
to the robot’s amplifiers (Figure 2). The 386 computer
holds the user interface. It can call the libraries of the
486 computer. While the 486 computer takes the input
of the 386 computer and outputs the velocity control
to the amplifier. To implement our own control, the
386 and the 486 computers were bypassed and an Intel
Pentium IT 300 MHz PC was connected directly to the
robot’s amplifiers through the ARCNET. In this setup,
two control modes are possible: velocity control that is
the same as the original controller, and torque control
which is used in the full dynamic implementation. An
ARCNET Card, a PCX20/5-485X, from Contemporary
Control Systems, was installed in the PC. This made
ARCNET communication to the robot amplifiers possi-
ble.

Reading angles and sending torques are done
through an ARCNET protocol which is provided by Mit-
subishi [7]. Currently, ARCNET communication is run-
ning at 5 Mbps. Purely ARCNET communication cycle
of reading and sending torque would take on the aver-
age 1.4 ms. Work is currently underway to reduce this
time to achieve faster servo rates, which is crucial in our
further work in force control.

V. IMPLEMENTATION RESULTS

The lumped inertia identification experiment has
been done and full dynamics control has been imple-
mented on the Mitsubishi PA-10 robot.

A. Identification Experiment

Below are some graphs on the behavior of link 3
during the dominant inertia identification experiment.
Figure 3 shows link 3’s behavior with k, = 0 and k, =
—15, the value of k, we can get for no damping of link
3.

With these gain settings, link 3 was released and all
the other joints were locked. Link 3 is then given an
initial push by hand and from the graph, we can see
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Figure 3 — Link 3 undamped behavior with k, = 0.
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Figure 4 — Link & oscillatory bahavior at k, = 40.

deg

that link 3, together with the other locked links above it,
accelerated for short instant and then moved at constant
speed all throughout its angular span. The graph of joint
3 angle between 29.7 to 31.2 seconds is a straight slanted
line, with a slope equal to its velocity, which is around
175 deg/s. This is when k, already cancelled the effect
of the viscous friction. Thus, by cancelling the damping
effect and giving an initial push that overcomes static
friction, link 3 was able to move without stopping. And
by setting a k, gain that is large enough to serve as the
system spring constant, link 3 would oscillate without
stopping once given an initial push. Setting k, = 40,
the undamped oscillation of link 3 is shown in Figure 4.

Taking the period of oscillation and applying Equa-
tion (12), the dominant link inertia, I, of link 3 was
found. From the simplified symbolic form of the dy-
namic model, the lumped inertia constants can be solved
from the different values of the dominant link inertia at
different robot configurations. The experimental values
of the lumped inertia constants are given in the Table
1.

VI. CONTROL IMPLEMENTATION

Here we will compare our full dynamic control im-
plementation using the experimentally derived lumped



Table 1. Lumped Inertias of Mitsubishi PA-10 Robot

Lumped Inertias | Derived Value(kg-m?)
I1 1.62e-002
12 1.25e-001
13 1.77e-001
14 1.91e-002
15 4.30e-002
16 -2.41e-002
17 1.12e+001
18 1.38e 000
19 6.30e-003

110 -1.74e-003
111 -7.83e-001
112 -7.10e-002
113 4.16e 000
114 6.30e-001
115 -1.74e 000
116 1.01e 000
117 9.82e-002
118 8.95e-002
119 1.70e 000
120 5.65e-001
121 1.55e 000
122 3.72e-001
123 1.30e 000
124 4.96e-001

inertia constants against the original Mitsubishi con-
troller in trajectory tracking applications. The Mit-
subishi controller does not allow the direct specification
of the trajectory. To do trajectory tracking, we there-
fore specify incremental displacements required at each
control cycle (which is 10 ms). These displacements are
then input to the amplifiers which are configured in ve-
locity control mode.

Our full dynamic control implementation configures
the amplifiers in torque control mode. The Pentium II
computer is then used to compute the required torques.
For the velocity feedback, the computed velocities from
a finite difference approximation of the sensed angles are
fed to a Butterworth filter [9] with a cutoff frequency of
30 Hz.

Links 1, 3 and 4 are set to run a sinusoidal joint space
trajectory at the same time at a period of 3 seconds and
at an amplitude of 50 degrees. We would note here that
with the given sinusoidal joint space trajectories, the
manufacturer’s maximum joint speed specifications are
exceeded. Figure 5 shows the comparison of the track-
ing error of joint 4. The maximum tracking error using
the full dynamic control is 0.41 degrees which is a dra-
matic improvement from a maximum tracking error of
20.7 degrees using the original manufacturer’s controller.

Position and orientation errors of the robot are
presented in the Figures 6 and 7. The resulting position
and orientation of the robot are calculated using for-
ward kinematics with the same joint sinusoidal trajec-
tories discussed above. The results are presented here
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Figure 5 — Joint 4 error comparison.
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Figure 6 — End-effector position error wusing full dy-
namic joint control.

for comparison. Figure 6 shows the position error in
cartesian space using the dynamic control in joint space.
Maximum absolute error is 0.23 meters.

Figure 7 shows position error of the robot end-effector
using the original joint controller. Maximum absolute
error is 2.42 meters. The orientation errors of the
robot end-effector are shown in Figures 8 and 9. Figure 8
shows the robot end-effector orientation error using the
dynamic joint control. Maximum absolute orientation
error is 10.1 degrees.

Comparing the orientation error using the dynamic
control against the orientation error using the robot
manufacturer’s controller, the maximum absolute error
with the manufacturer’s controller is 55.9 degrees as
shown in Figure 9.

The results show a very good improvement in terms of
tracking error on the robot response when applying a full
dynamics control using the lumped inertia parameters
found compared to the original manufacturer controller
which ignores the dynamics.

VII. CoNCLUSIONS

Link inertia, which is generally unknown for most
robots, can now be measured in its lumped form by mea-
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95 |
7 ol
pitch
45 yaw
2 |
-0.5 T T
20.43 20.45 20.47
E
55 ] //

time(sec)

20.51

error(deg)

Figure 8 — End-effector orientation error using full
dynamic joint control.

suring directly from the robot’s response. Viscous fric-
tion coefficient (damping) can also be measured exper-
imentally and included in the controller design. What
is specially needed to determine the full dynamic model
of a robot with this method is the simplified symbolic
form of the inertia matrix of the robot. However, this
is the bottleneck this method is facing. To express the
dynamic model of a robot explicitly in its fully simplified
form automatically is difficult to achieve given the lim-
itation of the present software available and because of
the complexity of the dynamic model for higher degrees
of freedom robot. This software limitation should be
seen as another challenge that need to be addressed. Al-
ternatively, a new way at expressing and manipulating
the symbolic forms of a robot model could also over-
come this limitation. But this should not obscure one’s
view that the new method discussed here in determining
lumped inertias of a robot model paves a way towards
full dynamic control of virtually any robot.
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