scope: control; contribution: application

Performance of a
neuro-model-based robot
controller: adaptability and
noise rejection

by A. N. Poo, M. H. Ang Jr., C. L. Teo and Qing Li

Effective control strategies for robotic manipulators usually
require the on-line computation of the robot dynamic model
in real time. However, the complexity of the robot dynamic
model makes this difficult to achieve in practice, and
multiprocessor controller architectures appear attractive for

7

real-time implementation inside the control servo loop.

Furthermore, inevitable modelling errors, changing parameter
values and disturbances can compromise controller stability
and performance. In this paper, the performance of a neuro-

model-based controller architecture is investigated. The
neural network is used to adapt to unmodelled dynamics and
parameter modelling errors. Simulation of the neuro-model-
based control of a one-link robot demonstrates an improved
performance over standard model-based control algorithm, in
the presence of modelling errors and in the presence of
disturbance and noise.

1 Introduction

Robotic manipulators are programmed to interact with
the environment by positioning and orienting an end-
effector in space. The robot motion control problem
centres around the design of a stable and robust algor-
ithm to co-ordinate the joint motions and enable the
robot to follow a specified trajectory in world (Cartesian)
co-ordinates. Since the robot joints define the axes along
(or about) which motion can occur, the controller has to
resolve the motion of the end-effector into joint co-
ordinates [1]. The motion control problem focuses on the
computation of the actuating joint forces/torques that are
required to produce the desired position and orientation
trajectory of the end-effector.

50

"The equations of motion of a manipulator are typically
very complex, highly coupled and highly non-linear.
However, most commercial manipulators are equipped
with controllers that ignore these non-linear robot dy-
namics. These simplified controllers fail to characterise
the complex joint dynamics and coupling, resulting in
oscillations or overshoot of the end-effector. The
continuously increasing demands for productivity and
precision have imposed special requirements on the robot
controller, and caused a shift of emphasis towards more
sophisticated controllers, the design of which includes
consideration of the dynamics of robotic manipulators.
This has led to the development of model-based control
(also referred to as non-linear feedback control) algorithms
[2] to achieve better performance and take into account

INTELLIGENT SYSTEMS ENGINEERING AUTUMN 1992

Fig. 1 Neural network as a feedforward controller

the dynamics of the robot.
There are two barriers to the successful implemen-
tation of model-based control.

® The computation of the complex non-linear dynamic
model of the robot needs to be done in real-time. For
effective control, this should typically be less than 10 ms.
This is hard to achieve with present single-processor
technology, and specialised (or customised) multipro-
cessor architectures may be needed for possible real-time
implementation inside the control servo loop.

® The parameters in the dynamic model of the robot
must be known precisely. This is because model-based
control for robots is not robust in the presence of
modelling, parameter errors and disturbances. Modelling
errors are introduced by unmodelled dynamics (e.g. joint
flexibility) and/or simplified models that are designed to
reduce the real-time computational requirements of the
controller. Parameter errors arise from practical limi-
tations in the knowledge of numerical values for the
kinematic and dynamic parameters of the robot and/or
from pay-load variations. Disturbances such as load
disturbances and measurement noise are inevitable in any
control system and can severely degrade a system’s
performance.

Adaptive control algorithms proposed in the robotics
literature to handle parameter variations and unmodelled
dynamics have achieved some success in controlling a
robot. However, adaptive control theory [3] has been
developed only for linear systems with constant unknown
parameters; although in practice, it works for systems
with slowly time-varving unknown parameters. Current
research efforts focus on adaptive algorithms that learn
and update the robot dynamic parameters, as well as
those that compensate for modelling errors. One such
method uses predictors to approximate and compensate
for modelling errors [4]. Another interesting approach is
the a-computed-torque non-linear feedback control algor-
ithm, which is designed to ameliorate modelling prob-
lems [S]. Practical implementation of adaptive control

INTELLIGENT SYSTEMS ENGINEERING AUTUMN 1992

algorithms is, however, difficult because of the amount of
computation and short sampling times required.

In this paper, we present a novel adaptive control
algorithm based on the model-based control approach,
but using a neural network to ‘learn’ the model. The
parallel nature of neural networks means that it can be
significantly faster than conventional controllers when
implemented in a multi-processor architecture system.
The neural network was trained using simulated clean
data based on a model and using data corrupted with
noise to simulate on-line noisy data. In this paper, we refer
to the latter as NET2 and the former as NET1. Once
such a neural-network controller is trained, it can then be
used to replace the conventional controller. As is demon-
strated later, this neuro-model-based controller does not
suffer from the aforementioned limitations of model-
based and adaptive control algorithms. The neural
network is able to learn and adapt to parameter variations
and unmodelled dynamics. Simulation results also show
that the neural network controller can track a desired
trajectory even in the presence of measurement noise and
disturbances.

2 Neural networks for robot control

In the robotics community, there is currently a renewed
and growing interest in using neural network technology
[6]. The neural-network architecture offers several
potential advantages over conventional architecture; cal-
culations are carried out in parallel yielding speed advan-
tages, and programming can be done by training using
examples, rather than defining explicit instructions.
Almost all neural-network applications in robot control
involve learning the robot system dynamics and incor-
porating it somehow into the robot controller [7, 8]. The
approaches differ in the methods of incorporating the
neural network into the controller and of training and
adaptation.

One approach is to directly substitute the neural
network for the conventional controller in the feedback
loop. The neural network is trained off-line, using the

51

e,

© e e e e

T

.. Fig. 2 Neural network as a linearising adaptive controller

input and output of the conventional controller, so that it
will give the same output as the conventional controller
for the same input. The neural-network controller offers
significant speed advantage, given its parallel nature, and
could be implemented in real-time even though the
implementation of the conventional controller is not
possible in real-time if the conventional controller is very
complicated.

Another approach is to train the neural network to
learn the system dynamics and employ it as a feedforward
controller, as shown in Fig. 1. The input to the neural
network are the current state of the robot and the
required small change from the present state specified by
the desired trajectory. The output of the network
provides the correction to the force output of the con-
troller. The neural network is continually trained over
the space of small changes as the ordinary feedback
controller is functioning. Gradually, the neural network
takes over the control of the robot as it makes more
nearly exact choices and the feedback control functions
less. This kind of adaptive control was suggested in
Reference 9.

In our approach, we employ the neural network as a
replacement for the non-linear robot dynamics evaluation

inside the model-based control algorithm. The neural
network is embedded in the forward path to ‘learn’ and
then to cancel out the non-linear dynamics of the robot so
that the performance of the system appears linear to the
controller, as shown in Fig. 2. At each sampling instant,
the neural network relearns the robot dynamic model and
updates itself. Before we present the details of our neuro-
model-based adaptive controller, we first review model-
based robot control.

3 Review of model-based control

The dynamic model describing the motion of an N-joint
robot is a set of N highly non-linear and coupled
differential equations, which relate the actuating joint
forces/torques (fe R™) with the joint positions, veloci-
ties, and accelerations (q(f), 4(), §(t) e R") respectively
[10]:

D(q)§ + h(q,) =1(2) @

where D(q) e R¥*¥ is the positive-definite inertial matrix,
and h(q, §) e ®" is the coupling vector that incorporates
the centrifugal and Coriolis, gravitational and frictional

deSi.red F= 6 U+ ﬁ
motion T =
task fefefej_nce" S o F(t)
—>| signal * model -
" | computation . : -
I \ a()
! Ky
|
control system i
specification i

:] af)
K p :'.{

Fig. 3 Model-based control

52

INTELLIGENT SYSTEMS ENGINEERING AUTUMN 1992

only

for learning

disconnected
during learning

disturbance

desired da()
motion - q
task refgrence Aoy + - 'Pv »
con?;gurglﬁon ' : u) | »
it A q
- +Y
+ dy ()
specifications
+
' + d,(1)
X

Fig. 4 Neuro-model-based adaptive controller

force/torque vectors. The positive-definiteness of the
inertial matrix guarantees that the robot system is com-
pletely state-controllable [11]; whereas the 2N-
independent state variables, consisting of joint positiois
and velocities, render the system completely state-
observable since these states are measurable.

Model-based robot control involves incorporating the
robot dynamic model into the robot controller to trans-
form the highly non-linear robot dynamics into equiva-
lent linear systems. Linear control theory can then be
applied to synthesise controllers to specify the closed-
loop response. Fig. 3 is a schematic diagram of
model-based control with proportional-derivative (PD)
feedback. The robot is actuated with the following
joint force/torque signal:

£(0)=D(q)u(®) +h(q, q) 2

where u(?) is an input signal in the form of acceleration.
In eqn. 2, the ~ signifies the estimated inertial matrix
D(q) and non-linear coupling vector h(q, q) imple-
mented in the controller. These estimates (of the robot
dvnamics) are incorporated in the controller and, because
of inevitable modelling and parameter errors, may not be
exactly equal to the actual D{(q) and h(q, 4).

If the robot dynamics are modelled perfectly, i.e. if
D(q)«—D(q) and h(q, 4)<h(q, q) in ‘eqn. 2, then
equating eqn. 2 with eqn. 1 results in the following linear
system:

q=u() 3

The resulting linear system in eqn. 3 allows the specifica-
tion of the necessary feedback gains, as well as the

INTELLIGENT SYSTEMS ENGINEERING AUTUMN 1992

required reference signal, to perform a robotic motion
task. There are many possible choices for the reference
signal, depending on the desired closed-loop system
response. For perfect tracking in a PD implementation,
the reference signal is specified according to the
computed-torque algorithm [12]:

1) =§,() + K, q.() + K,q,(1). @

where d indicates the desired trajectory. The acceleration
input signal becomes

u()=r() - K, q(0 - K,q(®)

=40+ K.~)+ K, (@~ - &)
Substituting eqgn. S into eqn 3 yields
§1+K,q+K,q=4,+ K4, +Kyq, 6
or
¢+K, ¢ +K,e=0)

where e =q,—q is the tracking error vector. Taking the
Laplace transform of eqn. 6 results in a unity transfer
function between the output trajectory q(z) and the input
trajectory q,(t), and this demonstrates perfect tracking.
Eqn. 7 is the so-called error equation; what it means is
that, using the reference signal (eqn. 4), we can decide
how the tracking error goes to zero asympiotically by
specifying appropriate values of K, and K,.

Diagonal position and velocity gain matrices are typi-
cally specified to decouple the axes of the closed-loop
system in eqn. 7:

K,=k1 and K,=K,=k,I ®)

53

where k, and k, are scalar feedback gains and [e R***" is

the identity matrix. (In practice, the designer can select
different position and velocity feedback gains for each
joint.)

The feedback gains k, and k, are specified to guarantee
the stability of eqn. 7. We implement the cnitically
damped design

kl=4k, & k,=2>0 and k,=1 (9)

which provides the fastest possible response without
overshoot. In eqn. 9, 4 is the control bandwidth of the
closed-loop system.

4 Neuro-model-based controller

Model-based robot control has many practical problems.
The computational complexity involved in evaluating the
robot dynamic model has led to significant simplifica-
tions in the robot dynamic model so that it can be
implemented in the control servo loop. In addition, a
mathematical model that completely and accurately charac-
terises the robot dynamic behavior is, in general, not
realisable. Not all physical phenomena can be modelled
accurately; examples include friction, backlash and hys-
teresis effects. Furthermore, the robot dynamic behav-
iour typically changes as ‘wear and tear’ sets in.

These limitations of model-based robot control have
stimulated the use of neural networks. The inherently
parallel architecture of neural networks allows for real-
time implementation of complex robot control algor-
ithms. The ‘trainability’ of neural networks allows_on-
line learning of the (changing) robot dynamic behaviour.
Another interesting characteristic of neural networks is
‘generalisability’, i.e. the capability to learn new ideas
(e.g. mappings, relationships etc.) from input data the
networks have not previously seen. This characteristic,
when properly implemented, makes neural-network-

L e

Fig. 5 One-dimensional robot model

based robot controllers robust towards disturbances such
as load disturbances and measurement noise.

There are many kinds of neural networks. For our
application, the most appropriate is the multilayer feed-
forward neural network, which learns using the back-
propagation algorithm [6]. Such networks are designed to
learn non-linear function mappings, such as the non-
linear function describing the mapping from joint
positions, velocities and accelerations to (actuating) joint .
forces/torques (eqn. 1). In our framework, we employ
the multilayer feedforward network to evaluate, in real
time, the non-linear robot dynamics model. In addition,
at each sampling instant, the neural network learns and
updates its knowledge of the robot dynamic model. For
robustness, the proportional-derivative (PD) block of
conventional model-based control is retained as the
closed-loop controller and provides the acceleration com-
mand signal to the neural-network dynamics evaluator.

Fig. 4 shows the schematic diagram of the neuro-
model-based control system. The neural network’s task

variable variable variable
weights L weights L weights
o o
o (
[] i ; ® . .
position sigmoid sigmoid
function function
velocity // . » actuating
_/ torque
acceleration
®]
[[
® ®
. L4) ®
input two hidden layers output

Fig. 6 Neural network for dynamics evaluation

54

INTELLIGENT SYSTEMS ENGINEERING AUTUMN 1992

pay-load variations

0.01 T

0.005

tracking error, rad

-0.005

—-0.01

—0.015 i
0

1.5 2 25

time, s

Fig. 7 Tracking error due to pay-load variation

~
~

Table 1 Errors due to pay-load mass

variations

nominal mass, true mass, final error
curve kg kg (at =2 s)
A1 (solid) 0.10 0.10 0.000075
A2 (dashed) 0.10 0.12 0.001042
A3 (dotted) 0.10 0.14 0.001997
B1 {solid) 0.10 . 0.10 0.000086
B2 (dotted) 0.10 0.12 0.000117
B3 (dashdot) 0.10 0.14 0.000168

is to continuously learn the robot dyanamic model. It has
three sets of input consisting of the N joint positions,
velocities and accelerations. The output is a vector of the
N joint forces/torques. Training data for this network
can easily be generated using the nominal dynamic
parameters in eqn. 1.

We propose the incorporation of the network into the
robot controller to emulate the on-line dynamics evalu-
ation. Fig. 4 shows the schematic diagram of the neuro-
model-based controller. The solid lines show the signal
flow wherein the neural network is executing the control
action, and the shaded lines represent the information
flow during learning. The first stage involves control
execution, and the second stage is the learning phase.
During learning, the input to the neural network consists

of the current state of the robot, as well as the signal from
the acceleration computation block, instead of the
control input signal u(?).

Depending on the control system specification, the
reference signal r(z) is computed from the desired robot
motion. A PD control imlementation dictates the com-
puted torque algorithm (eqn. 4) for the specification of
the reference signal. An input signal in the form of
acceleration u(z), as well as the current state of the robot,
is fed into the neural network to generate a force/torque
command f(r) to the robot. This actuation brings the
robot to a new state, from which the acceleration corre-
sponding to the actuating force is computed (using a finite
difference approximation). The acceleration, together
with the new robot state, provides the learning input and
the corresponding actuating force is the learning output.
This training information is used by the neural network
to adapt to the robot behaviour.

S Simulation studies

The plant we chose to control is a one-dimensional robot
wherein gravity provides the non-linearity. Fig. 5 is a
schematic diagram of the robot system. The pay-load is
considered as a point mass m concentrated at the end of
the link, and the link of length L is assumed to be
massless. The input to the robot is the driving torque F,
and the state of the system is given by the joint position ¢
and velocity ¢ . The robot dynamic model is then

F=mL% +mgL cos q (10)

INTELLIGENT SYSTEMS ENGINEERING AUTUMN 1992 55

length variations

0.015 T

0.01

0.005

tracking error, rad

-0.005

-0.01

-0.015

-0.02 i

1.5 2 25

time, s

Fig. 8 Tracking error due to length variation

where g is the acceleration due to gravity. For purposes
of numerical simulations, the parameters of the robot
were chosen to be m=0.10 kg and L=1 m.

5.1 Pre-training the neural network

We use the back-propagation network with two hidden
layers (Fig. 6) to learn the robot dynamic model. Each
neuron in the hidden layer has a sigmoid decision
function of ‘slope 1’. The input is the joint position and
acceleration, and the output is the joint torque. There are
two inputs consisting of two neurons, for which the input
is the point position ¢ and acceleration §. The output
layer consists of one neuron, for which the output is the
required torque.

Before implementing the neuro-model-based robot
controller, the network is pre-trained using the nominal
dynamic parameters (m=0.10 kg and L =1 m) of the
robot. The training input consists of uniformly distrib-
uted random values of joint position and acceleration in
the following ranges: '

joint position 0sgsamarad

joint acceleration —3 =g <3 rad/s’

The training output consists of the torques computed
using eqn. 10 from the training input.

For expository convenience, we refer to a network as
N, —N, if there are N, and N, neurons in the first (from
the input) and second hidden layers, respectively. We
tried networks of size 5-5, 10-5, 15-5, 20-10, 20-15 and

56

Table 2 Errors due to length variations

nominal length, true length, - final error
curve - m Coem (att,=25)
A4 (solid) 1.0 080 —0.000650
A5 (dashed) 1.0 1.20 0.000615
A6 (dotted) 1.0 0.40 0.000923
B4 (dashdot) 1.0 0.80 0.000064
B5 (dotted) 1.0 11.20 0.000152
B6 (dashdot) 1.0 ©'1.40 0.000235

30-20 with training in the order of one million times. The
weights in the neural network were updated using the
delta rule, with learning and momentum coefficients of
0.4 and 0.2, respectively. The 15-5 network provides the
most accurate emulation of robot dynamics with a
maximum torque deviation of 0.0015 Nm for a torque
range of *+1.28 Nm. Increasing the number of neurons
does not result in a more accurate dynamics emulation.
For the controller simulation, we therefore use the pre-
trained 15-5 network.

The neural network was also trained with data cor-
rupted by random noise to simulate actual experimental
data. The training data used were the same as before
except that random noise was added to the desired output
torque. The output presented to the net during training
is thus corrupted by the random noise.

INTELLIGENT SYSTEMS ENGINEERING AUTUMN 1992

x10?

unmodelled dynamics

-2

—4

tracking error, rad

-6

-10

1.5 2 25

time, s

Fig. 9 Tracking error due to unmodelled dynamics

-

Table 3 Errors due to unmodelled
dynamics

damping final error
curve) ~coefficient (att,=2s)
A7 (solid) 02 0.000348
A8 (dashed) : 0.4 0.000680
87 (dashdot) 0.2 0.000023
B8 (dashdot) 0.4 —0.000005

5.2 Desired motion task

The robot is commanded to move from ¢=0 to g=g¢,=
1.3 radians in exactly ¢=2s. The initial and final
velocities and accelerations are all zero. To satisfy the
boundary conditions, a quintic polynomial is used for the
trajectory. This trajectory [13] is

q@W=1020-15% 6% an

The reference signal to the controller is then computed
according to eqn. 4. ,

It should be emphasised that the task is for the robot to
arrive at the final joint position ¢,=1.3 rad in exactly
;=2 s. The quintic polynomial trajectory is just a means
of specifying the reference signal to ensure a smooth

INTELLIGENT SYSTEMS ENGINEERING AUTUMN 1992

torque profile and compliance with boundary conditions.
Therefore, for this task, the important performance
indicator is the final error at =2 s.

5.3 Neuro-model-based control

The pre-trained 15-5 network is employed in the robot
controller, as shown in Fig. 4. The feedback gains are
specified as k, = 40s™! and k, =400 for a critically damped
design with a bandwidth of 20s~*. The sampling interval
was chosen as 10 ms. The reference signal and the
weights of the neural network are updated once every
10 ms. The robot motion is simulated by numerically
solving eqn. 10, using a fourth-order adaptive
Runge-Kutta algorithm with a maximum error specifica-
tion of 107 rad [14].

We simulate modelling errors in the form of parameter
errors (i.e. mass m and length L variations) and un-
modelled dynamics in the form of unmodelled velocity
damping effects. For purposes of benchmark compari-
sons, we also provide results for the ‘standard’ model-
based controller implementation.

The modelling errors were simulated by using the
nominal dynamic parameters (m=0.10 kg, L =1.00 m,
no damping) in the on-line dynamics evaluation {Fig. 3),
and the robot plant is simulated using the true dynamic
model. To simulate the velocity damping effect, the
robot plant model used is

F=mL% +mgL cos ¢+ 64 (12)

57

e bom e RS

modelling error combined effects

0.015

0.01

0.005

tracking error, rad

-0.005

-0.01

-0.015 |
0

1.5 2 2.5

time, s

Fig. 10 Tracking error due to modelling errors

To see the effects of disturbances, disturbances were
injected at the input (input noise d;) to the robot and at
the output (measurement noises d;, d;) of the system
(Fig. 4). Gaussian white noise was used as it occurs
frequently in practice. The disturbances are assumed to
be unmeasurable, and no other knowledge (of the distru-
bances) is assumed ogher than that it is Gaussian.

S.3.1. Pay-load mass variations: we simulate pay-load
mass variations of up ‘to 40%, with L=1.00 m and no
damping. The plots of the ‘trajectory tracking error e
versus time are shown in Fig. 7. Curves A represent the
performance of standard model-based control, and
curves Bi are for the neuro-model-based control. Table 1
indicates the meaning of the curves and numeric results.
Curve Al represents perfect knowledge of the robot
dvnamic model, whereas curve Bl is for the neuro-
model-based controller pre-trained on a non-time-
varying plant; these two curves are indistinguishable
(Fig. 7). It can be observed that the actual joint trajectory
leads the desired joint trajectory (negative tracking error)
for exactly half of the duration of the move (1 s). During
this time, the joint acceleration is continuously increas-
ing, in anticipation of the inevitable lag when tracking a
step input during each sampling interval. For the
remaining half, the joint acceleration starts to decrease
untl it is zero at f{=2s, and the actual trajectory
approaches the desired trajectory at the end of the move.
During this time, the accumulated ‘overshoot’ in the first
half of the move was compensated for by the tracking lag.

S8

Of course, this behaviour is only possible with perfect
knowledge of robot dynamics.

The tracking error curves fail to follow the ‘standard’
inverted bell shape in the presence of modelling errors.
The adaptation capability of the neural network, how-
ever, allows fast compensation of modelling errors (of the
order of 10-20 steps) to reach the final destination with
close to ideal performance. Curves B2 and B3 show a
reduced error trajectory, as well as a smaller final error at
t[= 2s.

5.3.2 Length variation: the results for length variations
of up to 40%, with m=0.10 kg and no damping, are
shown in Fig. 8. Here similarly, curves Ai represent the
performance of standard model-based control, and
curves Bi are for our neuro-model-based control. Table 2
highlights the numerical results. For all cases, the neuro-
model-based controller (curves Bi) has the lower error
trajectory curves.

5.3.3 Unmodelled velocity damping effects: velocity
damping coefficients of 0.2 and 0.4 were simulated with
m=0.10 kg and L=1.00 m. The results are shown in
Fig. 9 and Table 3. Curves B7 and B8 are for the neuro-
model-based control, and they follow a similarly shaped
curve for the performance of model-based control with
exact knowledge of robot dynamics (curve A! in Fig. 7).
This demonstrates how well the neural network is
adapting to the robot plant. It is interesting to note that
curves A7 and A8 demonstrate smaller errors than B7

INTELLIGENT SYSTEMS ENGINEERING AUTUMN 1992

Y - B

+ i AN

ottt

RR 5 ST

R

continuous learning

i x103

tracking error, rad

1.5 2 25

time, s

Fig. 11 Tracking error improvement through continuous learning

and B8, but larger final errors (at {=2s). In fact,
model-based control with modelling errors is better than
with exact knowledge of robot dynamics. This behav-
iour, however, depends on the desired task trajectory.

5.3.4 Combined effects of modelling errors: Fig. 10 shows
the results for parameter errors as well as unmodelled
velocity damping effects. The true parameters are m=
0.12kg, L=1.2m and 6=0.4 Nms. Curve A9 for
model-based control has a final error of 0.002109 rad,
and curve B9 for neuro-model-based control has a final
error of 0.000047 rad.

5.3.5 Continuous learning: to further demonstrate the
fast adaptation of our neuro-model-based control, we
simulate the controller’s improved performance. over a
sequence of tasks. Four tasks (C1-C4) are executed in
the indicated sequence, and the controller continuously
updates its knowledge of the robot plant. Tasks C1 and
C2 involve a mass error of 20% (m=0.12 kg) and 40%
(m=0.40 kg), respectively. Task C3 is exactly the same
as C2, and therefore an improved performance is
expected for tracking C3 since it is executed after CZ.
The results are shown in Fig. 11. We note that C3 has a
smaller trajectory tracking error compared to CZ.
Furthermore, the final error (at ;=2 s) dropped from
0.000141 rad for C2 to 0.000127 rad for C3. Task C4
involves model parameters of m=0.15 kg, L = 1.1 m and
& =0.1 Nms. For all the curves, the maximum final error
at ;=2 s is 0.000141 rad.

5.3.6 Effects of disturbances: tachometer sensor distur-
bance d, (Fig. 4) was simulated by adding Gaussian noise
of unit variance with magnitude scaled by 10%. The
response of the system is shown in Fig. 12, where the
solid curve represents the desired position trajectory and
curve Bygr the actual path trajectory. Although the
trajectory is smooth, it can be seen that there is a
significant final positional error. The results are also
shown in Table 4. A disturbance d, is next introduced in
the inner feedback loop, as shown in Fig. 4. d, has unit
variance and magnitude scaled by 80%, and so the
response of the system is as shown in Fig. 13. It can be
noted that, in this case, there is also a significant final
positional error. The reason for having different 4, and d,
is because since k, =400 and k,=40, in order to observe
similar output effects in the presence of d, and d,,
magnitudes for k,d, should be approximately similar to
that for k,d,.

In this case, it would seem that the neural-network
controller is unable to handle a system with noisy signals.

Table 4 Final position errors

curve 10% d, 80% o, 10% d, & 20% d,
Buen 0.36366 0.16585 0.77429
Buerz 0.00061 0.00858 0.06495

INTELLIGENT SYSTEMS ENGINEERING AUTUMN 1992 59

position
0.8

0.6

0.4

time, s

Fig. 12 Tracking error in the presence of outer feedback loop disturbance: comparison of NET1 and NET2

~

1.6 T T T T T T T T T

14 f=eeeennn ermaeeeeleeeaaeaas A A L U feenn JORC S i

position

0 02 0.4 0.6 0.8 1 1.2 1.4 16 1.8 2
time, s

Fig. 13 Tracking error in the presence of inner feedback loop disturbance: comparison of NET1 and NET2

60 INTELLIGENT SYSTEMS ENGINEERING AUTUMN 1992

1.4 T | T]

position

08| -t Lol
06 |—--vn--- e R fetieeans
04 , /

02 |-------. - 3% LETPRP

—

time, s

Fig. 14 Tracking path in the absence of noise: comparison of NET1 and NET2

~.
N

We next try using the network trained with noise (i.e.

NET2). The performance of NET2, compared to

NET1, in the absence of noise was first investigated. The

results are shown in Fig. 14. It can be seen that the

output of the system with either controller can hardly be

distinguished from the desired trajectory. This shows

that the system with either controller can follow the
desired trajectory when there is no noise interference in

the system.

Next, the disturbances d, and d, with the same values
as before were introduced into the system. The tracking
path obtained with NET 2 is shown by the dotted lines in
Figs. 12 and 13. It can be seen that with NET2 the final
positional error has been greatly reduced while a smooth
trajectory is maintained.

Torque disturbance d; (Fig. 6) is simulated by adding
noise of unit variance and magnitude scaled by 20% to
the input of the robot. Fig. 15 shows the results when
disturbance d, and disturbance d; were present at the
same time. Here, it can be seen that the response
trajectory (curve B), obtained with the neuro-model-
based controller, although having a path-tracking error,
nevertheless had very little final positional error and had
a smooth trajectory. The model-based controller (curve
A), however, did not perform as well in the presence of
the introduced noise. The response trajectory obtained in
this case had a significant final positional error, in
addition to a rather jerky trajectory path.

INTELLIGENT SYSTEMS ENGINEERING AUTUMN 1992

6 Conclusions

In this paper, we presented a new approach towards
adaptive robot control using the neural-network para-
digm. We have demonstrated that a back-propagation
network can be trained to ‘learn’ the highly non-linear
robot dynamic model. We implement the neural network
into the model-based robot controller to replace the on-
line dynamics evaluation. The neural network, being
inherently parallel in nature, has the potential to evaluate
robot dynamics in real time. Furthermore, the learning
capability of the neural network makes it ideal for
adaptive robot control. In addition, we have shown that
neural networks are tolerant of noise and disturbances.

The results of our simulation show that once a neural
network has been trained to learn the robot dynamic
model, it can easily adapt or be retrained to learn any
slight perturbations of the model parameters. We have
demonstrated the robustness of the neuro-model-based
controller towards up to 40% modelling errors. It was
also found that a neuro-model-based controller trained
with noisy data performs better than a conventional
model-based controller in the presence of noise. It is
interesting to note that in the absence of noise, the
former also matches the performance of the latter.
Further investigation into this phenomenon is necessary
in order to exploit the full benefits of using neural-
network controllers.

61

R R SR i

H
i
4

position

time, s

Fig. 15 Tracking path in the presence of output feedback loop disturbance and plant input disturbance:

comparison of NET2 and model-based controller

This stud;‘clearly indicates the promise and petential
of neural networks in the practical controller implemen-
tations for real systems.

7 References

[1] FU, K. S., GONZALEZ, R. C,, and LEE, C. S. G.:
‘Robotics: control, sensing, vision, and intelligence’
(McGraw-Hill, New York, 1987)

[2] TOURASSIS, V. D.: ‘Principles and design of model-
based controllers’, Int. . Control, 1988, 47, (5), pp- 1267-
1275

[3] ASTROM, K.].: ‘Theory and applications of adaptive
control: a survey’, Automatica, 1983, 19, (5), pp- 471-486

[4] TOURASSIS, V D.: ‘Computer-control of robotic
manipulators using predictors’. Proc. 1987 IEEE Symp.
on Intelligent Control, Philadelphia, Pennsylvania, 18—-20
January 1987, pp. 204-209

[S] TOURASSIS, V. D., and NEUMAN, C. P.: ‘Robust
nonlinear feedback control for robot manipulators’, IEE
Proc. D, 1985, 132, pp. 134-143 .

[6] RUMELHART, D. E., McCLELLAND, J. L., and the
PDP Research Group: ‘Parallel distributed processing:
explorations in the microstructure of cognition. Vol. 1:
Foundations’ (MIT Press/Bradford Books, Cambridge,
Massachusetts, 1986)

(71 MILLER, W. T., Ill, HEWES, R. P., GLANZ, F. H.,
and KRAFT, L. G., III: ‘Real-time dynamic control of an
industrial manipulator using a neural-network-based
learning controller’, IEEE Trans., 1990, RA-6, (1),
pp. 1-9

{8] NARENDRA, K. S., and PARTHASARATHY, K.:
‘Identification and control of dynamical systems using
neural networks’, IEEE Trans., 1990, NN-1, (1), pp. 4-
27

[9] MILLER, W. T., IlII, GLANZ, F. H., and KRAFT,
L. G., III.: “‘Application of a general learning algorithm to
the control of robotic manipulators’, Int. . Robotics Res. ,
1987, 6, (2), pp. 84-98

(10] TOURASSIS, V. D., and NEUMAN, C. P., ‘Properties
and structure of dynamic robot models for control engin-
eering applications’, Mech. Mach. Theory, 1985, 20, (1),
pp. 27-40

[11] LIM, K. Y., and ESLAMI, M.: ‘Adaptive controller
design for robot manipulator systems using Lyapunov
direct method’, IEEE Trans., 1985, AC-30, (12), pp.
1229-1233

[12] LUH, J. Y. S., WALKER, M. W., and PAUL, R. P.:
‘Resolved-acceleration control of mechanical manipu-
lators’, JEEE Trans., 1980, AC-25, (3), pp. 468-474

(13] CRAIG, J. J.: ‘Introduction to robotics: mechanics and
control’ (Addison-Wesley, Reading, Massachusetts, 1989)
2nd edn.

[14] PRESS, W. H., FLANNERY, B. P., TEUKOLSKY,
S. A., and VETTERLING, W. T.: ‘Numerical rectpes in
C: the art of scientific computing’ (Cambridge University
Press, Cambridge, UK, 1988)

The paper was first received on 2 September 1991 and in revised form
on 23 March 1992.

The authors are with the Department of Mechanical and Production
Engineering, National University of Singapore, 10 Kent Ridge
Crescent, Singapore 0511.

62 INTELLIGENT SYSTEMS ENGINEERING AUTUMN 1992

