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MODELING AND ANALYSIS OF OMNIDIRECTIONAL MOBILE ROBOT  
TOWARD ISOTROPIC DESIGN 

 
 
 
 
 
 
 
ABSTRACT 
Mobile robots with omni-directional motion 
capabilities are very useful especially in mobile 
manipulation tasks and tasks in human 
environment. In this paper, we present the 
kinematics and dynamic of one class of 
omni-directional mobile robots that is driven by 
2-axis powered caster wheels with 
non-intersecting axes of motion. Our derivation 
approach treats the each caster wheel as a serial 
manipulator and the entire system as a parallel 
manipulator generated by several serial 
manipulators with a common end-effector, 
following the operational space approach and 
augmented object model introduced by Khatib. 
The kinematics and dynamic analysis can be used 
to obtain the optimal design of mobile robot 
powered by 2-axes caster wheels.   
 
Key Words - isotropy, condition number, 
operational space, kinetic energy matrix, inertia 
ellipsoid, mobile robots. 
 
 

I. INTRODUCTION 
 
Omnidirectional wheeled mobile robots have 
been an active research area and developed over 
the past three decades. The advantages of these 
robots over the legged mobile robots are easy to 
manufacture, high pay load, high efficiency and 
they can perform important tasks in 
environments congested with obstacles and 
narrow aisles.  
 
There are three types of wheels [1]: the 
conventional wheels, the omnindirectional 
wheels, are the wheels that we see everyday, 
such as those on the cars and trolleys. An 
omnidirectional wheel is a disk-like wheel with a 
multitude of conventional wheels mounted on its 
periphery. The ball wheel is the one that is 
shaped like a ball. The ball wheel [2, 3] is 

difficult to implement as it is not possible to 
place an axel through the ball without sacrificing 
usable workspace. It is difficult to transmit the 
power to drive the wheel. There is also the 
practical need of keeping it robust from 
collecting dust and dirt from the floor. There has 
been a lot of effort in the development of 
omnidirectional wheels [4, 5, 6]. Due to multiple 
numbers of small rollers on the periphery of the 
wheel, an undesirable vibration often exists in 
the motion.  
 
The conventional wheel is probably the simplest 
and most robust among wheel designs. However, 
not all conventional wheels are capable of 
providing omnidirectional motion capability [1, 
7, 8]. Chosen in our design was an offset wheel 
or what is often described as caster wheel [9, 10] 
(see Fig 1). It has been widely accepted that 
caster design provides full mobility [11]. 
 
The kinematics and dynamics of the mechanism 
is not new [12]. However, our derivation 
approach follows the conventional method in 
treating open chain (serial) and closed chain 
(parallel) manipulator, by using DH convention, 
the operational space formulation [13] and the 
augmented object model [14, 15]. The 
augmented object model was utilized to 
represent the mobile robot as a system of 
cooperating manipulators, where each wheel 
module is modeled a serial manipulator. The 
objective of the design is to obtain an 
omnidirectionl mobile robot (with 3 DOF motion 
capability).    
 
 

II. KINEMATICS MODELING OF A 
SINGLE CASTER WHEEL 

 
2.1. Kinematics of Single Wheel 
In formulation of kinematics model, we treat the 
wheel module as a serial link manipulator with 
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two revolute joints and one prismatic joint in 
instantaneous time. The point of wheel contact 
with the floor is taken as a revolute joint )(σ . 
This is a passive joint with no position feedback 
as this is the twist angle between the wheel 
contact and the floor. With the assumption of 
wheel rolling without slipping, wheel rolling is 
treated as a prismatic joint ( ρr ) since angular 
velocity and linear velocity of the wheel are 
linearly related. (where r  is radius and ρ  is 
angular velocity of the wheel). The steering joint 
is the last revolute joint (φ ) of the system. 
 

σ
ρ

br

h
φ

        

σ
ρr

φ
h

b
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Fig 1. A caster wheel. This design was chosen to 
provide as omnidirectional motion capability to 
the mobile platform. Shown in this figure is the 
instantaneous model of caster wheel 
 
By instantaneous, we mean that the prismatic 
joint )( ρr  provides an instantaneous linear 
translation that pushes the end-effector forward 
with respect to the floor. At the same time, the 
mechanism has a set length of b (the wheel 
offset) between thee rotation axes of σ andφ . 
The D-H parameter for the single caster wheel 
modeled as a serial manipulator is shown in 
Table 1.  
 
The frame O is an instantaneous frame that is 
always parallel to the world (absolute) frame, but 
moves together with the wheel. In other words, it 
is attached to the contact point between the 
wheel and the floor.  
 

 
Joint α  a θ  d 

1 2/π−  0 σ  0 
2  2/π  0 0 ρr  
3 0 0 φ  h 

 
Table 1. D-H parameters of the single wheel 

 
The position of the end-effector with respect to 
Frame {O} is: 
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where )cos(σσ =C , )cos( φσφσ +=+C ,       
      )sin(σσ =S , )sin( φσφσ +=+S  
When differentiated, the position vector x will 
provide the velocity vector of the end-effector, or 
upon rearranging, the Jacobian matrix and the 
joint velocity vector. Note that when 
differentiating ρr with respect to σ and φ , it 
is taken as the constant value of the offset b, 
which is the real physical distance. However, 
when differentiating it respect to ρ , it is taken 
as variable with respect to time. 
 
Adding the rotational components (the rotational 
axes of σ and φ ) into the Jacobian matrix, we 
obtain: 
 

 
















+

−−−
= ++

++

101

0
φσσσφσ

φσσσφσ

ρ
ρ

hCrSCrhC
hSrCSrhS

J E
  (2) 
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          (3) 

 
This is the Jacobian matrix with respect to Frame 
{O}. Notice that the Jacobian is a function of 
σ and φ . Since σ is not a measurable nor 
controllable variable, it is desired to have a 
Jacobian matrix that is not function of σ . This 
is obtained by expressing the Jacobian with 
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respect to the end-efector frame (Frame {E} in 
Fig 1) 
 
To do so, the Jacobian is pre-multiplied by a 
rotational matrix: 
 
              E

E
E

E JRJ 0
0=          (4)  

 
where 0RE is a rotation matrix derived from 

angle ( φσ + ). 
The resulting Jacobian for a single wheel module 
with respect to Frame {E} is: 
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III. KINEMATICS OF MOBILE BASE 
 
To find the Jacobian matrices of the rest of the 
wheels, it is only necessary to express them in 
the common frame (Frame {B}), which is 
attached to the center of the base: 
 
             Ei

E
Ei

B
Ei

B JRJ =         (6) 
 
where i denotes the caster wheel of interest, N is 
total number of wheel module in the mobile base 
and Ei

B R is the rotation matrix derived from 

angle β , as shown in Fig 2. This results in the 
Jacobian of wheel i with respect to common 
Frame {B} at the center of the mobile base: 
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and 
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This derivation yields the same result as the 
geometric approach found in [12] and [14]. Note 

that the inverse always exits for 0≠rb . 
 
3.1. Forward Kinematics 
In the expression of the Jacobian matrix 
(Equation 7), we assume that we are able to 
obtain the joint variable σ for the purpose of 
forward kinematics. In the real application, σ is 
not measurable. 
 
In the inverse kinematics, however, it is possible 
to remove the σ component (see Equation 8). 
The inverse of Jacobian matrix without the σ  
component for any wheel i is obtained by simply 
removing the last row of 1−

i
B J . 
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which means 
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The Jacobian inverse of all the individual wheel 
modules can be combined to form an augmented 
Jacobian inverse 1−

augJ : 
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The forward kinematics can be obtained by 
solving for Tyx ),,( θ from Equation 11, which 
represents a 2N equations )2( ≥N , for which in 
general, there may not be a solution. But in this 
case, the wheel modules are held together by 
physical constraints: 
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therefore an exact solution exist using the left 
pseudo inverse of 1−

augJ , i.e.: 
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Note that 1−

LPIJ always exits for 0≠rb . 
When the operation space velocity command 
vector is obtained from the control law, it can be 
use immediately used in Equation 11 to produce 
the joint rate command vector to be sent out to 
the high level controller for each joint to obtain 
the desired motion. 
 
 

IV. KINEMATICS ANALYSIS 
    
The aim of kinematics analysis is to determine 
the optimal design parameters that exerts, as 
much as possible, equal effort in joint space to 
produce any motion in task space. In a serial 
manipulator, this is often reflect in a manipulator 
ellipsoid [16] at the end-effector. This is directly 
related to the singular issues whereby the 
end-effector loses the ability to move in certain 
direction (the degenerate direction). 
 
In the case of caster wheel in a mobile base 
system, singularity is not an issue, always exits, 
as long as 0≠r and 0≠b . The exception to 
this would be when passive joints are include in 
the system and only 3 joints are actuated to 
produce motion in 2D plane. 
 

A manipulability ellipsoid, or more appropriately, 
the maneuverability ellipsoid, shows the velocity 
generated in task space with bounded joint 
velocities. Please note that it is not appropriate to 
use the Jacobian matrix in Equation 7, because it 
still reflects the contribution of the imaginary 
joint σ . The appropriate analysis should be 
performed on the 1−J  matrix without the 
contribution of σ (from Equation 9) or the 
Jacobian matrix obtained from Equation 13. 
 
The joint space of a caster wheel, however, only 
contains two joints: the steer and the drive and it 
is obvious that when the mobile base diameter is 
much larger than the wheel radius, then one 
rotation in steer angle produces a much larger 
motion than one revolution of the wheel. 
 
 

V. DYNAMIC MODELING 
 
The caster wheel is treated as a serial link 
manipulator, each subjected to: 
 
        τ=++ )(),()( qgqqbqqA    (15) 
 
   where τ is the torque to be sent to joint 
actuators, A is the inertia matrix, b is vector that 
contains the Coriolis and Centrifugal effects, and 
g is the gravitational effect on the joints. 
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Figure 3: Dynamic model of a wheel module, 
with three actuators and two canters of mass 

1m and 2m . 
The A matrix is for individual wheel module is 
derived by: 
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where the individual caster wheel is modeled as 
having a center of massed ( 1m and 2m ) (Figure 
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3). The task space kinetic energy matrix iΛ is 
obtained for each wheel module i as: 
 
            11 )( −−=Λ T

i
B

ii
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i JAJ       (17) 
 
   where i

B J is a 3 x 3 matrix of Equation 8. 
The combined dynamics of the mobile base at its 
center, expressed in Frame {B} is obtained by 
combining the dynamics of all the individual 
“serial manipulators” reflected at the 
end-effector (augmented object model [13, 14]): 
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VI. DYNAMIC ANALYSIS 
 
The aim of the analysis is to come up with an 
optimized set of design parameters so that there 
will be equal in producing motion in all 
directions. This could be done by analyzing the 
ellipsoid formed by the eigenvalues and 
eigenvectors of the augΛ  matrix, which is the 
inertia of the mobile base in 2D task space [17]. 
Since the analysis for translational and rotational 
motion is to be analyzed separately, it is 
necessary to form separate Λ matrix for 
translational and rotational motion: 
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where 

i

BJυ is the top two rows of the Jacobian 

matrix (for translation motion x and y ) and 

i

BJω is the bottom row of the Jacobian matrix 

for orientation )(θ . 

y

xx

y

x

y

x

y
4321 φφφφ === 4321 φφφφ ≠≠≠

4321 φφφφ ≠≠≠ 4321 φφφφ ≠≠≠
 

 
Fig 4: The inertial ellipsoid for translational 
motion of the combined mobile platform. The 
minor principal axis of ellipsoid shows the 
direction that reflects larger inertia in the motion, 
hence harder to move in those directions. 

 
 

Fig 5: The effect of the design parameters r and b. 
Offset of the caster wheel plays a major role 
below a certain threshold value. 
 
An example of the visual representation of the 
reflected inertia in the 2D planar motion is 
shown in Fig 4 for translational motion for a 
mobile base comprised of four sets of wheel 
module (therefore eight actuated joints). 
 
It is the ideal case when a mobile base is capable 
of moving in all directions with equal “ease”. In 
this case, the maneuverability ellipsoid will 
become a circle. Condition number of Λ can be 
utilized to show the ratio between the major and 
minor principal of the ellipsoids. A condition 
number of 1 means that the major and minor 
principal axes are of the same length. 
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Figure 5 shows the plot of condition numbers of 
the combined mobile base (with 4 wheel 
modules) for various values of radius and offset 
of the wheel. It is shown that the wheel offset 
plays a major role below a certain threshold 
value. The result was produced with example 
values of h=0.325m (radius of the mobile 
platform), 1m =1kg for each of the wheels, and 

2m =50kg for each of the wheel module. 
 
Our dynamic analysis shows that dynamic 
isotropic configurations can be achieved when 
identical powered caster wheels (identicalΛ ) are 
distributed in polar symmetric configuration 
around the centre of the base. Mathematical 
proof can be shown by making use of the 
following lemmas and theorem. 
 
Lemma 1.  If A, TRARB =  (where R is 
rotation matrix and 22, xBA ℜ∈ ) and A+B is 
symmetric, then 
 

)()()()()( maxmin BABABA kkk λλλλλ +≤+≤+              
 where k can either be max or min.       (20) 
 
And if rotation angle of R is 0, then   
 
         )(2)( maxmax ABA λλ =+  and  
         )(2)( minmin ABA λλ =+  
 
And if rotation angle of R is 2/π , then  
 
 )()()()( minmaxminmax AABABA λλλλ +=+=+  
 
The first inequality (20) can be found in Golub 
and Van Loan [18](pp. 411), and its proof can be 
found in Wilkinson [19] (pp. 101-2).  
 
Example. If TRARB = , 
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for N=3, 3/2,3/2,03,2,1 ππθ −=  then 

   )(Aλ = {4, 8} and )(Bλ = {18, 18}. 
 
The proofs for Lemmas 1 and 2 are omitted here 
because of space imitation in this paper.  
However, the examples given above illustrate the 
correctness of the lemmas.  
 
Theorem. If more than two planner 
manipulators which have two degrees of freedom 
are augmented with polar symmetry or two of 
these manipulators are augmented 
perpendicularly, then the configurations which 
are made of same corresponding angles are 
dynamically isotropic. 
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Since being same corresponding angles, all the 
Jacobian matrices of the wheel are the same. 
            NJJJ === 21   

Thus, iΛ are identical. 

            NΛ==Λ=Λ 21  

Using Lemma 1 and 2 for N=2 and 3≥N , then   
 

)()( minmax ⊕⊕ Λ=Λ λλ       

         )))(())(((
2 minmax xxN

ii Λ+Λ= λλ . 

Therefore, ⊕Λ is isotropic. ٱ 
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Fig 6: Inertial ellipsoids of wheels in different 
configurations. The steering angles of all the 
wheels are assumed to be the same. 
 

 
 
Fig 7: The effect of number of identical wheels 
on the condition number of Λ as a function of 
steering angle φ for translational motion 
(therefore all wheels face the same direction). 
The result is shown for mobile base with six 

different configurations distributed in polar 
symmetry. 
 
Fig 6 shows that when two wheels are 
augmented in 180o the resultant ellipsoid is the 
same shape as single wheel only different in size. 
In this figure we assume that all the steering 
angles of the wheels are the same so that all the 
Λ are identical. As theorem stated, when two 
wheels are augmented in 90o or more than two 
wheels are augmented with polar symmetry the 
resultant ellipsoid becomes sphere.  
 
Fig 7 shows the condition numbers of Λ in 
polar plot as a function of steering angleφ . The 
polar angle is the steering angleφ and the length 
is the condition number ofΛ . A good design 
would be one where condition number is close to 
1 for all steering angle. The circle with radius 1 
represents the condition number of 1. The figure 
shows dependency of the condition number on 
steering angle, with the 5 wheels configuration 
showing least dependency. It is also interesting 
to note that the four wheel configuration 
achieves condition number 1 only at ±45o, and 
±135o, although the condition number changes 
more for different steering angles. From isotropy 
point of view, odd number wheel configurations 
are better than even number configurations. As 
can be seen in the Fig, the plot for six wheels is 
same as three wheels. This plot could be used as 
a tool for designing a mobile base to achieve 
isotropic effect with different design parameters. 
 
 

VII. CONCLUSION 
 
This paper presents the kinematics and dynamics 
of a mobile robot platform. It models each wheel 
module as a serial manipulator, where all the 
serial manipulators have a common operational 
point, which is attached at the center of the 
mobile platform. Dynamic analysis was 
performed to determine the effect of the 
parameters on the maneuverability of the mobile 
platform. It was found that an optimal length of 
offset for the caster wheel was essential so that 
motion in all direction can be produced with 
equal effort. 
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