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Abstract

In this work, we address the following ma-
trix recovery problem: suppose we are given
a set of data points containing two parts,
one part consists of samples drawn from a
union of multiple subspaces and the other
part consists of outliers. We do not know
which data points are outliers, or how many
outliers there are. The rank and number of
the subspaces are unknown either. Can we
detect the outliers and segment the samples
into their right subspaces, efficiently and ex-
actly? We utilize a so-called Low-Rank Rep-
resentation (LRR) method to solve this prob-
lem, and prove that under mild technical con-
ditions, any solution to LRR exactly recovers
the row space of the samples and detect the
outliers as well. Since the subspace member-
ship is provably determined by the row space,
this further implies that LRR can perform
exact subspace segmentation and outlier de-
tection, in an efficient way.

1 Introduction

This paper is about the following problem: suppose
we are given a data matrix X, each column of which
is a data point, and we know it can be decomposed as

X = X0 + C0, (1)

where X0 is a low-rank matrix with the column vec-
tors drawn from a union of multiple subspaces, and
C0 is a column-sparse matrix that is non-zero in only
a fraction of the columns. Except these mild restric-
tions, both components are arbitrary. In particular we
do not know which columns of C0 are non-zero, or how
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many non-zero columns there are. The rank of X0 and
the number of subspaces are unknown either. Can we
recover the row space of X0, and the identities of the
non-zero columns of C0, efficiently and exactly? If so,
under which conditions?

This problem is motivated from the famous subspace
segmentation problem (Costeira and Kanade, 1998;
Eldar and Mishali, 2009; Elhamifar and Vidal, 2009;
Fischler and Bolles, 1981; Gear, 1998; Gruber and
Weiss, 2004; Liu et al., 2010b,c; Rao et al., 2010; Vi-
dal, 2011; Ma et al., 2007, 2008), as often in computer
vision and image processing applications, one observes
data points drawn from the union of multiple sub-
spaces. The goal of subspace segmentation is to seg-
ment the samples into their respective subspaces. In
fact, subspace segmentation can be regarded as a gen-
eralization of Principal Component Analysis (PCA)
that has only one subspace. As such, similar to PCA,
segmentation algorithms can be sensitive to the pres-
ence of outliers. In fact, because of the coupling be-
tween segmentation and outlier detection, robust sub-
space segmentation appears to be a challenging prob-
lem not ever well studied in theory.

Interestingly, as we show below in Section 2.3, the
row space of the data samples X0 determines the cor-
rect segmentation. Thus, both subspace segmentation
and outlier detection can be transformed into solving
problem (1), where the column support of C0 indi-
cates the outliers, and the row space of X0 gives the
segmentation result of the “authentic” samples. To
solve problem (1), we analyze the following convex op-
timization problem, termed Low-Rank Representation
(LRR) (Liu et al., 2010b):

min
Z,C

||Z||∗ + λ||C||2,1, s.t. X = XZ + C, (2)

where ∥·∥∗ denotes the sum of the singular values, also
known as nuclear norm (Fazel, 2002), the trace norm
or Ky Fan norm; ∥·∥2,1 is called the ℓ2,1 norm and
defined as the sum of ℓ2 norms of the columns of a
matrix, and the parameter λ > 0 is used to balance
the effects of the two parts.
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Using nuclear-norm based approach to tackle the sub-
space segmentation problem is not a new idea. In Liu
et al. (2010b), the authors showed that if there is no
outlier, then a formulation

min
Z

||Z||∗, s.t. X = XZ,

exactly solves the subspace segmentation problem.
They further conjectured that in the presence of cor-
ruptions, the formulation (2) may be helpful. How-
ever, no theoretic analysis was offered. In contrast, we
show that under mild conditions, both the row space
of X0 and the column support of C0 can be recovered
by solving problem (2). Thus, one can simultaneously
perform subspace segmentation and outlier detection
in an efficient way.

While our analysis shares similar features as previ-
ous work in Robust Principal Component Analysis
(RPCA, e.g., Candès et al., 2009; Xu et al., 2010),
it is considerably more challenging due to the fact
that the variable Z is left-multiplied by a dictionary
matrix X, and that the dictionary itself is contami-
nated by outliers. Also, it is worth noting that the
problem of recovering row space with column-wise cor-
ruptions essentially cannot be addressed by existing
RPCA methods (Torre and Black, 2001; Xu et al.,
2010), which are designed for recovering the column
space with column-wise corruptions. In this regard,
LRR also has a unique role in solving the RPCA prob-
lem under the context of corrupted features (i.e., row-
wise corruptions); that is, one can recover the column
space with row-wise corruptions by solving the follow-
ing transposed version of (2):

min
Z,C

||Z||∗ + λ||C||2,1, s.t. XT = XTZ + C.

As discussed above, existing RPCA methods (e.g., Xu
et al., 2010) that focus on recovering the column space
with column-wise corruption are fundamentally unable
to address this problem.

2 Preliminaries

For easy of reading, we introduce in this section some
preliminaries, including the usage of mathematical no-
tations, the concept of independent subspaces, the role
of row space in subspace segmentation, and some pre-
vious results about recovering row space by LRR.

2.1 Summary of Notations

Capital letters such as M are used to represent matri-
ces, and accordingly, [M ]i denotes the i-th column vec-
tor of M . Letters U , V , I and their variants (comple-
ments, subscripts, etc.) are reserved for column space,

row space and column support, respectively. There are
four associated projection operators we use through-
out. The projection onto the column space, U , is de-
noted by PU and given by PU (M) = UUTM , and
similarly for the row space PV (M) = MV V T . Some-
times, we need to apply PV on the left side of a matrix.
This special operator is denoted by PL

V and given by
PL
V (·) = V V T (·). The matrix PI(M) is obtained from

M by setting column [M ]i to zero for all i ̸∈ I. Finally,
PT is the projection to the space spanned by U and V ,
and given by PT (·) = PU (·) +PV (·)−PUPV (·). Note
that PT depends on both U and V , and we suppress
this notation wherever it is clear which U and V we
are using. The complementary operators, PU⊥ , PV ⊥ ,
PT⊥ , PL

V ⊥ and PIc are defined as usual (Xu et al.,
2010). The same notation is also used to represent a
subspace of matrices: e.g., we write M ∈ PU for any
matrix M that satisfies PU (M) = M . Five matrix
norms are used: ∥M∥∗ is the nuclear norm, ∥M∥2,1 is
the sum of ℓ2 norms of the columns [M ]i, ∥M∥2,∞ is
the largest ℓ2 norm of the columns, and ∥M∥F is the
Frobenius norm. The largest singular value of a ma-
trix (i.e., the spectral norm) is ∥M∥, and the smallest
positive singular value is denoted by σmin(M). The
only vector norm used is ∥·∥2, the ℓ2 norm. Depend-
ing on the context, I is either the identity matrix or
the identity operator, and ei is the i-th standard basis
vector.

In particular, letters X, Z, C and their variants (com-
plements, subscripts, etc.) are reserved for the data
matrix (also the dictionary), coefficient matrix (in
LRR) and outlier matrix, respectively. The SVD of
X0 and X are U0Σ0V

T
0 and UXΣXV T

X , respectively.
We use I0 to denote the column support of C0, d
the ambient data dimension, n the total number of
data points in X, γ , |I0|/n the fraction of out-
liers, and r0 the rank of X0. For a convex function
f : Rm×m′ → R, we say that Y is a subgradient
of f at M , denoted as Y ∈ ∂f(M), if and only if
f(M ′) ≥ f(M) + ⟨M ′ − M,Y ⟩,∀M ′. We also adopt
the conventions of using span (M) to denote the linear
space spanned by the columns of a matrix M , using
y ∈ span (M) to denote that a vector y belongs to the
space span (M), and using Y ∈ span (M) to denote
that all column vectors of Y belong to span (M).

2.2 Independent Subspaces

The concept of independence will be used in our anal-
ysis. Its definition is as follows:

Definition 1 A collection of k (k ≥ 2) subspaces
{S1,S2, · · · ,Sk} are independent if and only if Si ∩∑

j ̸=i Sj = {0}.
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Figure 1: An example of the matrix V0V
T
0 computed

from dependent subspaces. In this example, we cre-
ate 11 pairwise disjoint subspaces each of which is of
dimension 20, and draw 20 samples from each sub-
space. The ambient dimension is 200, which is smaller
than the sum of the dimensions of the subspaces. So
the subspaces are dependent and V0V

T
0 is not strictly

block-diagonal. Nevertheless, it is simple to see that
high segmentation accuracy can be achieved by using
the above similarity matrix to do spectral clustering.

There is a concept closely related to the independence,
namely the pairwise disjoint assumption, which holds
if and only if Si ∩ Sj = {0},∀i ̸= j, i.e., there is no
intersection between any two subspaces. While there
are only two subspaces (i.e., k = 2), independence is
equivalent to pairwise disjointness. While k > 2, inde-
pendence is a sufficient condition for pairwise disjoint-
ness, but not necessary.

2.3 Relation Between Row Space and
Segmentation

The subspace memberships of the authentic samples
are determined by the row space V0. Indeed, as
shown in Costeira and Kanade (1998) and Gear (1998),
when subspaces are independent, V0V

T
0 forms a block-

diagonal matrix: the (i, j)-th entry of V0V
T
0 can be

non-zero only if the i-th and j-th samples are from
the same subspace. Hence, this matrix, termed as
Shape Iteration Matrix (SIM) (Gear, 1998), has been
widely used for subspace segmentation (Costeira and
Kanade, 1998; Gear, 1998; Vidal, 2011). Previous ap-
proaches simply compute the SVD of the data matrix
X = UXΣXV T

X and then use |VXV T
X | for subspace seg-

mentation. However, in the presence of outliers, VX

can be far away from V0 and thus the segmentation
using such approaches may be inaccurate. In contrast,
we show that LRR can recover V0V

T
0 even when data

matrix X are corrupted by outliers.

If the subspaces are not independent, V0V
T
0 may not

be block-diagonal. This is indeed well expected, since
when the subspaces have nonzero (nonempty) inter-
sections, then some samples may belong to multiple
subspaces simultaneously. Nevertheless, when the sub-
spaces are pairwise disjoint (but not independent), our
extensive numerical experiments show that V0V

T
0 is

close to be block-diagonal, as exemplified in Figure 1.
Hence, to recover V0V

T
0 is still of interest to subspace

segmentation. Note that the analysis in this work fo-
cuses on when V0V

T
0 can be recovered, and hence does

not rely on whether or not the subspaces are indepen-
dent.

2.4 Relation Between Row Space and LRR

To better illustrate our intuition, we begin with the
“ideal” case where there is no outlier in the data: i.e.,
X = X0 and C0 = 0. Thus, the LRR problem reduces
to minZ ∥Z∥∗ s.t. X0 = X0Z. As shown in (Liu et
al., 2010a), this problem has a unique solution given
by Z∗ = V0V

T
0 , i.e., the solution of LRR identifies

the row space of X0 in this special case. Thus, when
the data are contaminated by outliers, it is natural
to consider problem (2). To see how LRR recovers
the row space, we first establish the following lemma
which can be simply deduced by Theorem 4.3 of Liu
et al. (2010a).

Lemma 1 For any optimal solution (Z∗, C∗) to the
LRR problem (2), we have that

Z∗ ∈ PL
VX

,

where VX is the row space of X.

The above lemma states that the optimal solution
(with respect to the variable Z) to LRR always lo-
cates within the row space of X. This provides us an
important clue on the conditions for recovering V0V

T
0

by Z∗.

3 Settings and Results

In this section we show that, under mild assumptions,
LRR can exactly recover both the row space ofX0 (i.e.,
the true SIM that encodes the subspace memberships
of the samples) and the columns support of C0 (i.e.,
the identities of the outliers), from X, as we detail
below.

While several articles, e.g., Candès and Recht (2009);
Candès et al. (2009) and Xu et al. (2010), have proven
that the nuclear norm regularized optimization prob-
lems are powerful in dealing with corruptions includ-
ing missed observations and outliers, it is considerably
more challenging to establish the success conditions of



Manuscript under review by AISTATS 2012

LRR. This is partly due to the bilinear interaction be-
tween the corrupted matrix X = X0 +C0 and the un-
known Z in the equation X0 +C0 = (X0 +C0)Z +C,
which is essentially a matrix recovery task under a
noisy dictionary, a topic not studied in literature to
the best of our knowledge. Moreover, our goal is to
recover row space from column-wise corruptions. This
is a new task not addressed by previous RPCA and
matrix recovery methods that mainly focus on recov-
ering column space (e.g., Candès et al., 2009; Candès
and Plan, 2010; Candès and Recht, 2009; J. Devlin
and Kettenring, 1981; Torre and Black, 2001; Wright
et al., 2009; Xu et al., 2010), and hence calls for new
analysis tools.

3.1 Problem Settings

We discuss in this subsection three conditions suffi-
cient for LLR to succeed. Note that these conditions
also reveal how the outliers and samples are defined in
LRR.

3.1.1 A Necessary Condition for Exact
Recovery

Suppose (Z∗, C∗) is an optimal solution to (2), then
Lemma 1 concludes that the column space of Z∗ is a
subspace of VX . Hence, for Z∗ (or a part of Z∗) to
exactly recover V0, V0 must be a subspace of VX , i.e.,
the following is a necessary condition:

V0 ∈ PL
VX

. (3)

Note that if there are outliers that exactly lie on the
subspaces, then X will contain more samples than X0

and thus the above condition is violated. So this con-
dition can avoid the degenerative cases where the out-
liers palm themselves as subspace members. To show
how it can hold, we establish the following lemma
which show that (3) can be satisfied when the outliers
are independent to the samples.

Lemma 2 If span (C0) and span (X0) are indepen-
dent to each other, i.e., span (C0) ∩ span (X0) = {0},
then (3) holds.

3.1.2 Relatively Well-Definedness

To reveal the success conditions of LRR, as mentioned,
one technical challenge comes from the bilinear inter-
action between the corrupted matrix X = X0+C0 and
the unknown Z in the equation X = XZ + C. Actu-
ally, this issue also makes the equation X = XZ + C
“seems” questionable, because the data matrix X
(which itself contains outliers) is used as the dictionary
for reconstruction. Nevertheless, we show that the suc-
cess of LRR can be exactly ensured if X satisfies the
following relatively well-defined (RWD) condition.

0.1 1 4 16 64 256
0

0.1

0.2

0.3

0.35

||C
0
||/||X

0
||

β

Figure 2: Plotting the RWD parameter β =
1/(∥X∥∥Σ−1

X V T
X V0∥) as a function of the relative mag-

nitude ∥C0∥/∥X0∥. These results are from our nu-
merical experiments. In those experiments, the outlier
fraction is fixed to be γ = 0.5, and the outlier magni-
tude is varied for investigation. The matrices X0 and
C0 are generated in a similar way as in Section 4.

Definition 2 The dictionary X generated by X =
X0 + C0, with SVD X = UXΣXV T

X and X0 =
U0Σ0V

T
0 , is said to be RWD (with regard to X0) with

parameter β if

∥Σ−1
X V T

X V0∥ ≤ 1

β∥X∥
. (4)

To ensure the success of LRR, we require that the
RWD parameter β is not extremely small. If X is
perfectly well-defined (e.g., r0 = 1 and C0 = 0), then
β = 1. Without any assumptions, the above definition
implies that β is bounded by

β ≥ 1

cond(X)
,

where cond(X) = ∥X∥/σmin(X) is the condition num-
ber of X. This bound, however, does not guaran-
tee the validity of RWD when X is severely singular,
i.e., σmin(X) → 0 (this is possible in the presence
of outliers). Fortunately, we show that the RWD pa-
rameter β can be reasonably large under practical as-
sumptions, e.g., the outlier magnitude is not extremely
large. More precisely, we have the following lemma
that estimates a lower bound of β.

Lemma 3 If span (C0) and span (X0) are indepen-
dent to each other, then

β ≥ sin(θ)

cond(X0)(1 +
∥C0∥
∥X0∥ )

,

where cond(X0) = ∥X0∥/σmin(X0) is the condition
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number of X0, and θ > 0 is the smallest principal
angle between span (C0) and span (X0).

Remark 1 To ensure that β is reasonably large,
the above lemma suggests that the outlier magnitude
should not be too large comparing to the sample mag-
nitude. This is verified by our numerical experiments,
as shown in Fig.2.

Remark 2 To ensure that β is reasonably large, the
above lemma also suggests that the principal angle θ
should be notably large; that is, the outliers in LRR are
restricted to the data points which are notably far way
from the underlying subspaces. This conclusion is con-
sistent with the experimental observations reported in
(Liu et al., 2010a), which shows that LRR can distin-
guish between the outliers and the corrupted samples,
where a corrupted sample is drawn from the subspaces,
but is corrupted to be away from the underlying sub-
spaces.

3.1.3 Incoherence

Finally, as now standard (Candès and Recht, 2009;
Candès et al., 2009; Xu et al., 2010), we require the
incoherence condition to hold, to avoid the issue of un-
identifiability. As an extreme example, consider the
case where the data matrix X0 is non-zero in only one
column. Such a matrix is both low-rank and column-
sparse, thus the problem is unidentifiable. To make
the problem meaningful, the low-rank matrix X0 can-
not itself be column-sparse. This is ensured via the
following incoherence condition.

Definition 3 The matrix X0 ∈ Rd×n with SVD X0 =
U0Σ0V

T
0 , rank (X0) = r0 and (1 − γ)n of whose

columns are non-zero, is said to be column-incoherent
with parameter µ if

max
i

∥V T
0 ei∥2 ≤ µr0

(1− γ)n
, (5)

where {ei} are the standard basis vectors.

Thus if V0 has a column aligned with a coordinate
axis, then µ = (1−γ)n/r0. Similarly, if V0 is perfectly
incoherent (e.g., if r0 = 1 and every non-zero entry of
V0 has magnitude 1/

√
(1− γ)n ), then µ = 1.

3.2 The Main Result

Although the LRR problem (2) may have multiple so-
lutions, we show that any solution (Z∗, C∗) to (2) ex-
actly recovers the row space of the low-rank matrix
X0, and the column support of C0. The main result
of this paper is shown in the following theorem.

Theorem 1 Suppose a given data matrix X is gener-
ated by X = X0 + C0, where X0 is of rank r0, X has
RWD parameter β and X0 has incoherence parameter
µ. Suppose C0 is supported on γn columns. Let γ∗ be
such that

γ∗

1− γ∗ =
324β2

49(11 + 4β)2µr0
, (6)

then LRR with parameter λ = 3
7∥X∥

√
γ∗n

strictly suc-

ceeds, as long as γ ≤ γ∗ and (3) holds. Here, the suc-
cess is in a sense that any optimal solution (Z∗, C∗)
to (2) can produce

U∗(U∗)T = V0V
T
0 and I∗ = I0, (7)

where U∗ is the column space of Z∗, and I∗ is column
support of C∗.

The performance (i.e., the value of γ∗) of LRR de-
pends on the properties of data, mainly including the
rank r0 (the lower the better), the RWD parameter β
(the larger the better), and the incoherence parame-
ter µ (the smaller the better). Interestingly, the above
theorem also implies that LRR can be used to solve
a challenging PCA problem (which is presented in the
Introduction), which is to recover the column space
with corrupted features (i.e., row-wise corruption). By
solving the transposed version of LRR (see the Intro-
duction), the row space of XT

0 , i.e., the column space
of X0, can be recovered.

3.3 Proof Outline

In this section we provide an outline for the proof of
Theorem 1. The full proof appears in the appendix
section. The proof follows three main steps.

1. Identify the necessary and sufficient conditions
(called equivalent conditions), for any pair
(Z ′, C ′) to produce the exact results (7).

2. For a candidate pair (Z ′, C ′) that respectively has
the desired row space and column support, iden-
tify the sufficient conditions for (Z ′, C ′) to be an
optimal solution to the LRR problem (2). These
conditions are called dual conditions.

3. Show that the dual conditions can be satisfied,
i.e., construct the dual certificates.

Equivalent Conditions: For any feasible pair
(Z ′, C ′) that satisfies X = XZ ′ + C ′, let the SVD
of Z ′ as U ′Σ′V ′T and the column support of C ′ as I ′.
In order to produce the exact results (7), on the one
hand, a necessary condition is that PL

V0
(Z ′) = Z ′ and

PI0(C
′) = C ′, as this is nothing but U ′ is a subspace of
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V0 and I ′ is a subset of I0. On the other hand, it can be
proven that PL

V0
(Z ′) = Z ′ and PI0(C

′) = C ′ are suf-

ficient to ensure U ′U ′T = V0V
T
0 and I ′ = I0. So, the

exactness described in (7) can be equally transformed
into two constraints: PL

V0
(Z ′) = Z ′ and PI0(C

′) = C ′,
which we will use to construct an oracle problem to
facilitate the proof.

Dual Conditions: For the pair (Z ′, C ′) that satisfies
X = XZ ′ + C ′, PL

V0
(Z ′) = Z ′ and PI0(C

′) = C ′, let

the SVD of Z ′ as U ′Σ′V ′T and the column-normalized
version of C ′ as H ′. That is, column [H ′]i =

[C′]i
∥[C′]i∥2

for all i ∈ I0, and [H ′]i = 0 for all i ̸∈ I0 (note that
the column support of C ′ is I0). Furthermore, define
PT ′(·) = PU ′(·) + PV ′(·)− PU ′PV ′(·). With these no-
tations, it can be proven that (Z ′, C ′) is an optimal
solution to LRR if there exists a matrix Q that satis-
fies

PT ′(XTQ) = U ′V ′T , ∥XTQ−PT ′(XTQ)∥ < 1

PI0(Q) = λH ′, ∥Q− PI0(Q)∥2,∞ < λ.

Although the LRR problem (2) may have multiple so-
lutions, it can be further proven that any solution has
the desired row space and column support, provided
the above conditions have been satisfied. So, the left
job is to prove the above dual conditions, i.e., construct
the dual certificates.

Dual Certificates: The construction of dual certifi-
cates mainly concerns a matrix Q that satisfies the
dual conditions. However, since the dual conditions
also depend on the pair (Z ′, C ′), we actually need to
obtain three matrices, Z ′, C ′ and Q. This is done
by considering an alternate optimization problem, of-
ten called the “oracle problem”. The oracle problem
arises by imposing the success conditions as additional
constraints in (2):

min
Z,C

∥Z∥∗ + λ∥C∥2,1

s.t. X = XZ + C,PL
V0
(Z) = Z,PI0(C) = C.

While it is not practical to solve the oracle problem
since V0 and I0 are both unknown, it significantly fa-
cilitate our proof. Note that the above problem is
always feasible, as (V0V

T
0 , C0) is feasible. Thus, an

optimal solution, denoted as (Ẑ, Ĉ), exists. Observe
that because of the two additional constraints, (Ẑ, Ĉ)
satisfies (7). Therefore, to show Theorem 1 holds, it
suffices to show that (Ẑ, Ĉ) is the optimal solution
to LRR. With this perspective, we construct the dual
certificates using (Ẑ, Ĉ). Let the SVD of Ẑ be Û Σ̂V̂ T ,
and the column-normalized version of Ĉ be Ĥ. It is
easy to see that there exists an orthonormal matrix V̄
such that Û V̂ T = V0V̄

T , where V0 is the row space of
X0. Moreover, it is easy to show that PÛ (·) = PL

V0
(·),

PV̂ (·) = PV̄ (·), and hence the operator PT̂ defined by

Û and V̂ , obeys PT̂ (·) = PL
V0
(·)+PV̄ (·)−PL

V0
PV̄ (·). Fi-

nally, the dual certificates are finished by constructing
Q as follows:

Q1 , λPL
V0
(XT Ĥ),

Q2 , λPL
V ⊥
0
PIc

0
PV̄ (I+

∞∑
i=1

(PV̄ PI0PV̄ )
i)PV̄ (X

T Ĥ),

Q , UXΣ−1
X V T

X (V0V̄
T + λXT Ĥ −Q1 −Q2),

where UXΣXV T
X is the SVD of the data matrix X.

4 Experiments

Notice that LRR have been used to achieve state-of-
the-art performances in several applications such as
motion segmentation (Liu et al., 2010a; Liu and Yan,
2011; Favaro et al., 2011), image segmentation (Chen
et al., 2011), saliency detection (Lang et al., 2011) and
face recognition (Liu and Yan, 2011). In particular,
motion segmentation and image segmentation are typ-
ical examples of the subspace segmentation problem.
Also, by using appropriate visual features to describe
the images, saliency detection can be casted into an
example of the outlier detection problem, as shown in
(Lang et al., 2011). So, there have been extensive ex-
periments to verify the effectiveness of LRR. Here, we
shall further show some experimental results to verify
the theoretical results obtained in this paper.

4.1 Numerical Results

Theorem 1 states that there exists a parameter λ
such that LRR can work well while the outlier frac-
tion is not larger than a certain threshold. To ex-
plore this, we construct 5 pairwise disjoint subspaces
{Si}5i=1 whose bases {Ui}5i=1 ∈ R500 are computed by
Ui+1 = TUi, 1 ≤ i ≤ 4, where T is a random ro-
tation and U1 is a random orthonomal matrix of di-
mension 500 × 5. So, each subspace is of dimension
5. We sample 40 data samples from each subspace by
Xi = UiRi, 1 ≤ i ≤ 5 with Ri being a 5 × 40 uniform
matrix with a range from -1 to 1, and construct the
sample matrix X0 as X0 = [X1, · · · , X5]. Some out-
liers are randomly generated from zero mean Gaussian
distribution with standard deviation s, where s is set
to be the averaged absolute value of the samples, i.e.,
the samples and outliers approximately have the same
magnitude.

While fixing all the other configurations, we change
the number of outliers and the parameter λ. Then we
observe whether the recovery is exact or not. Here, the
exactness is in a sense that ∥U∗(U∗)T −V0V

T
0 ∥ < 10−4

(i.e., U∗(U∗)T = V0V
T
0 ), and I∗ = I0 with I∗ = {i :
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Figure 3: The success rates obtained from 50 random trials. (a) When λ = 0.2, the success rates obtained under
various settings of the outlier fraction γ. (b) When the outlier fraction is fixed to be γ = 0.5, plotting the success
rate as a function of the parameter λ. In these experiments, the “success” is measured in terms of exact recovery,
i.e., U∗(U∗)T = V0V

T
0 and I∗ = I0.

Figure 4: Examples of the images in the Yale-Caltech
dataset.

∥[C∗]i∥2 ≥ 10−4∥[X]i∥2}. Figure 3(a) shows that LRR
can be exactly successful while γ ≤ 0.6, and Figure
3(b) illustrates that there exists a parameter range for
obtaining exact recovery. These results are consistent
with the statements in Theorem 1.

4.2 Results on Real Data

4.2.1 Datasets

To test LRR’s effectiveness in the presence of outliers
and noise, we create a dataset by combing Extended
Yale Database B (Lee et al., 2005) and Caltech101
(Li et al., 2004), so called as “Yale-Caltech”. For
Extended Yale Database B, we remove the images
pictured under extreme light conditions. Namely,
we only use the images with view directions smaller
than 45 degrees and light source directions smaller
than 60 degrees, resulting in 1204 authentic samples
approximately drawn from a union of 38 low-rank
subspaces (each face class corresponds to a subspace).
For Caltech101, we only select the classes containing

no more than 40 images, resulting in 609 non-face
outliers. Fig.4 shows some examples of this dataset.

4.2.2 Evaluation Metrics

Segmentation Accuracy (ACC): The segmen-
tation results can be evaluated in a similar way as
classification results. Nevertheless, since segmentation
methods cannot provide the class label for each
cluster, a postprocessing step is needed to assign each
cluster a label: given the ground truth classification
results, the label of a cluster is the index of the
ground truth class that contributes the maximum
number of samples to the cluster. Then, we compute
the segmentation accuracy (ACC) as the percentage
of correctly classified samples.

Areas Under Curve (AUC): As shown in
Theorem 1, the minimizer C∗ (with respect to the
variable C) can be used to detect the outliers that
possibly exist in data. This can be simply done by
finding the nonzero columns of C∗, when all or a
fraction of data samples are clean. For the cases
where the data is noisy and the learnt C∗ only
approximately has sparse column supports, one could
use thresholding strategy; that is, the i-th data vector
of X is judged to be outlier if and only if

∥[C∗]:,i∥2 > δ,

where δ > 0 is a parameter. To evaluate the effective-
ness of outlier detection without choosing a parame-
ter δ, we consider the receiver operator characteristic
(ROC), which is widely used to evaluate the perfor-
mance of binary classifiers. The ROC curve is ob-
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Table 1: Segmentation accuracy (ACC) and AUC
comparison on the Yale-Caltech dataset.

PCA RPCA1 RPCA2,1 LRR
ACC (%) 77.15 82.97 83.72 86.13
AUC 0.9653 0.9819 0.9863 0.9927

tained by trying all possible thresholding values, and
for each value, plotting the true positives rate on the
Y-axis against the false positive rate value on the X-
axis. The areas under the ROC curve, known as AUC,
provides a number for evaluating the quality of outlier
detection. Note that the AUC score is the larger the
better, and always ranges between 0 and 1.

4.2.3 Results

The goal of this test is to identify 609 non-face out-
liers and segment the rest 1204 face images into 38
clusters. The performance of segmentation and out-
lier detection is evaluated by ACC and AUC, respec-
tively. While investigating segmentation performance,
the affinity matrix is computed from all images, includ-
ing both the face images and non-face outliers. How-
ever, for the convenience of evaluation, the outliers and
the corresponding affinities are removed (according to
the ground truth) before obtaining the segmentation
results.

We resize all images into 20×20 pixels and form a data
matrix X of size 400×1813. Table 1 shows the results
of PCA, RPCA1 (Candès et al., 2009), RPCA2,1 (Xu
et al., 2010) and LRR. It can be seen that LRR is bet-
ter than PCA and RPCA methods, in terms of both
subspace segmentation and outlier detection. Here,
the advantages (in terms of subspace segmentation)
of LRR are mainly due to its methodology. More
precisely, LRR directly targets on recovering the row
space V0V

T
0 , which provably determines the segmen-

tation results. In contrast, PCA and RPCA methods
target on recovering the column space U0U

T
0 , which is

designed for dimension reduction. This is why LRR
are better than PCA and RPCA methods as a tool for
subspace segmentation. In terms of outlier detection,
LRR’s advantages mainly come from the fact that this
dataset has a structure of multiple subspaces, which
fits well the assumptions of LRR (Liu et al., 2010a,b).
Whereas, PCA and RPCA methods are based on the
assumption that the data is sampled from a single sub-
space. When the data is drawn from a union of multi-
ple subspaces, PCA and RPCA methods actually treat
those multiple subspaces as a single one. Since the
specifics of the individual subspaces are not well con-
sidered, they may lose some accuracy in the detection
of outliers.

5 Conclusion

This paper studies the problem of subspace segmenta-
tion in the presence of outliers. We analyzed a convex
formulation termed LLR, and showed that the optimal
solution exactly recovers the row space of the authentic
data and identifies the outliers. Since the row space
determines the segmentation of data, LRR can per-
form subspace segmentation and outlier identification
simultaneously.

The analysis presented in this paper differs from pre-
vious work (e.g., Candès et al., 2009; Xu et al., 2010)
largely due to the fact that the dictionary used in (2)
is the data matrix X, as opposed to the (arguably eas-
ier) identity matrix I used in (Candès et al., 2009; Xu
et al., 2010). As a future direction, it is interesting to
see whether the technique presented can be extended
to general dictionary matrices other than X or I.
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