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Abstract

We develop a unified robust linear regression
model and show that it is equivalent to a
general regularization framework to encour-
age sparse-like structure that contains group
Lasso and fused Lasso as specific examples.
This provides a robustness interpretation of
these widely applied Lasso-like algorithms,
and allows us to construct novel generaliza-
tions of Lasso-like algorithms by considering
different uncertainty sets. Using this robust-
ness interpretation, we present new sparsity
results, and establish the statistical consis-
tency of the proposed regularized linear re-
gression. This work extends a classical re-
sult from Xu et al. (2010) that relates stan-
dard Lasso with robust linear regression to
learning problems with more general sparse-
like structures, and provides new robustness-
based tools to to understand learning prob-
lems with sparse-like structures.

1. Introduction

In this paper we establish a unified relationship be-
tween robustness and regularization schemes for vari-
ous sparse-like structures, in the context of linear re-
gression. Linear regression aims to find a vector β
such that y ≈ Xβ, for a given matrix X ∈ Rn×m and
vector y ∈ Rn. From a learning perspective, each row
of X represents a training sample, and the correspond-
ing element of y is the target value or response of this
observed sample. Each column of X corresponds to
a feature, and the objective of linear regression is to
obtain a set of weights so that the weighted sum of the
feature values approximates the target value.
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Regularized linear regression framework – where one
finds the solution that minimizes a weighted combi-
nation of the residual norm and a certain regulariza-
tion term (e.g., Tikhonov & Arsenin, 1977; Tibshirani,
1996) – is now a standard practice in machine learn-
ing and statistics for linear regression. Among differ-
ent regularization schemes, the ℓ1 regularized linear
regression, also termed Lasso (Tibshirani, 1996; Chen
et al., 1998; Efron et al., 2004), is increasingly popu-
lar due to its tendency to select sparse solutions. In-
deed, Lasso has been extremely successful in the high-
dimensional regime, as it allows recovering the true
solution β∗ where the samples are significantly out-
numbered by the dimensionality by exploiting sparse
structure of β∗. Extensive effort has been made to ex-
plain the success of Lasso (e.g., Tropp, 2006; Donoho,
2006; Wainwright, 2009; Bickel et al., 2009; Zhang,
2009, and many others), among which, one interesting
result from Xu et al. (2010) showed that the success
of Lasso is due to its robustness. In particular, they
showed that Lasso is equivalent to a robust linear re-
gression formulation, and such robustness interpreta-
tion implies the sparsity and the consistency of Lasso.

Inspired by the success of Lasso, numerous regular-
ization schemes were proposed to select solutions with
more general sparse-like structures. For example, do-
main knowledge may indicate that the solution is
group sparse, i.e., features can be grouped, and the
features belonging to one group is likely to be either all
non-active (corresponding to the regressor having zero
coefficients), or all active. One example of group spar-
sity appears is measuring gene expression, where ex-
periments show that selecting a few genes that belong
to the same functional groups can lead to increased
interpretability of the predictive signature (Rapaport
et al., 2007). A prominent algorithm proposed to en-
force this sparse-like structure is the group Lasso for-
mulation (Yuan & Lin, 2006), where the regulariza-
tion term is the sum of the ℓ2-norms of the different
groups of features, also called the ℓ1/ℓ2-norm. This
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formulation leads to a sparse selection of the groups
of features. Other examples of Lasso-like algorithms
include the fused Lasso (Tibshirani et al., 2005) that
encourages sparsity of the coefficients and also sparsity
of their differences, the sparse group Lasso (Friedman
et al., 2010) that encourages solutions that are sparse
at both the group and individual feature levels, and
many others.

This paper attempts to explain the success of those
Lasso-like algorithms in a unified way. Our approach
is largely inspired by Xu et al. (2010) – we analyze
these algorithms based on their robustness properties.
In specific, our first result states that a wide range
of regularized linear regression problems including the
aforementioned ones, all have equivalent robust regres-
sion reformulations. This provides a robustness re-
interpretation of a class of regularized linear regression
formulations for sparse-like structured solutions, and
generalizes similar results of standard Lasso showed
in Xu et al. (2010). Moreover, our robustness interpre-
tation leads to new formulation and new analysis. We
derive new regularization variants of Lasso-like algo-
rithms by considering different uncertainty sets of the
robust linear regression formulation. We then present
new sparsity results for the group Lasso, as well as
proofs of consistency of Lasso-like algorithms, all based
on the robustness interpretation. Since robustness is
a geometric concept, our approach gives new analy-
sis and new geometric intuition compared to previous
methods.

Notations. We use lower-case boldface letters to de-
note column vectors and upper-case boldface letters
to denote matrices. The operator vectorizing a matrix
by stacking its columns is denoted by vec(·). For sim-
plicity, we use ∥X∥p to denote the ℓp-norm of vec(X),
e.g. ∥X∥2 is the Frobenius norm ∥X∥F , and ∥X∥∗p to
denote its dual norm. We denote the set {1, · · · ,m}
as [m] and call a subset g of [m] a group. The identity
matrix is denoted by I, the ith element of vector x
is denoted by xi, and the ith column of matrix ∆ is
denoted by ∆i. For vector x and group g, we denote
xg as the vector whose ith element is xi if i ∈ g or
0 otherwise. Similarly, for matrix ∆ and group g, we
denote ∆g as the matrix whose ith column is ∆i if
i ∈ g or 0 otherwise.

2. Unified Robust Framework

This section presents the main result of this paper –
there exists a strong relationship between robust linear
regression and several widely applied variants of Lasso.

2.1. Preliminary

We start by briefly review the result from Xu et al.
(2010) that connects standard Lasso with robust re-
gression. Robust linear regression considers the case
that the observed data is corrupted by some (poten-
tially malicious) disturbance. To protect against such
disturbance, the following min-max formulation is typ-
ically solved:

min
β∈Rm

{max
∆∈U

∥y − (X+∆)β∥p}, (1)

where U is the uncertainty set, or the set of admissi-
ble disturbances of the observed matrix X. Xu et al.
(2010) showed that the robust optimization above is
equivalent to the ℓ1-norm regularized linear regression
(standard Lasso) when the uncertainty set is defined
by feature wise norm constraints:

Theorem 1 (Xu et al. (2010)). The robust regression
problem (1) with the uncertainty set

U = {(δ1, · · · , δm)|∥δi∥2 ≤ ci, i = 1, · · · ,m},

for given ci ≥ 0, is equivalent to the following ℓ1-norm
regularized regression problem:

min
β∈Rm

{∥y −Xβ∥2 +
m∑
i=1

ci|βi|}.

It turns out Theorem 1 not only provides a new insight
of Lasso from a robustness perspective, but is also a
powerful tool to analyze the sparsity and consistency
of Lasso, see Xu et al. (2010) for details.

2.2. Main Results

Given the success of the robust interpretation of Lasso,
it is natural to ask whether different Lasso-like formu-
lations such as the group Lasso or the fused Lasso can
also be reformulated as robust linear regression prob-
lems by selecting appropriate uncertainty sets. We
provide in this section an affirmative answer. To il-
lustrate our general result, we first consider the over-
lapping group Lasso proposed in Yuan & Lin (2006).
The following theorem shows that it is equivalent to a
robust linear regression problem:

Theorem 2. Let the uncertainty set be

U = {∆(1) + · · ·+∆(t)|∥∆(i)
gi ∥2 ≤ cgi and

∥∆(i)
gc
i
∥2 = 0, ∀i ∈ [t]},

(2)

where matrix ∆(i) ∈ Rn×m,
∪t

i=1 gi = [m] and gci =
[m]\ gi, then the robust regression (1) with U is equiv-
alent to

min
β∈Rm

{∥y −Xβ∥2 +
t∑

i=1

cgi∥βgi∥2}. (3)
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Proof. See Appendix. Notice that here and after, the
regression formulations we consider slightly differ from
the more widely used ones, as we minimize the norm of
the error, rather than the squared norm. It is known
that these two coincide up to a change of the regular-
ization coefficient since the empirical error terms and
the regularization terms we discuss are all convex.

Note that the groups defined in Theorem 2 are allowed
to overlap. Theorem 2 shows that the group Lasso for-
mulation is equivalent to the robust linear regression
where the admissible disturbance is given by the norm
constraints on each group gi, as opposed to constraints
on each feature in Theorem 1. Observe that by tak-
ing each feature as one group, Theorem 2 immediately
implies Theorem 1.

We now present our main result that connects variants
of Lasso-like algorithms with the robust linear regres-
sion framework. Consider the following uncertainty
set:

U = {∆(1)W1 + · · ·+∆(t)Wt|

∀i ∈ [t], ∀g ∈ Gi, ∥∆(i)
g ∥p ≤ cg},

(4)

where matrix Wi ∈ Rm×m is fixed, Gi is the set of
the groups, and cg provides the norm bound of group
g of the disturbance. Notice that Gi may contain more
than one groups, and two different groups g1, g2 ∈ Gi

are allowed to overlap, i.e., g1∩g2 ̸= ∅. It is easy to see
that such set contains the uncertainty set considered in
Theorem 2 as a special case, i.e. Gi = {gi, gci } for i ∈
[t]. The next theorem shows that such uncertainty set
provides a unified framework that “encodes” the ridge
regression and many variants of Lasso-like algorithms.

Theorem 3. The robust regression problem (1) with
the uncertainty set (4) is equivalent to the convex reg-
ularized linear regression problem:

min
β∈Rm

{∥y −Xβ∥p +
t∑

i=1

max
∀g∈Gi,∥α(i)

g ∥p≤cg

α(i)⊤Wiβ}.

(5)

Proof. For any fixed β, we have

max
∆∈U

∥y − (X+∆)β∥p

=max
∆∈U

∥y −Xβ −
t∑

i=1

∆(i)Wiβ∥p

≤∥y −Xβ∥p + max
∆∈U

t∑
i=1

∥
m∑
j=1

(Wiβ)j∆
(i)
j ∥p

≤∥y −Xβ∥p + max
∆∈U

t∑
i=1

m∑
j=1

|(Wiβ)j |∥∆(i)
j ∥p.

For clarity, denote

α(i) ≡

[sign((Wiβ)1) · ∥∆(i)
1 ∥p, · · · , sign((Wiβ)m) · ∥∆(i)

m ∥p]⊤.

From the definition of the uncertainty set U , we know
that ∥∆(i)

g ∥p ≤ cg for any i ∈ [t] and g ∈ Gi. Thus,

∥α(i)
g ∥p = ∥∆(i)

g ∥p ≤ cg, and we have

∥y −Xβ∥p + max
∆∈U

t∑
i=1

m∑
j=1

|(Wiβ)j |∥∆(i)
j ∥p

=∥y −Xβ∥p + max
∆∈U

t∑
i=1

α(i)⊤Wiβ

≤∥y −Xβ∥p +
t∑

i=1

max
∀g∈Gi,∥α(i)

g ∥p≤cg

α(i)⊤Wiβ.

On the other hand, let

α
(i)
0 = argmax∀g∈Gi,∥α(i)

g ∥p≤cg
α(i)⊤Wiβ

and

u =

{
y−Xβ

∥y−Xβ∥p
if ∥y −Xβ∥p ̸= 0

any vector with unit ℓp norm otherwise

and then let

∆(i) = −u ·α(i)
0

⊤

From the definition above, we know that ∥∆(i)
g ∥p =

∥α(i)
g ∥p ≤ cg. Thus, we have

max
∆∈U

∥y − (X+∆)β∥p

≥∥y − (X+
t∑

i=1

∆(i)Wi)β∥p

=∥y −Xβ + u
t∑

i=1

α
(i)
0

⊤
Wiβ∥p

=∥y −Xβ∥p +
t∑

i=1

max
∀g∈Gi,∥α(i)

g ∥p≤cg

α(i)⊤Wiβ,

which establishes the theorem.

Indeed, the regularized linear regression (5) is a gen-
eralization for Lasso. By setting t, Gi, Wi and cg
to appropriate values, (5) can be reduced as standard
Lasso, group Lasso, fused Lasso, trend filtering, among
others.

Corollary 1 (Ridge Regression). Suppose that t = 1,
p = 2, W1 = I, G1 = {[m]} and cg = c, then the
robust regression problem (1) is equivalent to

min
β∈Rm

{∥y −Xβ∥2 + c∥β∥2}. (6)
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Ridge regression has been well studied. It shrinks the
regression coefficients β1, · · · , βm by penalizing their
sizes (in terms of ℓ2-norm) to control the complexity
of the regression model.

Corollary 2 (Standard Lasso). Suppose that t = 1,
W1 = I, G1 = {{1}, · · · , {m}} and ci = c{i}, then the
robust regression problem (1) is equivalent to

min
β∈Rm

{∥y −Xβ∥p +
m∑
i=1

ci|βi|}. (7)

The main difference between the ridge regression and
the standard Lasso is that the Lasso penalizes the ℓ1-
norm of the coefficients. The Lasso’s ability to recover
sparse solutions has been extensively explored, and has
found wide applications in statistics, signal processing,
computer vision, bioinformatics, to name a few.

Corollary 3 (Non-overlapping Group Lasso). Sup-
pose that t = 1, W1 = I, G1 = {g1, · · · , gk} and
gi ∩ gj = ∅ for any i ̸= j, then the robust regression
problem (1) is equivalent to

min
β∈Rm

{∥y −Xβ∥p +
k∑

i=1

cgi∥βgi∥
∗
p}. (8)

The non-overlapping group Lasso is an extension of the
standard Lasso, where non-overlapping group struc-
ture of features is known as the prior information. In
particular, features are partitioned into known groups,
and one seeks solutions that select few non-zero groups.
Different from Lasso, group Lasso does not encourage
sparsity inside each group.

Corollary 4 (Overlapping Group Lasso (Jacob et al.,
2009)). Suppose that t = 1, W1 = I, G1 =

{g1, · · · , gk}, and
∪k

i=1 gi = [m], then the robust re-
gression problem (1) is equivalent to

min
β∈Rm

{∥y−Xβ∥p+ min∑
vgi

=β, supp(vgi
)⊆gi

k∑
i=1

cgi∥vgi∥∗p}.

(9)

Different from the overlapping group Lasso formula-
tion (3) proposed in Yuan & Lin (2006) that encour-
ages solutions whose supports are in the complement
of a union of groups (i.e, many groups are all zero),
Formulation (9) tends to select solutions whose sup-
port is contained in a union of potentially overlapping
groups. This is motivated by applications in bioinfor-
matics, e.g., predicting the class of a tumor from gene
expression measurements with microarrays, and simul-
taneously select a few genes to establish a predictive
signature. Figure 1 illustrates the difference between
two group Lasso formulations.

Figure 1. Preferred solutions of the two group Lassos.
Hatched regions indicates non-zero coefficients and un-
hatched regions indicates zero coefficients. (a) Predefined
groups of the coefficient β; (b) One solution that Yuan
& Lin (2006) tends to select; (c) One solution that Jacob
et al. (2009) tends to select.

Corollary 5 (Fused Lasso (Tibshirani et al., 2005)).
Suppose that t = 2, G1 = G2 = {{1}, · · · , {m}}, and

W1 = I, W2 =


1 −1 0 · · · 0
0 1 −1 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 −1
0 · · · 0 0 0

 ,

then the robust regression problem (1) is equivalent to

min
β∈Rm

{∥y −Xβ∥p +
m∑
i=1

ci|βi|+
m−1∑
i=1

c′i|βi − βi+1|},

(10)
where ci and c′i are the “c{i}”s corresponding to the
uncertainty sets of G1 and G2, respectively.

The fused Lasso is motivated by protein mass spec-
troscopy and gene expression profiling. After estimat-
ing an order of data and putting correlated data near
one another, solving it not only encourages sparsity in
the coefficients β1, · · · , βm but also encourages spar-
sity in their differences, which implies that it tends to
select a sparse solution in which nearby coefficients are
similar to each other.

Corollary 6 (Sparse Group Lasso (Friedman et al.,

2010)). Suppose that t = k + 1,
∪k

i=1 gi = [m] and
gci = [m] \ gi. Let Wi = I, Gi = {gi, gci }, cgc

i
= 0 for

i ∈ [k], and let Wk+1 = I, Gk+1 = {{1}, · · · , {m}},
then the robust regression problem (1) is equivalent to

min
β∈Rm

{∥y −Xβ∥p +
k∑

i=1

cgi∥βgi∥
∗
p +

m∑
i=1

ci|βi|} (11)

where ci is equal to c{i}.

The sparse group Lasso blends the standard Lasso with
the group Lasso, and encourages solutions that are
sparse at both the group and the individual feature



Robust Model for Lasso-like Algorithms

levels. Notice that Equation (11) is equivalent to the
elastic net (Zou & Hastie, 2005) when k = 1 and p = 2.

Corollary 7 (Generalized Lasso (Tibshirani & Tay-
lor, 2011)). Suppose that t = 1, W1 = D, G1 =
{{1}, · · · , {m}}, and c{i} = λ, then the robust regres-
sion problem (1) is equivalent to

min
β∈Rm

{∥y −Xβ∥p + λ∥Dβ∥1}. (12)

By making various choices of D, the generalized Lasso
can be reformulated as well-known problems in the
literature: trend filtering (Kim et al., 2009), etc.

Remark. While the inner maximization of the robust
linear regression problem (1) over the uncertainty set
(4) is non-convex, Theorem 3 shows that it can be
solved efficiently as it is equivalent to a convex opti-
mization problem (5). In particular, by strong duality,
the optimization problem (5) is equivalent to

min
β,v

(i)
g

∥y −Xβ∥p +
t∑

i=1

∑
g∈Gi

cg∥v(i)
g ∥∗p

s.t.
∑
g∈Gi

∥v(i)
g ∥∗p = Wiβ, ∀i ∈ [t]

A(i)
g v(i)

g = 0, ∀i ∈ [t], ∀g ∈ Gi,

where v
(i)
g ∈ Rm is a decision variable and A

(i)
g ∈

R(m−|g|)×m is a constant matrix defined as A
(i)
g =

(ei1 , · · · , eik)⊤ where k = m − |g|, {i1, · · · , ik} = gc,
and ei is the ith unit base vector. This is a linear
constrained convex optimization problem which can
be solved efficiently using off-the-shelf methods. In
addition, for special case such as the non-overlapping
group Lasso, more scalable codes are available (e.g.,
Meier et al., 2008; Roth & Fischer, 2008).

3. General Uncertainty Sets

As discussed above, we assume that the disturbance
of each group is bounded individually, then the ro-
bust linear regression (1) can be reformulated as the
regularized linear regression (5) which is a generalized
formulation for Lasso-like algorithms. In this section,
we provide a more generalized formulation of the un-
certainty set.

Consider the following uncertainty set Û :

Û = {∆(1)W1 + · · ·+∆(t)Wt | c ∈ Z;

∀i ∈ [t], ∀g ∈ Gi, ∥∆(i)
g ∥p ≤ cg},

(13)

where Gi is the set of groups of disturbance ∆(i), c
is the vector whose elements are the norm bounds

cg of all the groups contained in G1, · · · , Gt, e.g.
c = (cg1 , · · · , cgn), and Z is the feasible set of c. If

Z has only one element, then Û is equivalent to the
uncertainty set U which is defined as (4) where cg is

fixed. Hence, the set Û is a very general formulation,
and provides us with significant flexibility in designing
uncertainty sets and equivalently new regression algo-
rithms. In particular, we consider Z given by a set of
convex constraints, i.e.,

Z = {z ∈ Rk|fi(z) ≤ 0, ∀i ∈ [q]; z ≥ 0}, (14)

where each fi(z) is a convex function and k =∑t
i=1 |Gi| (|Gi| is the cardinality of Gi), and Z has

non-empty relative interior.

Under these assumptions, we have the following the-
orem showing that the robust regression problem (1)
with uncertainty set Û can be converted to a tractable
convex optimization problem.

Theorem 4. The robust regression problem with the
uncertainty set (13)

min
β∈Rm

{max
∆∈Û

∥y − (X+∆)β∥p}

is equivalent to

min
λ∈Rq

+,κ∈Rk
+,β∈Rm

{∥y −Xβ∥p + υ(λ,κ,β)} (15)

where

υ(λ,κ,β) = max
c∈Rk

{
t∑

i=1

max
∀g∈Gi,∥α(i)

g ∥p≤cg

α(i)⊤Wiβ+

κ⊤c−
q∑

i=1

λifi(c)}.

Furthermore, the equivalent optimization problem (15)
is convex and tractable.

Proof. We prove this theorem by using Theorem 3 and
the duality. See Appendix for more details.

One interesting implication of Theorem 4 is that by
choosing “proper” uncertainty sets, we can simplify
(15) and obtain new regularized linear regression for-
mulations. We provide some examples to illustrate this
in the rest of this section. The notations used follow
those in Theorem 3.

Corollary 8. Suppose that the uncertainty set Û =
{∆|∃ c ∈ Rm such that c ≥ 0 and ∥cgi∥∗q ≤ si, ∀i ∈
[k]; ∥∆j∥ ≤ cj , ∀j ∈ [m]}, then the equivalent linear
regularized regression problem is

min
β∈Rm

{∥y −Xβ∥p +
k∑

i=1

si∥βgi∥q},
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where ∥ · ∥∗q is the dual norm of ∥ · ∥q,
∪k

i=1 gi = [m],
and gi ∩ gj = ∅ for i ̸= j.

Proof. From Theorem 3 and Theorem 4, we have

min
λ∈R+,κ∈Rm

+

υ(λ,κ,β)

= min
λ∈R+,κ∈Rm

+

max
c∈Rm

{
m∑
i=1

(κi + |βi|)ci−

k∑
i=1

λi(∥cgi∥∗q + si)}.

Define rgi as the vector whose j
th elements is κj + |βj |

for all j ∈ gi, then the equation above is equivalent to

min
λ∈R+,κ∈Rm

+ |∥rgi∥q≤λi,∀i∈[k]
λ⊤s =

k∑
i=1

si∥βgi∥q,

which establishes the corollary.

This corollary interprets arbitrary norm-based regu-
larizers for the non-overlapping group Lasso from a
robust regression perspective. By choosing different
norms that bound cgi for i ∈ [k], different regulariza-
tion terms are obtained, which implies that the effect
of the regularization term of Lasso is selecting a proper
uncertainty set of the observed matrix.

Remark. For the overlapping group Lasso (Yuan &
Lin, 2006), the same result holds by adding more dis-
turbances to the overlapping columns of the observed
matrix. See Appendix for more details.

We now consider a polytope uncertainty set in which
there exists an additional constraint bounding the to-
tal disturbance besides the norm bound for distur-
bance on each group.

Corollary 9. Suppose that Û = {
∑t

i=1 ∆
(i) | ∃ 0 ≤

c ≤ s :
∑t

i=1 ci/si ≤ θ; ∥∆(i)
gi ∥p ≤ ci, ∥∆(i)

gc
i
∥p =

0, ∀i ∈ [t]}, then the equivalent linear regularized re-
gression problem is as follows

min
β,λ

∥y −Xβ∥p +
t∑

i=1

[si∥βgi∥
∗
p − λ]+ + λθ

s.t. λ ≥ 0

(16)

where [x]+ = max{x, 0}.

Proof. From Theorem 2 and Theorem 4, we have

υ(λ,κ,β) = max
c

t∑
i=1

ci(∥βgi∥
∗
p −

λ

si
)+

(κ− λ̄)⊤c+ λ̄
⊤
s+ λθ.

Thus, υ(λ,κ,β) = λ̄
⊤
s + λθ and κi = λ̄i + λ/si −

∥βgi∥
∗
p, ∀i ∈ [t], which implies that the robust regres-

sion is equivalent to

min
β,λ

∥y −Xβ∥p + λ̄
⊤
s+ λθ

s.t. ∥βgi∥
∗
p − λ/si ≤ λ̄i, ∀i ∈ [t],

λ ≥ 0, λ̄ ≥ 0,

which is also equivalent to (16).

Notice that when θ = t, the above formulation reduces
to the overlapping group Lasso. On the other hand,
when θ = 0, it is equivalent to the linear least square
problem. Hence, this formulation allows us to control
the desired group sparsity level using only one param-
eter θ .

4. Sparsity

The standard Lasso’s ability to recover spare solutions
has been extensively studied (Chen et al., 1998; Feuer
& Nemirovski, 2003; Candes et al., 2006; Tropp, 2004;
2006), and the sparsity properties of the group Lasso
have also been explored (Huang et al., 2009a;b; Per-
cival, 2011). These results typically take one of two
approaches – treating the problem from either a sta-
tistical or optimization perspective. In this section,
we investigate the sparsity properties of the robust re-
gression and equivalently non-overlapping/overlapping
group Lasso from a robust optimization perspective,
and provides a geometric interpretation for sparsity.
We consider first the overlapping group Lasso.

Theorem 5. For the overlapping group Lasso

min
β∈Rm

{∥y −Xβ∥2 + c
t∑

i=1

∥βgi∥2}

where
∪t

i=1 gi = [m], if there exists I ⊂ [t] such that
for an orthonormal base V of span({Xj , j ∈ [m] \∪

i∈I gi} ∪ {y}), we have ∥VV⊤Xgi∥2 ≤ c for i ∈ I,
then any optimal solution β∗ satisfies that β∗

gi = 0 for
i ∈ I.

Proof. From Theorem 2, we know that the overlapping
group Lasso is equivalent to

min
β

max
∆∈U

∥y − (X+∆)β∥2, (17)

where the uncertainty set U is as follows

U = {
t∑

i=1

∆(i) | ∀i, ∥∆(i)
gi ∥2 ≤ c and ∥∆(i)

gc
i
∥2 = 0}.
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Recall that it is allowed that gi ∩ gj ̸= ∅ for i ̸= j. We
define group ĝi as

ĝi =

{
gi i ∈ I;

gi −
∪

j∈I gj i ̸∈ I,

and consider the following uncertainty set

Û = {
t∑

i=1

∆(i) | ∀i, ∥∆(i)
ĝi
∥2 ≤ c and ∥∆(i)

ĝc
i
∥2 = 0},

then we have Û ⊆ U since ĝi ⊆ gi, ∀i ∈ [t]. Thus,

min
β

max
∆∈Û

∥y−(X+∆)β∥2 ≤ min
β

max
∆∈U

∥y−(X+∆)β∥2.

(18)
Let X̄ be a matrix whose ith column is

X̄i =

{
Xi i ̸∈

∪
j∈I ĝj

Xi −VV⊤Xi i ∈
∪

j∈I ĝj ,
(19)

then from the condition ∥VV⊤Xĝi∥2 ≤ c for i ∈ I, we
have ∥(X− X̄)ĝi∥2 ≤ c for i ∈ I. Now let

Ū = {∆(1) + · · ·+∆(t) | ∥∆(i)
ĝi
∥2 ≤ c and

∥∆(i)
ĝc
i
∥2 = 0 for i ̸∈ I; ∥∆(i)∥2 = 0 for i ∈ I},

and consider the following robust regression problem

min
β

max
∆∈Ū

∥y − (X̄+∆)β∥2,

which is equivalent to

min
β

{∥y − X̄β∥2 + c
∑
i ̸∈I

∥βĝi∥2}. (20)

We denote the optimal solution of (20) as β̄
∗
. From

the definition of X̄, we know that each column of X̄ĝi

for i ∈ I is orthogonal to the span of {Xĝi , i ̸∈ I} ∪
{y}. Hence by changing β̄

∗
ĝi to 0 for all i ∈ I, the

minimizing objective does not increase. This implies
that the optimal solution β̄

∗
satisfies that β̄

∗
gi = 0 for

i ∈ I.

We now prove that β̄
∗
is also the optimal solution of

the overlapping group Lasso. We first show that

min
β

max
∆∈Ū

∥y − (X̄+∆)β∥2

≤min
β

max
∆∈Û

∥y − (X+∆)β∥2

≤min
β

max
∆∈U

∥y − (X+∆)β∥2.

(21)

For any X, X̄ (defined by (19)) and ∆̄ ∈ Ū such that
∥(X − X̄)ĝi∥p ≤ c for i ∈ I, there exists ∆ ∈ Û such
that X̄ + ∆̄ = X + ∆, which implies {X̄ + ∆̄|∆̄ ∈

Ū} ⊆ {X + ∆|∆ ∈ Û}. Thus, Inequality (21) holds.
On the other hand, since β̄

∗
gi = 0 for i ∈ I, we have

max
∆∈Ū

∥y − (X̄+∆)β̄
∗∥2

=max
∆∈Û

∥y − (X+∆)β̄
∗∥2

=max
∆∈U

∥y − (X+∆)β̄
∗∥2,

(22)

then for an arbitrary β, the following inequality holds

max
∆∈U

∥y − (X+∆)β̄
∗∥2 ≤ max

∆∈U
∥y − (X+∆)β∥2,

which implies that β̄
∗
is the optimal solution of the

overlapping group Lasso. Hence we establish the the-
orem.

Theorem 5 gives a geometric interpretation of the spar-
sity properties of the overlapping group Lasso based on
its robustness. Indeed, it shows that a set of groups
of features all receive zero weight if there exists an ad-
missible perturbation of each group which makes their
features orthogonal to the other ones. As a special
case, if the groups are non-overlapping (i.e., gi∩gj = ∅
for i ̸= j), we have the following theorem that shows
the sparsity properties of the non-overlapping group
Lasso.

Corollary 10. If there exists I ⊂ [t] such that for
an orthonormal base V of span({Xgj , j ̸∈ I} ∪ {y}),
we have ∥VV⊤Xgi∥2 ≤ c for i ∈ I, then any opti-
mal solution β∗ of the non-overlapping group Lasso
(8) satisfies that β∗

gi = 0 for i ∈ I.

5. Consistency

In this section, we investigate statistical property of
the regularized linear regression formulation (5), and
show that it is asymptotically consistent by using the
robust properties derived from its equivalence with the
robust linear regression (1). The proofs of our re-
sults largely follow the same framework proposed in
Xu et al. (2010). The main idea of the proofs is as fol-
lows: We show that the robust optimization formula-
tion (1) can be seen to be the maximum expected error
with respect to a class of probability measures. This
class includes a kernel density estimator, and using
this, we can prove that the regularized linear regres-
sion is consistent. However, because the uncertainty
set we consider is more complicated than the one in-
vestigated in Xu et al. (2010) (which corresponds to
the standard Lasso), the construction of the class of
probability measures is more involved.

Using the same notation, we define Ḡi = {g ∈ Gi|cg ̸=
0} and assume that

∪t
i=1 Ḡi = [m], i.e., each feature
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is contained in at least one group to ensure that all
features are regularized. We restrict our discussion to
the case that Wi = I for i ∈ [t] and cg for each group
g equals either

√
ncn (n is the number of the samples)

or 0, and establish the statistical consistency of the
regularized linear regression (5) from a distributional
robustness argument. Let P be a probability mea-
sure with bounded support that generates i.i.d sam-
ples (bi, r

⊤
i ), and has a density f(·). Denote the set of

the first n samples by Sn and define

β(cn, Sn) = argmin
β

{

√√√√ 1

n

n∑
i=1

(bi − r⊤i β)
2+

t∑
i=1

max
∀g∈Ḡi,∥α(i)

g ∥2≤cn

α(i)⊤β},

β(P ) = argmin
β

{

√∫
b,r

(bi − r⊤i β)
2dP (b, r)}.

Thus, β(cn, Sn) is the solution to the regularized linear
regression (5) with the tradeoff parameter set to

√
ncn,

and β(P ) is the “true” optimal solution. We have the
following consistency results.

Theorem 6. Let {cn} be such that cn ↓ 0 and
limn→∞ n(cn)

m+1 = ∞. Suppose there exists a con-
stant H such that ∥β(cn, Sn)∥2 ≤ H almost surely.
Then

lim
n→∞

√∫
b,r

(bi − r⊤i β(cn, Sn))2dP (b, r) =√∫
b,r

(bi − r⊤i β(P ))2dP (b, r),

almost surely.

Proof. We sketch the proof. We first show that the
equivalent robust regression (1) over the training data
is equal to the worst-case expected generalization error
among a set of distributions. Then, we show that such
set of distributions includes a kernel density estimator
for the true (unknown) distribution of the samples.
Finally, using the fact that the kernel density estimator
converges to the true density function almost surely
when cn ↓ 0 and limn→∞ n(cn)

m+1 = ∞, we can prove
the consistency. See Appendix for more details.

Remark. In the first step of the above proof, the set
of distributions is the union of classes of distributions
corresponding to disturbance in hyper-rectangle Borel
sets Z1, · · · , Zn centered at (bi, r

⊤
i ) with lengths de-

pending on cn and the constraints on the uncertainty

set ∆. Since in Xu et al. (2010), only the constraint
that the norm of each column of ∆ is bounded is con-
sidered, such Borel sets can be easily constructed for
the standard Lasso. In contrast, in this paper, we
consider the case where ∆ =

∑t
i=1 ∆

(i) and the con-

straints are imposed on feature groups ∆(i)
g for g ∈ Gi.

Since two groups gi and gj may have overlapping ele-
ments, this case is much more general than Xu et al.
(2010) and the construction of the Borel sets is more
difficult. Yet, we can still show that such Borel sets
can be constructed, and the kernel density estimator is
included in the set of distributions formed by the con-
structed Borel sets. See Appendix for more details.

Indeed, the assumption that ∥β(cn, Sn)∥2 ≤ H in The-
orem 6 can be removed, and the consistency result
still holds. See the Appendix for the theorem and
the proof. Notice that Theorem 6 implies that stan-
dard Lasso, group Lasso and sparse group Lasso are all
asymptotically consistent. Follow the same road map
but with more involved analysis, one can show that
that fused Lasso is also asymptotically consistent.

6. Conclusions

In this paper, we investigated a unified approach to ex-
plain the success of algorithms that encourage various
sparse-like structures based on the concept of robust-
ness. In particular, we considered robust linear re-
gression where the perturbations are constrained with
respect to each group of features, and show that this
formulation is equivalent to a regularized linear re-
gression framework that contains several widely used
Lasso-like algorithms such as fused Lasso. This hence
provides a robustness based interpretation of such al-
gorithms. Moreover, we established sparsity property
and statistical consistency of group Lasso from this
robustness perspective. The main thrust of this work
is to extend a classical result that relates standard
Lasso with robust linear regression (Xu et al., 2010) to
learning problems with more general sparse-like struc-
tures. Achieving this makes it possible to understand
these problems by analyzing the respective uncertainty
sets, and will eventually enable us to design new al-
gorithms to specific learning tasks that has superior
performance than existing approaches.
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