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A Kalman Filter Design Based on the
Performance/Robustness Tradeoff

Huan Xu and Shie Mannor, Senior Member, IEEE

Abstract—We consider filter design of a linear system with parameter
uncertainty. In contrast to the robust Kalman filter which focuses on a
worst case analysis, we propose a design methodology based on iteratively
solving a tradeoff problem between nominal performance and robustness
to the uncertainty. Our proposed filter can be computed online efficiently,
is steady-state stable, and is less conservative than the robust filter.

Index Terms—Kalman filter, robust, tradeoff.

I. INTRODUCTION

The Kalman filter addresses the estimation problem for linear sys-
tems, and is widely used in many fields including control, finance, com-
munication etc (e.g., [1], [2]). One central assumption of the Kalman
filter is that the underlying state-space model is exactly known. In prac-
tice, this assumption is often violated, i.e., the parameters we use as the
system dynamics (referred as nominal parameters hereafter) are only
guesses of the unknown true parameters. It is reported (e.g., [3]–[5])
that in this case, the performance of the Kalman filter can deteriorate
significantly. In [6], Sayed proposed a filtering framework based on
a worst-case analysis (hereafter referred to as the robust filter), i.e.,
instead of iteratively minimizing the regularized residual norm as the
standard Kalman filter does, the robust filter minimizes the worst-pos-
sible regularized residual norm over the set of admissible uncertainty.

Empirical studies show that the Kalman filter and the robust filter
perform well in different setups: the performance (measured by the
steady-state error variance) of the robust filter is significantly better
than the Kalman filter when the uncertainty is large; but under small
uncertainty, its performance is not satisfactory, indicating over-conser-
vativeness comparing to the standard Kalman filter. Furthermore, the
robust filter usually has a slower transient response. Therefore, a filter
that exhibits a similar performance to the better filter under all cases is
desirable.

In thisnote,wepresentanewfilterdesignapproachtoachieve thisgoal
by interpolating the standard Kalman filter and the robust filter. To be
more specific, in each iteration, the proposed filter finds a Pareto efficient
filteredestimationbyminimizing theconvexcombinationof thenominal
regularized residue (the criterion of the Kalman filter) and the worst-case
regularized residue(thecriterionof the robustfilter).Thisapproach leads
to an optimization problem that can be solved recursively similarly to
the Kalman filter and hence can be applied on-line. The proposed filter
is stable and achieves bounded error-variance. Simulations show that the
proposed filter exhibits a similar performance to the better one between
the Kalman filter and the robust filter. That is, the performance of pro-
posed filter is similar to the Kalman filter under small uncertainty, and
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is comparable to the robust filter under large uncertainty. Therefore, the
proposed filter is suitable for a wider range of problem setups.

We need to point out that the proposed filter achieves good tradeoff
because it is the only interpolating method that achieves Pareto
efficiency between the nominal performance given by the nominal
residue and the robustness given by the worst residue. There are
several other “robust” filters designs based on ����� robust control
(e.g., [7]–[12]), set-inclusive robust optimization (e.g., [13], [14]),
and guaranteed error variance minimization (e.g., [12], [15], [16]).
The main difference is that these methods performs de-regularization,
and hence need to check certain existence condition in each iteration.
If the existence condition fails at some step, the robustness of the
filter is not valid anymore. Furthermore, de-regularization leads to a
computationally expensive algorithm, and hence is often not suitable
in on-line application. See [6] for a more detailed comparison among
different robust filter design methodologies.

The note is organized as follows. We formulate the filtering design
as an optimization problem in Section II, and show how to solve it
in Section III, which leads to the recursive formula of the proposed
filter in Section IV. In Section V and Section VI we investigate the
theoretical and empirical behavior of the proposed filter, respectively.
Some concluding remarks are given in Section VII.

Notations: We use capital letters and boldface letters to denote ma-
trices and column vectors respectively. Without further explanations,
� � � stands for Euclidean norm for vectors, and largest singular value
for matrices. The notation �������� stands for a column vector with
entries � and �, and ���	�
��� denotes a block diagonal matrix with
entries
 and�. Given a column vector � and a positive definite matrix
� , ����� stands for ����.

II. FILTER FORMULATION

We consider the following system:

���� ��� ������������ � ��� ������������

�� ����� � ��� � � �� �� � � � � (1)

Here, �, ��, ��, ���� and ���� are known matrices and �� are un-
known matrix with ���� � �. The variance of the initial state �� is
��, and the driving noises �� and �� are white, zero mean and un-
correlated, with variance �� and �� respectively. This formulation is
standard in robust filter design [6], [12]. We denote the estimation of ��
given observation ���� � � � ���� by 	���� , and denote its error variance
by ���� . Furthermore, 	�� and �� denote 	������ and ������ respectively.
We assume ���� to be invertible, which can be relaxed because the final
recursion form is independent of ���

��� .
Both the Kalman filter and the robust filter iteratively find the

optimal/robust smoothing estimation and propagate them respectively
(e.g., [1], [2], [6]),
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Note that the cost function for the Kalman filter is the error variance
under the nominal parameters, whereas the cost function for the robust
filter is the worst case error variance. Hence the former criterion stands
for the nominal performance of the smoothed estimation, and the latter
represents how robust the smoothed estimation is. Ideally, a good esti-
mation should perform well (in the sense of Pareto efficiency) for both
criteria. This is equivalent to a minimizer of their convex combination,
which leads to the proposed filter:

Proposed Filter: Fix � � ��� ��
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Since both criteria are convex functions, not only any minimizer of the
convex combination is Pareto efficient, but any Pareto efficient solu-
tion must minimize the convex combination for some �. Hence, this
formulation computes all the solutions that achieve good tradeoff be-
tween the nominal performance and the robustness. This is different
from other interpolation such as shrinking the uncertainty set, where
the Pareto efficiency is not guaranteed.

III. SOLVING THE MINIMIZATION PROBLEM

To minimize Problem (2), we denote
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We can rewritten Problem (2) as

�	
��
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� ����
�
� �

�
��� ��
� � ���� �
�� ��

���� �� ���
����	���

�
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 � (3)

Problem (3) is a bilevel optimization problem which is generally
NP-hard. However, following a similar argument as [17], we show
this special problem can be efficiently solved by converting into
a unimodal scalar optimization problem. Before giving the main
result of this section, we need to define the following functions of
� � �����������:
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Here, �	�� stands for the pseudo inverse of a matrix. Note that � �

�, ��	� is convex, and � 
 ������ implies � ��� 
 �, hence
the definitions of ����� and ���� are valid, because the part in the
curled bracket is strictly convex on �. Therefore, for any given �we can
evaluate ����� and ����. The next theorem shows that the optimal �
for Problem (3) can be evaluated by minimizing���� using line search
and substituting the minimizer into ���	�.

Theorem 1:
1) Let ��

�
� �	
����� 
�����, we have
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2) On � 
 ������,���� has only one local minimum, which is
also its global minimum.
Proof: Define ������
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and �� ���
�
� � � ����� � ��������� , for � �

�����������. Hence � ��� � �� � ��� �� �� ���. Lemma 1
describes the property of ������; its proof can be found in [17].

Lemma 1:
a) Function �������	��������� is convex on �.
b) For all �,
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We now show that ��	� is unimodal. Denote ���� ��
�
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Hence ���� � ������� ��. Note that ���� is strictly convex and
goes to infinity whenever ��� � �, which implies ���� is unimodal
and has a unique global minimum. Also note that ���� �� has the fol-
lowing property: fix one variable, then it is a unimodal function of the
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other variable and achieves unique minimum on its domain. This, com-
bined with the continuity of �����, establishes the unimodality of����
by applying Lemma C.2 in [17].

Since ���� � ���� � �� yields a closed form for �����

�
���� � � � �

�
� ����� ��� ������ ��

��

� �
�
� ����� ��� ������ � 	 (4)

IV. RECURSION FORMULA OF THE FILTER

Substituting (4) into Problem (2) and with some algebra which can
be found in the longer version [18], we obtain the recursion formula
of the proposed filter. We present the prediction form which propa-
gates ����
 ���, whereas the measurement-update form which propa-
gates ������
 ����� can be found in [18]. The recursion formula of the
proposed filter is a modified version of the Robust filter, where � are
the modifications. In addition, ���� and hence �� are also different.

Algorithm 1: Prediction form

1) Initialize: ��� �� �, �� �� 	�, ��� �� ��.
2) Given ���
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V. STEADY-STATE ANALYSIS

In this section we studies steady-state characteristics of the proposed
filter, namely closed-loop stability and bounded error-variance. Sim-
ilarly to [6], we restrict our discussion to uncertainty models where
all parameters are stationary, except 
�, and drop the subscript �. Fur-
ther assume the uncertainty only appears in � matrix. Hence, we have
�� � � and �� � �. In addition, we approximate �� by setting
�� �� �� � ����������� for some � � �. The next the-
orem shows that the proposed filter converges to a stable steady-state
filter.

Theorem 2: Assume that ��
� is detectable and ��
������ is
stabilizable. Then, for any initial condition	� � �, the Riccati variable
�� converges to the unique solution of
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Furthermore, the solution � is semi-definite positive, and the steady
state closed loop matrix �	
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Now consider the closed loop gain
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The positive definiteness of �� guarantees that is well defined. Hence,
detectability of ��
� and the stablizability of ��
������ guarantee
that �� converges to the unique positive semi-definite solution � of
(5), which stabilizes the matrix � �� ��

�
�� ��

�
����. The

stability follows for this matrix equals to the steady state closed loop
gain �	.

Further assume that the system is quadratically stable, i.e, there ex-
ists a matrix � � � such that

� � �� ��
�� �
�
� �� ��
�� � � �
 	�
� 
 �	

which is equivalent to a stable � and a bounded norm ������ �
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The following theorem shows that the error-variance is uniformly
bounded, which is equivalent to saying that the extended system is
stable and has a � norm less than 1.

Theorem 3: Let �� be the estimation error, for any � � � such that
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Then the error variance satisfies ������ �����
�

� � ���, where ���
is the (1,1) block entries of � . Furthermore, such � is guaranteed to
exist.

Proof: Define estimation error ���
�
� �� � ��� , and
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Hence the extended state equation holds
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Introduce a similarity transformation:
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Hence the first part (i.e., the nominal matrix, denote as ��) is stable
since � and �� are stable.

Furthermore, the following equality:
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�

shows that the extended system has a same ��-norm as the original
system. Hence the extended system is quadratically stable. Thus, there
exists a positive definite matrix � such that
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By scaling � large enough, we can find a positive � such that
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then the following recursion formula holds
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Subtracting (8) from (7) we get
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for some �� 	 �. The quadratic stability of � 
 ��� implies that
� �
� 	 �.

VI. SIMULATION STUDY

In this section, we investigate the empirical performance of the pro-
posed filter in three parameter setups that differ in the relative magni-
tude of the uncertainty. The following numerical example is frequently
used in robust filtering design (e.g., [6], [12])

���� �
������ ������ 
 �����

��� ������
�� 
 ��

�� � ��� ��� 
 ��

where � �
������ ������

������ ������
� � �, �� � �	�� ��.

We note that the uncertainty only affects the ����. and the magnitude
of the nominal parameter and the uncertainty are of the same order. The
tradeoff parameter � is set to 0.8. The error variance is averaged from
500 trajectories.

Fig. 1. Error variance curves: (a) fixed uncertainty; (b) time-varying uncer-
tainty.

Fig. 2. Error variance curves for large uncertainty: (a) fixed uncertainty; (b)
time-varying uncertainty.

In Fig. 1(a), the uncertainty � is generated according to a uniform
distribution in [�1, 1], and is fixed for the whole trajectory. In Fig. 1(b),
the uncertainty is re-generated in each step. In both cases, the proposed
filter exhibits a similar steady-state performance to the robust filter, and
a faster transient response (i.e., smaller error in the transient stages). We
also observe that, for the non-stationary case, the robust filter preforms
worse probably due to the fact that time varying uncertainties cancel
out.

In Fig. 2, we depict the case with large uncertainty by setting ���� �
������ 
 ������. In such situation, the performance of the Kalman
filter degrades significantly. In contrast, the steady-state error of the
proposed filter is only 1 dB worse than the robust filter in the fixed un-
certainty case, and is comparable to the robust filter in the time-varying
case. This shows that the proposed filter achieves a comparable robust-
ness as the robust filter.

In Fig. 3, we investigate the small uncertainty case by enlarging
nominal parameters, i.e., ���� � ������ 
 �������. The robust filter
achieves a steady-state error variance around 23 dB, while both the
Kalman filter and the proposed filter achieve a steady-state error around
16 dB. This shows that the robust filter could be overly conservative
when the uncertainty is comparatively small, whereas the proposed
filter does not suffer from such conservativeness.

We further simulate the steady-state error-variance for different �
under different uncertainty ratio. Here, � � � and � � � are the ro-
bust filter and the Kalman filter, respectively; � � � is the original
example. We increase the uncertainty when �  �, and increase the
nominal parameter when � � �. Fig. 4 shows that when � is small,
(i.e., uncertainty is relatively small), larger � achieves better perfor-
mance. That is, for small uncertainty, focusing on robustness can de-
grade the performance. On the other hand, for large uncertainty, the
steady-state error for the Kalman filter is large. In contrast, even for
� � ���� which means the robust part has a small effect, the proposed
filter achieves a much better performance. The overall most-balanced
filter in this example is achieved by taking � � ���, which is also our
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Fig. 3. Error variance curves for large nominal value: (a) fixed uncertainty; (b)
time-varying uncertainty.

Fig. 4. Effect of � on steady-state error.

suggestion for the tradeoff parameter. The exact value of � is not sen-
sitive, for example, choosing � � ��� instead works well too.

To summarize, the simulation study shows that both the Kalman filter
and the robust filter are sensitive to the relative magnitude of the un-
certainty. In contrast, in all three cases, the proposed filter exhibits a
performance comparable to the better one, and therefore is suitable for
a wider range of problems.

VII. CONCLUSION

In this note, we presented a new algorithm for state estimation of a
linear system with uncertainty in the parameters. This filter iteratively
finds a smoothed estimation that is Pareto efficient between the nominal
performance and the worst performance. The resulting recursive form
has a computational cost comparable to the standard Kalman filter,
hence can be easily implemented on-line. Under certain technical con-
ditions, the proposed filter converges to a stable steady-state estimator
and achieves bounded error-variance. Simulation studies show that the
proposed filter overcomes both the sensitivity of the Kalman filter and
the overly conservativeness of the robust filter, and hence achieves sat-
isfactory performance under a wider range of parameters.

The main motivation of the proposed approach is obtaining more
flexibility in filter design while retaining the computational efficiency.
As the simulation study showed, the performance of both the Kalman
filter and the robust filter depend on the parameter settings. That is, each
of the filters can perform rather poorly under unsuitable parameters.
Whether a problem setting is suitable for these filters may not be known
beforehand, except a general guideline that small uncertainty favors

the standard Kalman filter and large uncertainty favors the robust filter.
Moreover, the problem parameters can be time varying. The proposed
filter therefore facilitates flexibility since the quality of its performance
does not vary dramatically if the magnitude of the uncertainty is not
specified perfectly.

ACKNOWLEDGMENT

The authors would like to thank C. Caramanis, for interesting discus-
sions and comments, and the anonymous reviewers, whose comments
led to substantial improvements of the technical note.

REFERENCES

[1] A. Bryson, Jr. and Y. C. Ho, Applied Optimal Control: Optimization,
Estimation and Control. New York: Wiley, 1975.

[2] T. Kailath, A. H. Sayed, and B. Hassibi, Linear Estimation. Engle-
wood Cliffs, NJ: Prentice-Hall, 2000.

[3] Applied Optimal Estimation, A. Gelb, Ed. Cambridge, MA: MIT
Press, 1974.

[4] Kalman Filtering: Theory and Application, H. W. Sorenson, Ed. New
York: IEEE Press, 1985.

[5] M. S. Grewal and A. P. Andrews, Kalman Filtering: Theory and Prac-
tice. Englewood Cliffs, NJ: Prentice-Hall, 1993.

[6] A. H. Sayed, “A framework for state-space estimation with uncertain
models,” IEEE Trans. Automat. Control, vol. 46, no. 7, pp. 998–1013,
Jul. 2001.

[7] P. P. Khargonekar and K. M. Nagpal, “Filtering and smoothing in
an � -setting,” IEEE Trans. Automat. Control, vol. 36, no. 2, pp.
152–166, Feb. 1991.

[8] T. Basar and P. Bernhard, � -Optimal Control and Related Min-
imax Design Problems: A Dynamic Game Approach. Boston, MA:
Birkhauser, 1991.

[9] U. Shaked and Y. Theodor, “ � -optimal estimation: A tutorial,” in
Proc. IEEE Conf. Decision Control, 1992, pp. 2278–2286.

[10] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control.
Upper Saddle River, NJ: Prentice-Hall, 1996.

[11] B. Hassibi, A. H. Sayed, and T. Kailath, Indefinite Quadratic Estima-
tion and Control: A Unified Approach to � and � Theories.
Philadelphia, PA: SIAM, 1999.

[12] I. R. Petersen and A. V. Savkin, Robust Kalman Filtering for Sig-
nals and Syustems With Large Uncertainties. Boston, MA: Birkauser,
1999.

[13] D. P. Bertsekas and I. B. Rhodes, “Recursive state estimation for a
set-membership description of uncertainties,” IEEE Trans. Automat.
Control, vol. AC-16, no. 2, pp. 117–128, Apr. 1971.

[14] L. El Ghaoui and G. Calafiore, “Robust filtering for discrete-time sys-
tems with bounded noise and parametric uncertaitny,” IEEE Trans. Au-
tomat. Control, vol. 46, no. 7, pp. 1084–1089, Jul. 2001.

[15] I. R. Petersen and D. C. McFarlane, “Robust state estimation for
uncertain systems,” in Proc. IEEE Conf. Decision Control, 1991, pp.
2630–2631.

[16] L. Xie, Y. C. Soh, and C. de Souza, “Robust kalman filtering for un-
certain discrete-time systems,” IEEE Trans. Automat. Control, vol. 39,
no. 6, pp. 1310–1314, Jun. 1994.

[17] A. H. Sayed, V. H. Nascimento, and F. A. Cipparrone, “A regularized
robust design criterion for uncertain data,” SIAM J. Matrix Anal. Appl.,
vol. 23, no. 4, pp. 1120–1142, 2002.

[18] H. Xu and S. Mannor, A Kalman Filter Design Based on Perfor-
mance/Robustness Tradeoff Gerad, Tech. Rep. Les Cahiers du Gerad
G-2008-53, 2008 [Online]. Available: http://www.gerad.ca/fichiers/
cahiers/G-2008-53.pdf

Authorized licensed use limited to: University of Texas at Austin. Downloaded on July 9, 2009 at 17:50 from IEEE Xplore.  Restrictions apply.


