ME2142/ME242E Feedback Control Systems

Block Diagram Algebra

ME2142/ME2142E Feedback Control Systems

Block Diagram Representation

A block diagram is a graphical tool to help us visualize the model of a system and evaluate the mathematical relationships among their elements, using their transfer functions.

Block Diagram Elements

Block Diagram Algebra

The block diagram must be a true representation of the mathematical equations describing the system. When manipulating block diagrams, the original relationships, or

equations, relating the various variables must remain the same.

Example of Loading Effect

When the output of the first circuit is connected as input to the second input, the voltage e2 will drop because of loading effect.

Block Diagram Algebra

Block Diagram Algebra

Closed-Loop Feedback System

- **R** is called the reference input
- **C** is the output or controlled variable
- **B** is the feedback

$$\mathbf{E} = (\mathbf{R} - \mathbf{B})$$
 is the error

 $\frac{C}{E} = G$ is called the feedforward transfer function

 $\frac{B}{E} = GH$ is called the open-loop transfer function

Closed-Loop Feedback System

$$\frac{C}{R}$$
 is the closed-loop transfer function

Also
$$E = \frac{C}{G}$$
 and $\frac{E}{R} = \frac{1}{G}\frac{C}{R} = \frac{1}{1+GH}$

 $\frac{E}{R}$ is called the error transfer function

Closed-Loop Control Feedback System

- G_c is the controller transfer function
- G_p is the plant transfer function
- **M** is the manipulated variable
- D is the external disturbance

 $\frac{C}{E} = G_c G_p$ is the feedforward transfer function

 $\frac{B}{E} = G_c G_p H$ is the open-loop transfer function

Closed-Loop Control Feedback System

Assuming R = 0, we can re-draw

$$\frac{C}{D} = \frac{G}{1+GH} = \frac{G_p}{1+G_pG_cH}$$

ME2142/ME2142E Feedback Control Systems

Example: Determine C(s)/R(s)

Example: Determine C(s)/R(s)

ME2142/ME2142E Feedback Control Systems

End

ME2142/ME2142E Feedback Control Systems

End

ME2142/ME2142E Feedback Control Systems