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Abstract— For multi-robot systems, how to achieve coop-
eration is one of the key research issues. In this paper,
a reinforcement learning approach based on fuzzy logic is
proposed for multi-robot concurrent learning of cooperative
behaviors. In contrast to traditional reinforcement learning
that assumes discrete and finite state/action space, our fuzzy
reinforcement learning controller learns based on fuzzy states
and fuzzy actions to find the optimal fuzzy rules. This
learning controller can directly retrieve states and then
generate corresponding actions, both from continuous and
infinite spaces. In addition, to address the problems in multi-
robot concurrent learning, a distributed learning control
algorithm is proposed to coordinate concurrent learning
processes without the need for explicit intercommunications
among robots. The distributed fuzzy reinforcement learning
controller and the learning control algorithm are applied to
multi-robot tracking of multiple moving targets. Simulation
results demonstrate the efficacy of our approach.

Index Terms— Reinforcement learning; fuzzy logic; multi-
robot cooperation; behavior-based control.

I. I NTRODUCTION

For the research on multi-robot systems, one essential
problem is how to achieve cooperation among the robots
for accomplishing a common mission [1], especially in a
decentralized (distributed) manner. Normally, the desired
cooperation is in task level [2], in which the common
mission is decomposed into sub-tasks, and robots choose
different tasks (roles) according to the state. However,
to achieve mission decomposition, task allocation, and
conflict avoidance, the designer needs to predict all possible
scenarios and preset corresponding actions for each robot
to react accordingly and differently. Such development
work is undesirable and sometimes extremely difficult.
Therefore, in both robotics and artificial intelligence re-
search, machine learning methodologies are studied to
enable robots to learn how to cooperate without the need
for human hardcoding.

In current research, reinforcement learning is extensively
studied for multi-robot concurrent learning of coopera-
tive behaviors. This is mainly because that reinforcement
learning can be applied to the behavior based control
[3] methodology for generating task level cooperation. In
addition, compared with other learning algorithms, rein-
forcement learning is model free, not strictly supervised,

optimal subject to user defined criteria, and practical [4].
However, to apply reinforcement learning to behavior based
control, the designer needs to define discrete and finite
high level states and actions, e.g., “target is near”, “track
the target”. But for most real applications, it is hard to
give appropriate and accurate definition to the high level
states and actions. Furthermore, even through the states
and actions can be discretized and defined, the behaviors
are still discrete and finite. At one time, the robot can
only perform one action representing one behavior. This
contradicts the human reasoning that the optimal solution
to accomplish a task might be the concurrent execution
of several elementary behaviors. For example, the optimal
solution to track a target might be a mixture of the basic
behaviors “approach detected targets”, “search other tar-
gets” and “avoid obstacles”. Besides, the switching among
discrete behaviors usually results in unsmooth control,
which is undesirable in most cases.

In addition to the discrete/finite state and action space
problem, traditional single agent/robot reinforcement learn-
ing may not be valid in multi-robot domain. Some basic as-
sumptions in the single robot domain, e.g., Markov decision
process and stationary environment, are not valid in multi-
robot domain due to the interaction among concurrent
learning robots. To address this problem, the concurrent
learning process needs to be carefully controlled and coor-
dinated.

In this paper, we propose fuzzy reinforcement learn-
ing to address the limitation of discrete/finite states and
actions in traditional reinforcement learning. In our ap-
proach, the discrete/finite states and actions are fuzzified
as continuous/infinite fuzzy states and actions, and then
the reinforcement learning controller learns based on these
fuzzy states and actions to find the optimal fuzzy rules.
In addition, motivated and inspired by human behaviors,
we derive methods for coordinating concurrent learning
processes in a distributed manner. The learning controller
and the learning control algorithm are applied to multi-
robot concurrent tracking of multiple moving targets.

The remaining parts of this paper are organized as
follows. Section 2 introduces the background and related
work. Section 3 presents the basic idea and the concept



of our approach. Then, the implementation of our fuzzy
reinforcement learning controller for multi-robot tracking
of multiple moving targets is introduced in Section 4. The
simulation results and discussion are presented in Section
5. Finally, Section 6 concludes this paper and introduces
our future work.

II. RELATED WORK

A. Reinforcement Learning in Continuous Space

As mentioned previously, traditional reinforcement
learning assumes discrete and finite state and action space.
But for real applications, the input and output space are
usually continuous and infinite. To address this problem,
the most popular solution is discretization [5]. However,
if the discretization is too coarse, some states may be
hidden therefore the optimal control policy can not be
found; if the discretization is too fine, the states cannot be
generalized and the huge state/action space will badly affect
the learning speed. Some methods are proposed to enable
reinforcement learning in continuous space without the
need for discretization. Function approximation approach
[6] and HEDGER [7] can apply a generalizing function
approximator to estimate the state-action value instead of
using discrete lookup table. References [8][9] propose rein-
forcement learning to derive optimal feedback control law
for linear/nonlinear systems. However, these approaches
usually assume the environment model is known, and have
heavy computational burden if the training data set is large.

Another class of solutions is to integrate reinforcement
learning with Fuzzy Inference Systems (FIS). The idea is to
let the reinforcement learning module learn/tune the fuzzy
rules for the FIS, therefore the FIS can retrieve continuous
and infinite states and then perform corresponding actions.
In [10], Jouffe proposes a dynamic programming algorithm
that is applied in a four layer FIS scheme for online tuning
the conclusion part of the FIS. In [11], Yan et al introduce
a reinforcement learning algorithm for learning the fuzzy
rules of a Takagi-Sugeno type FIS. In [12], reinforcement
learning methods are applied to maintain the correctness,
consistency and completeness of the fuzzy rules. These
deliberatively designed approaches can tune the fuzzy infer-
ence systems to achieve satisfying performance; however,
the control architecture and learning algorithm are usually
complex and the applications are mostly for the low level
control regarding simple task and mission e.g., approaching
target with obstacle avoidance.

In this paper, the proposed learning controller is also
based on the integration of reinforcement learning and
fuzzy inference system; however, this fuzzy learning con-
troller is different in the definition of fuzzy states and ac-
tions. Based on simple and “fuzzier” states and actions, this
fuzzy learning controller can effectively find the optimal
fuzzy rules thus achieve desired cooperation among robots.
The details are to be introduced in next section.

B. Multi-Robot Concurrent Learning

Reinforcement learning and most other machine learning
algorithms assume the learning process is Markovian and

the learning environment is stationary [13]. These two
assumptions both require the full/sufficient observation of
the environment. However, limited by sensor ability, robots
cannot have a complete and accurate view of the envi-
ronment. Furthermore, if all robots learn concurrently, the
learning process of each robot will interfere with the others.
Then, during multi-robot concurrent learning, in the view of
an individual robot, the process and environment are neither
Markovian nor stationary; therefore the learning may result
in local maxima or the undesired cyclic switching of
control policies. This is usually termed as the convergence
or stability problems in multi-robot (agent) learning.

One class of solutions to address this problem is to
estimate the influence of other robots, thus make the
process semi-Markovian and pseudo-stationary for an in-
dividual learning robot [14]. Another class of solutions is
to coordinate or schedule the distributed learning processes
to reduce the interference. References [15][16] propose the
global scheduling method that limits the number of learning
robots to reduce the mutual interference. Reference [17]
proposes a distributed learning control algorithm that can
enable multiple robots learning concurrently. However, the
coordination and scheduling of learning processes need
to be deliberatively designed and usually require explicit
intercommunications among the robots.

In this paper, a distributed learning coordination algo-
rithm is proposed. The basic idea is to let the robot stop
learning regarding one state when it has learned enough
in this state. This algorithm is suitable for generating
cooperative behaviors; the details are to be introduced in
next section.

III. OUR APPROACH

As introduced previously, the objectives of our research
are as follows:

• Enable the robots to learn by retrieving low level input
and generating low level output.

• Let the robots learn cooperative control policy by
distributed (local) learning processes.

• Coordinate the distributed learning processes to solve
the problems of concurrent learning. Try to avoid
the undesired learning results (local maxima or cyclic
switching of control policies) by minimal intercom-
munications among the robots.

To achieve above objectives, a learning controller inte-
grating reinforcement learning and fuzzy logic is proposed
as depicted in figure 1. This controller (inside the dotted
rectangle) includes five main modules: 1) Fuzzifier; 2)
Defuzzifier; 3) Fuzzy Inference System (FIS); 4) Reward
Generator; and 5) Reinforcement Learning Module. In the
following of this section, we will introduce our fuzzy
reinforcement learning controller from three aspects: 1)
Fuzzy Inference System (FIS); 2) Reinforcement Learn-
ing of Fuzzy Rules; and 3) Coordination of Concurrent
Learning Processes.
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Fig. 1. Fuzzy Reinforcement Learning Controller

A. Fuzzy Inference System

Fuzzy inference system works based on the concept of
fuzzy set. Fuzzy set is a kind of set that does not have
a crisp, clearly defined boundary as the classical set. This
property is very useful for handling continuous and infinite
real sensor readings and thus generating corresponding
actuator commands. In our approach, we fuzzify the low
level environment information to fuzzy states and fuzzify
the low level actuator commands to fuzzy actions. The
fuzzification we proposed has following properties:

• Regarding the environment input, one kind of infor-
mation (or sensor reading) is represented by one fuzzy
state. This fuzzy state (action) covers the whole data
range.

• Regarding the actuator output, one kind of commands
is represented by one fuzzy action. This fuzzy action
is actually a group of commands that has common
properties.

• The design of fuzzy states and actions is based ona
prior knowledge of the mission, robot and environ-
ment.

In contrast to common fuzzy inference systems, the
definition of the fuzzy states in our approach is “fuzzier”.
This is due to following reasons:

• In our approach, one fuzzy state represents the whole
data range of one kind of environment information. It
does not describe the “fuzzy value” of the environment
variable (e.g., sensor input); instead it provides mem-
bership values for the entire range of the environment
variable. For example, in Faria and Remero’s approach
[20], there are four fuzzy states “nearest”, “near”,
“far”, and “farthest” used to describe the levels of
distance to the target (Figure 2-a); however, in our
approach, there is only one fuzzy state “target is
found” to represent the information of distance to the
target (Figure 2-b). This fuzzy state covers the whole
data range of distance, and its membership degree
(value) is given based on human knowledge: if the
target is near, this target may have more influence

to the robot, therefore the level of “target is found”
should be high.

• In our fuzzy reference system, at one time, it is
possible that several fuzzy states are activated con-
currently. This can enable the robot to learn several
basic behaviors for each fuzzy state concurrently

• By this fuzzification methodology, less fuzzy states
will be defined and thus used in learning. This may
avoid the curse of dimension for reinforcement learn-
ing [13].
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Fig. 2. Definition of Fuzzy State

In the proposed fuzzy inference systems, the definition
of fuzzy actions is also based on human knowledge. One
fuzzy action is defined to represent one kind of behavior.
The membership function demonstrates the relationship
between behavior level (strength) and the environment
status. For example, regarding fuzzy action “track target”,
the membership function may be defined as shown in
Figure 3. When the target is near (distance is small), the
robot does not need to put much emphasis on tracking it;
therefore the level (strength) of behavior “track target”, i.e.,
the membership value, is low.
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Fig. 3. Definition of Fuzzy Action

As the fuzzy states and actions are defined, the fuzzy
inference system can make decision based on fuzzy rules.
In our approach, the format of the fuzzy rules is defined as
(1), in which rs,a, s, anda means fuzzy rule, fuzzy state,
and fuzzy action respectively.

Rule rs,a: IF s THEN a (1)



For the fuzzy inference system, the total number of fuzzy
rules to be tested equalsm times n; m is the number of
fuzzy states,n is the number of fuzzy actions. The aim of
the reinforcement learning module is to find the optimal
fuzzy rules regarding each input fuzzy state; the results are
m fuzzy rules. For example, if the fuzzy inference system
has four fuzzy states, and three possible fuzzy actions; then
the aim of reinforcement learning is to find four optimal
fuzzy rules each for one fuzzy state. As shown in Figure
4, regarding “fuzzy state 1”, the robot learns the fuzzy rule
“IF fuzzy state 1THEN fuzzy action 1”.
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Fig. 4. Learning of Fuzzy Rules

During learning, the robot will select fuzzy actions with
regard to current fuzzy states according to fuzzy rules being
learned (or already learned). Since the fuzzy states may
happen concurrently, several corresponding fuzzy actions
may thus be activated together. In our approach, the output
of the fuzzy inference system (FIS output) is the summation
of the fuzzy actions activated by fuzzy states as shown in
(2). In this equation,mvfsandmvfameans the membership
value of activated fuzzy state and corresponding action
respectively.

FIS output =
∑

activated state i

(mvfs ·mvfa)i (2)

B. Reinforcement Learning of Fuzzy Rules

As introduced previously, the fuzzy inference system
makes decision based on fuzzy rules. While in most
fuzzy inference systems the fuzzy rules are deliberatively
designed by human, our learning controller aims to learn
the optimal fuzzy rules by reinforcement learning. In
our approach, Regarding each fuzzy rulers,a, we define
V (rs,a) to indicate the result of applying it. Then, to find
the optimal rules becomes to find theV values of all
fuzzy rules. The meaning ofV (rs,a) is similar toQ(s, a)
as in traditional reinforcement learning [4]. However, the
Q-function used to updateQ(s, a) cannot be applied for
updating theV (rs,a). This is because the states and actions
in Q-function (3) should be discrete and exclusive. In (3),
s, a, r, α, γ, s′, anda′ means state, action, reward, learning
rate, discount rate, next state, and next action respectively.

Q(s, a) ← Q(s, a)+α(r+γmaxa′Q(s′, a′)−Q(s, a)) (3)

To solve this problem, we first define the triggers for
updatingV (rs,a). This is because in our approach, it is
hard to find “sharp” fuzzy state transition time point. For

example, when the target is 0.7 meters away, the fuzzy state
“target found” is 0.1; when the target is 0.2 meters away,
the fuzzy state “target found” is 0.9. In both cases the fuzzy
state “target found” is activated (non-zero). Therefore, we
set following two triggers to update/reselect fuzzy rules:

• The fuzzy state has a zero/non-zero change; or
• The fuzzy state has been activated (non-zero) for a

long period of time (N simulation steps).

When one of above two conditions is activated, the
V (rs,a) will be updated by following equation (4). In this
equation,α is the learning rate;reward is the feedback
regarding the progress of the mission. Comparing (3) and
(4), we may find that the new state,s′ in (3), does not
appear in our algorithm (4). This is due to the fact that
the “next” fuzzy state is usually the same as the previous
one, but different in membership value, e.g., the fuzzy state
“target found = 0.1” changes to fuzzy state “target found
= 0.9”. Therefore, in (4) it is not necessary to add the item
referring to “next state”.

V (rs,a) ← (1− α)V (rs,a) + α(reward) (4)

In the fuzzy inference system, at one time, more than one
fuzzy state may be activated; thus the output of the fuzzy
inference system is the combination of the fuzzy actions
corresponding to these fuzzy states (2). In this case, the
robot will learn more than one fuzzy rules concurrently.
The update of each fuzzy rule’s value is also according to
(4).

For the robot, after updatingV (rs,a), the learning con-
troller needs to reselect fuzzy rules (fuzzy actions) to
perform and test. To both explore and exploit the possible
fuzzy rules (actions), the controller adds an exploration
factor to each fuzzy rules’V value, and then the fuzzy rules
having highest resultant values will be chosen. It should be
noted that this random factor is only used for fuzzy rules
selection; it will not affect the fuzzy rules’ realV values.

C. Coordination of Concurrent Learning Processes

Besides the discrete and finite state/action space limita-
tion of traditional reinforcement learning, another critical
research issue is to coordinate concurrent learning pro-
cesses to avoid the undesired learning results as the local
maxima or cyclic switching of control policies. For this
purpose, a solution inspired by natural human behaviors is
proposed. Assuming two humans are approaching in the
corridor and they want to avoid the collision, what will
they do? If they are both trying, they may “struggle” several
rounds to find the best. So, in real life, usually one of them
(sayA) will fix his policy first, e.g., keeping left, then the
other one (sayB) can choose another side. In this encounter
case, the optimal cooperation is that the two people choose
opposite sides. WhateverA chooses initially, finallyB
can learn to choose another side, and the resultant control
policy is optimal. Many real world applications have the
same property: even if the learning process of one robot
stops very early, the resultant control policy of the whole
team can still be optimal because other learning robots can



eventually find appropriate control policy to respond to the
former one.

Our distributed learning coordination algorithm is pro-
posed based on above considerations. For a robot, if
regarding one fuzzy statei, the best fuzzy actionj’s value
is much larger than others, i.e., above a given threshold
over the average, the robot will fix the control fuzzy rule
“IF fuzzy statei, THEN fuzzy actionj” for this fuzzy state
i. But the robot will still learn the optimal fuzzy rules for
other fuzzy states unless all the fuzzy states have got a fixed
control fuzzy rule. For example, after a period of learning,
the robot is in fuzzy statesa andb, and the best fuzzy rule
r regarding stateb is already much better than other fuzzy
rules for stateb, then the robot will always choose ruler
for stateb, but still select and test fuzzy rules regarding
statea. Till all the fuzzy states have fixed fuzzy rules, the
learning of the robot stops.

By this method, a robot will fix its control policy
(partially or entirely) when it feels that it has learned
enough; and the future improvement (learning) is thus left
to other robots. This learning control algorithm is entirely
distributed and does not need explicit communications
among robots. It should be noted that for this learning
coordination algorithm, the threshold is critical for the
robot to decide when to stop learning. If this threshold
is too high, the robot will in fact never stop learning, or
if this threshold is too low, the robot may be easy to give
up learning. The influence of the threshold is tested and
discussed in Section 5.

IV. APPLICATION TO MULTI-ROBOT TRACKING
OF MULTIPLE MOVING TARGETS

A. Museum Problem: Multi-Robot Tracking of Multiple
Moving Targets

In robotics research, multi-robot tracking of multiple
moving targets is also referred to as the “museum problem”
or “art gallery problem”. The assumptions and descriptions
of the problem are as follows:

• The environment is a large bounded plain area includ-
ing some mobile targets and robots.

• The targets are moving in the environment. The num-
ber, distribution, and the motion pattern of targets are
unknown.

• Each robot has a 360 degree view within a certain
range. When an object is inside this range, the robot
can differentiate this object as obstacle, target, or
robot, and detect the distance and orientation toward
it. The summation of the sensible area of all robots is
far less then the size of the environment.

• The robot needs to track (move together with) the
targets to maintain observation. For one target, only
one robot is needed for observation.

• The robots do not know the size and map of the
environment, and cannot localize themselves in the
environment. Besides, there are no explicit inter-robot
communications available, e.g., wireless communica-
tion.

• The objective is to maximize the number of targets
being simultaneously observed (detected within the
robot’s sensing range)

In current research for the museum problem, Artificial
Potential Field (APF) based control is mostly used. The
idea is to map the targets (or robots and obstacles) as
attractive (or repulsive) force sources, and then let the robot
move under the vector sum of these forces. However, purely
summing these forces (pure APF) may not achieve desired
cooperation. For example, if two robots detect each other
and a same target, both of them will be repulsed by the
neighbor robot and attracted by this target. In most cases,
none of them will give up this “shared” target. Obviously,
this is not the optimal cooperation because one of robots
can leave and search for other targets.

To solve this problem, two heuristics of pure APF are
proposed. Both of them add a weight factorw

Tj

Ri
to the

attractive force as shown in (5). In this equation,~FRi
means

the summation of the attractive and repulsive forces forRi;
~TRi,Tj means the attractive force from robotRi to target
Tj ; w

Tj

Ri
means the weight of~TRi,Tj

; ~RRi,Rj
means the

repulsive force from neighbor robotRl to Ri; dt means
the set of detected targets;dr means the set of the detected
neighbor robots.

~FRi =
∑

j∈dt

w
Tj

Ri
· ~TRi,Tj +

∑

l∈dr

~RRi,Rj (5)

The all-adjust heuristic [18] lets the robot decrease the
weight when the robot find another robot(s) tracking this
target; while the selective-adjust heuristic [19] only lets the
robot decrease the weight when it is not the nearest robot
to this target. Both heuristics are proved effective; however,
to make them work, the designer needs to carefully select
appropriate parameter, e.g., weight decrease ratio, for each
robot, especially when the scenario is complex and the
robot team is heterogeneous.

Examining (5), we can find the weight of the attractive
force affects the behavior of the robot regarding the target.
If the weight is low, the robot will leave the target; if the
weight is high, the robot will track the target. Changing
the value of the weight means changing the preference to
the two basic behaviors “track target” and “leave target”.
Therefore, for our fuzzy reinforcement learning controller,
the two fuzzy actions “track target” and “leave target” can
be represented by this weight value.

B. Applying Our Learning Controller to Museum Problem

As introduced previously, we plan to implement our
distributed learning controller for multi-robot tracking of
multiple moving targets. For this learning controller, we
define two fuzzy states “target found” and “target tracked
by others”, and two fuzzy actions “track target”, “leave
target”, as shown in Figures 5 and 6. For the fuzzy states,
the membership degree (value) indicates the degree of the
state regarding the distance to the target (or the target to
other robots). For fuzzy action “track target”, the member-
ship degree (value) is the weight of the attractive forces to



the target, i.e.,wTj

Ri
in (5). The higher membership degree

means stronger preference to approach to the targets. For
fuzzy action “leave target”, the membership degree is the
inverse of the weight of the attractive forces. The higher
membership degree means stronger preference to leave the
targets.
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Fig. 5. Fuzzy States: “Target is Found”, “Target is Tracked”
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The design of the fuzzy states and fuzzy actions are
based on human experience. When the target is near to the
robot, the degree of fuzzy state “target is found” is large;
when the target is neighbored by another robot, if they are
near, the degree of fuzzy state “target is tracked” is large.
Also, when the target is far, the degree of fuzzy action
“track target” is large because if the tracking action is weak
under this condition, the robot will lose the target; when
the target is quite near, the degree of fuzzy action “leave
target” is large because if the leaving action is weak under
this condition, the robot may hit the target.

For reinforcement learning, one important issue is the
generation of rewards because reward represents the objec-
tive of the human and thus can directly affect the learning
results. Since task level cooperation is desired, following
behaviors should be encouraged: 1) track target; 2) leave
the target being tracked by other robots. For this purpose,

we define three kinds of rewards:

• Reward TT /Reward LT : track/lose target reward
(positive/negative) - if tracks/loses targets.

• Reward WT : waste time reward (negative) - if tracks
a target being tracked by others.

• Reward PT : pass target reward (positive) - if passes
the target to other robot(s) to track.

For the distributed learning controller in each individual
robot, these rewards are generated by its local sensing. For
example, if both robotA and robotB are tracking the same
target, in the view point of robotA, unlessB is detected,
it cannot generate theReward WT .

Other important implementation issues, including the
updating and reselection of fuzzy rules and the coordination
of concurrent learning processes, are according to the
methods introduced in Section 3C.

V. SIMULATION AND DISCUSSION

A. Simulation Methodology

The aim of our research is to let the mobile robots learn
how to cooperatively work without the need for human
hardcoding. This research aim includes two main aspects:

• The learning approach can generate cooperative be-
haviors.

• The performance of the learning system should be
comparable to other approaches that have been de-
liberatively hardcoded and tuned.

To justify the efficacy of our approach, we simulate four
control modes as follows:

• Pure Artificial Potential Field (APF) based control.
• All-adjust heuristics to pure APF.
• Selective-adjust heuristics to pure APF.
• Robot learning controller: different threshold for stop-

ping learning from small to infinite (never stop learn-
ing).

B. Simulation Settings

The parameters and settings of the environment are as
follows:

• The simulations are run on Webots, a 2D differential-
wheel robot simulator.

• Museum: 4m x 4m to 6m x 6m square plain area with
no obstacles inside. The simulated robot and target are
smaller then 0.1m in diameter. The sensor range is 0.8
meter.

• For each control mode, run about 15 episodes to get
the average. Each episode is 15000 simulation step
long. One simulation step is about 0.1s long in real
time.

For the all-adjust heuristics of pure potential field based
control, if two or more robots find the same target, and
they find each other, they will all decrease the weight of
the attractive force to target. In the simulation, we test two
all weight decrease ratio (AWDR): 0.80 and 0.95. For
the selective-adjust heuristics of pure potential field based
control, if two or more robots find the same target, and they



find each other, the further robot(s) will decrease the weight
of the attractive force to the target. In the simulation, we
test two selective weight decrease ratio (SWDR): 0.5 and
0.1.

• The initial values of all fuzzy rules are 10.
• Reward TT /Reward LT = 0.8/- 0.8;Reward WT

= -1.5; Reward PT = 2.0.
• Learning stop threshold is set 1.0, 1.5, 3.0, 10.0,

and infinite (never stop learning). During learning, if
regarding one state, one action’sV value is above the
threshold over average of all actions’V values for this
state, the robot will stop learning for this state.

• If the fuzzy state is unchanged (non-zero) forN = 50
simulation steps, the robot updates and reselects fuzzy
rules.

• When selecting fuzzy rule (action), a number uni-
formly distributed in [-1, 1] is added to the real fuzzy
rule’s value as the exploration factor. This exploration
factor is only for fuzzy rule selection, not for updating
the fuzzy rule’s value.

C. Simulation Results and Discussion

1) Performance Comparison:
The performance of different controllers is evaluated by the
average tracked target: in average, how many targets are
tracked simultaneously. The higher this number, the better
the performance is. Figure 7 compares average tracked
target of learning controller and other human designed
controller. In this figure, the performance of the learning
controller is represented by the one with stop learning
threshold of “1.5”. It should be noted that the results of
learning controller is the performance after all robots stop
learning. This is because that during the initial part of
learning, the robots’ behaviors are far from optimal. Only
after all the robots stop learning, the behaviors of the
robots are fixed and thus the performance is stable. Another
problem worth noting is that the learning performance
presented here are the average of all the episodes, including
the failed cases that do not learn optimal fuzzy rules. (The
success rate of learning optimal rules is to be discussed
later)
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Fig. 7. Average Tracked Target

Observing Figure 7, we may draw a conclusion that pure
potential field based control and two heuristics perform
worse than the learning controller. Furthermore, while
we need to decide important parameters for the human
designed controllers, the learning controller can enable the
robots to automatically generate desired cooperation. The
resultant performance is as good as, or even better than,
the deliberatively designed controllers.

2) Learning Analysis:
In our approach, the fuzzy reinforcement learning con-
troller aims to find the optimal fuzzy rules which appro-
priately link fuzzy states “target is found” and “target is
tracked” to fuzzy actions “track target” and “leave target”.
The learning results should be two optimal fuzzy rules each
for one fuzzy state. The simulation results show that in
most cases the robot learns the following two fuzzy rules:
1) IF target is found, THEN track target; and 2) IFtarget
is tracked, THEN leave target. This result is accordant to
human intuition on how to cooperative track targets.

As introduced in Section 3C, different learning stop
threshold value may lead to different learning results. Now
we compare the controllers with different stop learning
thresholds by examining the successful rate of learning
the optimal results. Figure 8 presents the frequency that
the robots learn the two optimal fuzzy rules. The higher
the frequency, the better the learning performance is. For
learning controllers with threshold 1.0, 1.5, 3.0, and 10.0,
the learning usually ends before the end of the simulation
episode. However, if the threshold is infinity, the robots
will never stop learning (no coordination of learning at
all). For this case, the finalV (rs,a) in the last step is used
to indicate the learned fuzzy rules.

Observing Figure 8, we find that for different robot group
size, the optimal threshold value is different. Small thresh-
old value suits small robot group, while large threshold
suits large group. This may be explain by the fact the
large robot group will have more interference; therefore
require large stop learning threshold to help kick out the
sub-optimal rules. However, if the threshold is too big, the
robot will “hesitate” to fix the good fuzzy rules; therefore
concurrent learning robots may have more “struggles”. For
our simulation scenario, the optimal threshold value is
“1.5”.

Figure 9 shows the average number of targets tracked
for the entire length of one episode (15000 simulation
steps) for two representative learning controllers. This gives
an indication of the “overall” performance. The controller
with stop learning threshold “1.5” works better than the
controller with infinite threshold (never stop learning). This
may be because the former controller can effectively avoid
the undesired learning results as local maxima, or the cyclic
switching among control policies.

VI. CONCLUSION AND FUTURE WORK

Multi-robot concurrent learning on how to cooperatively
work is one of the ultimate goals of robotics and artificial
intelligence research. In this paper, we propose a distributed
fuzzy reinforcement learning controller that applies fuzzy
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logic and reinforcement learning. This controller can en-
able the robot to generate cooperative behaviors based on
fuzzy states and actions. In addition, we propose a natural
inspired distributed learning control algorithm to coordinate
the concurrent learning processes. This algorithm can help
avoid the generation of local sub-optimal control policy or
the cyclic switching of control policy without the need for
explicit intercommunications among the robots. Our ap-
proach is tested in multi-robot tracking of multiple moving
targets; simulation shows that the learning controller can
achieve the performance as good as, or even better than,
the controllers deliberatively designed.

However, in our learning controller, the fuzzy states
and actions are defined by the designer and are specific
to the task and application. If other tasks are selected,
e.g., cooperative table carrying, we have to design other
specific fuzzy states and actions accordingly. Obviously, it
would be much better if the fuzzification of the normal
state and actions can be generic and effective for all kinds
of control problem. This is an important research issue
to be studied. In addition, due to the interference among
the concurrent learning robots, the distributed learning
controller sometimes generates unsatisfying results even
though we have proposed a distributed learning coordi-

nation algorithm. How to perfectly coordinate concurrent
learning processes by minimal intercommunications is an-
other critical research topic for our future research.
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