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ABSTRACT 
The “Museum” problem is a typical problem 
of collaborative multi-robot tracking of 
multiple moving targets (CMTMMT). The 
objective is to achieve collective tracking of 
multiple targets by multiple robots. In this 
paper, we present our conditional-weighted 
potential field based control algorithm to solve 
this problem. The essence of this algorithm is 
to make the robots move under the vector sum 
of the local forces imposed on it while 
encouraging collaboration. Additionally, some 
modifications are done to improve the 
performance. The simulation of our algorithm 
shows satisfactory performance and ability to 
achieve collective tracking in museum problem. 
 
Key Words – multi-robot, multiple targets, 
potential field, tracking, collective robotics 
 

I. INTRODUCTION 
 
1.1. Overview of multi-robot system 
In last two decades, multi-robot system is 
widely studied in a wide range of areas 
including materials transport, exploration, 
coordinated sensing, robot soccer, moving in 
formation, etc [1].  Compared with traditional 
single-robot system, multi-robot system has 
several advantages [2]:  
• Multi-robot system can accomplish some 

inherently complex task that cannot be 
done by single-robot system. 

• Multi-robot system can upgrade the 
performance by collectively working. 

• Multi-robot system is more robust than 
single-robot system. 

• The robots used in multi-robot system can 
be cheaper and simpler than the robot in 
single-robot system.  

 
However, the implementation of multi-robot 
system is inherently more complex than single-
robot system. To collectively accomplish a 
task, the multi-robot system needs to solve the 
following main problems:  
• Task decomposition and allocation. 
• Interaction among robots to collaborate.  

There are two main solutions to task 
decomposition and allocation: centralized 
control and decentralized control. Centralized 
control is more like a single-robot system with 
a central controller. In a group of robots,  there 
exists a “commander” to control the entire 
system.  Decentralized control does not have 
such a leader robot: each robot controls itself 
equally (distributed) or unequally (hierarchy).  

 
Interaction among robots is mostly by 

wireless communications, but some 
approaches use environment cues to share the 
information as form of communication.[3] 
 
Most of the advantages of multi-robot system 
are achieved by collective work. Thus, how to 
realize collaboration among several robots is 
the essential problem in multi-robot system. 
The collaboration can be realized by 
centralized control. Centralized control, 
however, is difficult and not practical since all 
possible scenarios have to be predicted and 
corresponding actions programed for the 
robots to react accordingly.  Furthermore, 
centralized control usually degrades the 
robustness of the system when an 
unanticipated event occurs, e.g., when the 
control center is crashed, the system can not 
continue to work even though some robots are 
functional. In addition, centralized control is 
computationally expensive, the control 
algorithm can not be feasible when the robot 
team is quite huge, e.g., more than 100 robots.  
 
Current and more interesting and practical 
approaches are mostly focused on the 
distributed multi-robot system, because it can 
achieve the highest robustness and is more 
flexible than centralized and hierarchical 
control. However, most recent distributed 
control algorithms are hard to be both simple 
and scalable; especially when the task is quite 
complex [4] and the robot team is huge. More 
importantly, there seems to be no formal 
methodology to allow decentralized control 
and collective behavior. However, potential 
field based methods show promise and is 
therefore the focus of this paper. 
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1.2. Potential field based control 
algorithm 
To realize collaboration, robustness, and 
computation efficiency, some distributed 
control algorithms have been developed. 
Among them, potential field based algorithm is 
quite simple and effective, especially in some 
applications, i.e., CMTMMT. CMTMMT is a 
typical problem in the research of multi-robot 
system. In [5], Parker provides a potential field 
based approach, called weighted local force 
vector control, to solve this problem, and some 
satisfactory results were obtained.  
 
In summary, potential field based algorithm is 
a real-time distributed control algorithm. It 
considers the robots and the targets as charges 
in a potential field. The robots carry a kind of 
charge, i.e., positive, and the targets an 
opposing charge, i.e. negative. Therefore, the 
targets will attract the robots and the robots 
will repulse each other to avoid collision of 
robots. Each robot moves under the vector sum 
of all the forces imposed on it. Thus the system 
can accomplish tracking. In CMTMMT, 
potential field based control algorithm has 
some advantages: 
• The algorithm is quite simple. Each robot 

can make decision of its action using its own 
local processor. 

• In system scale, the robots are collaborative 
because they can automatically implement 
task distribution and allocation. 

• No intercommunication is needed. However, 
some additional intercommunication may 
upgrade the performance of tracking. 

 
We advance this concept in a specific case of 
CMTMMT, which is the museum problem,. 
Our simulation results show promise. In 
Section II, we will explicitly introduce the  
museum problem and related works. In Section 
III, our potential field based control algorithm 
will be shown. In Section IV, simulation 
results and discussion will be presented. 
Finally, Section V summarizes our 
contributions and future work. 
 

II. MUSEUM PROBLEM 
 
2.1. Background 
Collaborative multi-robot tracking of multiple 
moving targets is a typical problem of multi-
robot system. In our research, we focus on the  
museum problem, which is a special case of 

the CMTMMT problem. The museum problem 
can be described as follows: 
• The environment (museum) is a large 

“clean” 2D area containing no obstacles or 
only some simple convex obstacles. (This 
is a limitation of potential field based 
control algorithm, we will discuss this in 
the discussion section) 

• There are some targets (visitors) moving 
randomly within the environment 
(museum).  

• The robots (security guards) have local 
limited-range panoramic sensors, which 
can scan the objects within a circular area 
around the robot. The sum of the 
scannable areas of all the robots (security 
guards) is far less than then the entire area 
to be monitored; hence the robots have to 
move. 

• The robots (security guards) can move 
within the entire area. They need to avoid 
collision with targets (visitors) and other 
robots (other security guards). 

• The task of the robots (security guards) is 
to track targets (visitors). When a target 
(visitor) is within the sensor range of a 
robot (security guard), we think the target 
is being tracked. The more targets are 
tracked at a same time, the higher 
performance we get. In brief, the objective 
is to maximize the targets (visitors) that 
remain under tracking or observation by 
the robots (security guards).  

 
Mathematically, the museum problem can be 
defined as follows: 
Given:  
    S: a large 2D bounded area with no 
obstacles or only some simple convex 
obstacles.  
    V: a team of m robots ( iv  , i = 1,2,..m) with 
panoramic sensors. The sensors have limited 
sense range: sensor_range ( iv ) and the total 
scanable area is far less then the entire area:   

_ ( )
i

iv V
sensor range v S

∈
<<∪  

    O(t): a set of n targets ( ( )jo t  , j = 1,2,.… n), 
such that target ( )jo t is within area S at time t. 
    A(t): an nm × matrix where:  

1, if a robot  is tracking target ( )
0,             otherwise

i j
ij

v o t
a =





 

Let      

{ =11, if there exists an  s.t. 
( ( ), )

0,             otherwise
ij

j

i a
h A t j =  

Then the objective of the control system is to 
maximize:  
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( ( ), )T n j

t j

h A t j
A

T= =
= ∑ ∑ , where T is the 

total time. 
  
 
2.2. Related work 
There are many approaches to this problem. 
(In some papers, museum problem is also 
referred to  as the “art gallery” problem.) 
However, most of them are by centralized 
control. Although these approaches can 
compute some optimal solutions in theory, 
they are computational expensive: museum 
problem is NP-hard in the number of targets 
and the number of robots [6], which means the 
computation load will increase exponentially. 
Previous centralized approaches also can not 
provide real-time solutions to solve museum 
problem. 
 
Besides the centralized control algorithms, 
there are some distributed control algorithms 
to solve museum problem recently. In [7], Jung 
and Sukhatme introduce an approach, in which 
the robots move by calculating the center of 
mass of detected targets and following this 
point, not the targets themselves. The worst 
case of that approach is that when two targets 
are moving in opposite directions, the robot 
will be inclined to stop tracking and lose both 
targets. In [5], Parker shows a potential based 
control algorithm, which is called as A-
CMOMMT. By using weighted local force 
vector control, the simulation result of A-
CMOMMT is satisfactory. 
 
Our approach is mainly based on Parker’s 
work [5]. However, we do not use 
intercommunication and motion prediction as 
Parker, because we think these techniques are 
computationally expensive and will degrade 
the robustness of the system. In our approach, 
we add some new amendments, such as vector 
force weight rules, and then get a more feasible 
and practical solution for potential field based 
tracking. The details of our approach will be 
explicitly introduced in next section. 
 

III. OUR POTENTIAL FIELD BASED 
APPROACH 

 
3.1. Overview of our potential field based 
control 
As introduced in the introduction section, 
potential field based algorithm assumes that 
robots and targets carry opposite charges, 
therefore there exist attractive force between 

robot and target, and repulsive force between 
robot and robot. Based on this assumption, our 
control strategy is to let each robot move under 
the vector sum of all the forces imposed on it, 
thus accomplish tracking, and avoid collision 
simultaneously. Obviously, there are two 
essential problems in this control strategy:  
• calculating the attractive and repulsive 

forces (both are called local forces). 
• calculating the vector sum of the local 

forces imposed on a robot. 
 
In this section, we will explicitly explain the 
method we used to solve these two problems. 
 
3.2. The calculation of local forces 
In our approach, each robot is assumed to have 
a panoramic sensor, which can scan within a 
circular area around the robot. As shown in Fig. 
1, target jo and robot kv ( ik ≠ ) is within the 
sensor range of robot iv . Then, robot iv  can 
sense their existence, and find the distance and 
orientation to them: 
• To target jo :  the distance is 

jior , the 
angle between the direction to jo  and the 
current moving direction is ijα . 

• To robot kv :  the distance is ikr , the 
angle between the direction to kv  and the 
current moving direction is ikα . 

 

 
 

Fig. 1. Sensor Range of Robot iv  
 
We define the attractive force to be directed 
towards the target oj, and the orientation of the 
repulsive force to be  opposite to the direction 
of the other robot vk, as shown in Fig. 2.  
 
The magnitudes of the local forces can be 
calculated by functions shown in Figs. 3 and 4.  
 
 
 

iv  

current 
moving 

direction 

sensor 
range 

jo  

kv  
ikα  

ikr  

jior  
ijα  
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Fig. 2. The Orientation of the Local Forces 
Imposed on Robot iv  

 
 
Fig. 3 shows the function defining magnitude 
of attractive force imposed on a robot due to a 
target. Let orr −  be the distance between the 
robot and the object/target.  The magnitude of 
the attractive force depends on orr −  according 
to:  
• 1oor rr ≤− : The magnitude is set as 

negative maximum. This is to avoid 
moving so close to the target, therefore 
avoiding the collision with the target. 

• 21 ooro rrr ≤< − :  The magnitude changes 
gradually from negative to positive, so 
that the repulsive force to avoid collision 
will continuously decrease and then 
becomes attractive. 

• 32 ooro rrr ≤< − : In this segment, the 
magnitude is set maximum, so that the 
robot will be inclined to keep tracking the 
target within this range. We refer to this 
range as the  preferred tracking range. 

• rangesensororo rrr _3 ≤< − : The magnitude 
will gradually decrease to zero until the 
target is beyond the sensor range. 

• orrangesensor rr −<_ : The magnitude is set 
as zero because the target is beyond the 
sensor range of the robot, so that no more 
attractive force will be imposed to this 
robot from this target. 

 

 
 

Fig. 3. Magnitude of Attractive Force Imposed 
on a Robot Due to a Target. 

 

Fig. 4 shows the function defining magnitude 
of repulsive force imposed on a robot due to 
another robot. (Note the orientation is opposite 
the one for  the attractive case.) Let rrr − be the 
distance between two robots. The magnitude of 
the repulsive force depends on rrr −  acoording 
to: 
• 1rrr rr ≤− : The magnitude is set as 

maximum. In this segment, the repulsive 
force is strongest, so that two nearby 
robots will leave apart rapidly. 

• 21 rrrr rrr ≤≤ − :  The magnitude 
decreases gradually to zero, so that the 
repulsive force will continuously decrease 
too. 

• rrr rr −≤2 : In this segment, the magnitude 
is set zero because two robots are already 
far apart enough. There will be no 
repulsive force between two robots any 
more. 

 

 
 

Fig. 4. Magnitude of Repulsive Force Imposed 
on a Robot Due to another Robot. 

 
3.3. The calculation of vector sum of local 
forces 
As described before, the robot will move under 
the vector sum of the forces imposed on it. 
However, equally adding these vectors, 
(referred to as pure potential field based 
control ) may degrade the performance of the 
system. For example, in Fig. 5, two robots are 
following the same target simultaneously. In 
this case, the two robots and the target will 
keep a triangle pattern to move until another 
robot or target appears and disturbs the balance 
among them. Obviously, there is a waste of 
resources because one of the robots can search 
and follow another target without tracking a 
target already being followed.  
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distance 

magnitude 

1rr  
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Fig. 5. Two Robots Follow One Target 
Simultaneously 

 
To avoid the deficiency of pure potential field 
based control algorithm, we find a solution: 
setting weights to the attractive force vectors 
before adding  them up. We name this as 
weighted potential field based control 
algorithm. In our approach, the sum of 
weighted local force vectors can be expressed 
as Eq. 1. 
 

_
1 1,

_ _             (1)
n m

i sum ij ioj ik
j k k i

F w att f rep f
= = ≠

= +∑ ∑  

 
In Eq. 1, ikw  represents the weight of target 

jo  to robot iv . Normally, the weight is set as 
1 except another robot is also found to follow 
the same target. In this case, the weight of that 
target will be deduced to avoid the situation in 
Fig. 5. In Parker’s approach [5], the weight is 
deduced whenever another robot is found 
nearby the target. But this strategy may lead to 
a problem: supposing two robots are almost at 
the same distance from a target, and these two 
robots find each other. Then, they will both 
decrease the weight of the attractive force from 
the target. Finally, maybe both of them will 
give up tracking the target any more. 
Obviously, this result is not our expectation.  
 
In our approach, we only decrease the weight 
of the attractive force  between the farthest 
robot and the target.  As shown in Fig. 6, when 
robot iv find its peer kv and the target jo , it 
will compute the distance kojr  between iv  and 
the target jo . Comparing the kojr  and iojr , 
robot iv  will decide whether it needs to 
decrease the weight of the attractive force to 
the target jo : If kojr  is larger than iojr , the 
weight will not change, else the weight will be 
decreased. The other robot kv will also do the 
same thing at the same time. Finally, only one 
robot ( iv ) will follow the target, and the other 

one will leave (because of the repulsive force 
between robots) and try to track a new target..  

 

 
 

Fig. 6. Example: Decrease Weight Adaptively 
by Computing the Distance. If kojr  is smaller 
than iojr , iv  will set the weight ijw = 0.1 or 

less, else ijw  = 1. 
 

Another case needs to be considered is when a 
robot is tracking two oppositely moving targets, 
as shown in Fig. 7. In this case, the attractive 
forces will counteract each other, and then the 
robot will have little motivation to track (we 
call this as “hesitation”). Especially when the 
two targets are at the edge of the sensor range, 
“hesitation” may cause the robot to lose both 
targets. In [5], Parker thinks that the noise of 
the real sensors will avoid this case because 
balance of the attractive forces is impossible to 
happen in the real world. However, from our 
experience, when the moving speed of the 
robot is only a bit faster than the targets, 
“hesitation” behavior may badly affect the 
tracking performance. 
 

 
 

Fig. 7. A Robot Tracking Two Oppositely 
Moving Targets 

 
To avoid the “hesitation” behavior, we add a 
restriction to the calculation of the vector sum 
of the local forces:  
• If one target is already within “good” 

range (a range within the sensor range), 

iv  jo  
lo  

moving orientation 
 attractive force 
 

sensor 
range 

jo  

kv  

iv  

iojr  

ikr  

kojr  
jo  

kv  iv  
repulsive 
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combination 
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the robot will move under the weighted 
vector sum _i sumF  calculated by Eq. 1. 

• If no target is within good range, the robot 
will move under the strongest attractive 
force and the repulsive forces, or search 
for target randomly (when nothing is 
within the sensor range).  

 
This restriction will avoid “hesitation” 
behavior by forcing the robot to give up 
following one target in the condition shown in 
Fig. 7. We refer to this control algorithm with 
this restriction as “conditional weighted” 
potential field based control algorithm. In this 
control strategy, however, we need to decide 
on how to set an appropriate value for the 
“good” range.. If good range is too small, the 
performance of the system will be badly 
degraded because the robot can not follow 
more than one target before one target is 
already within the good range. If the good 
range is too big and near the sensor range, the 
“hesitation” behavior will still happen.  
 
In our simulation and discussion section, we 
will test and compare the performance of these 
algorithms:  
• Pure potential field based control 

algorithm.  
• Weighted potential field based control 

algorithm. 
• Conditional weighted potential field based 

control algorithm.   
 

IV. SIMULATION AND DISCUSSION 
 
4.1. Simulation configuration and 
methodology 
To test our potential field based control 
algorithm, we conducted simulation under 
following conditions: 
• The museum: a 5m*5m square area with 

walls on the boundary. In our simulation, 
there was no obstacle within this area.  

• Visitors (targets): 9 targets were 
represented by virtual robot Khepera (a 
mini cylinder robot). It moved randomly 
within the interest area (museum). If its 
way was blocked by something, such as 
the wall, the other targets, or the robot 
security guards, it could change its 
moving direction to avoid collision. 

• Security guards (robots): 3 robots were 
represented by virtual robot Khepera. 
Their sensor range were set to 0.5m. 
Therefore the highest overall scannable 
area was about 9.42% of the entire area. 

• For the function defined in Figs. 3 and 4, 
we selected following parameter settings: 

1or  = 0.1m, 2or  = 0.3m, 3or = 0.4m;  1rr  = 
0.2m. 

• Different values of good range were tested: 
0.30m, 0.35m, 0.40m, 0.45m, and 0.50m . 

 
We define the system performance P as the 
average number of the targets being tracked, 
i.e. P = 3.2 means in average there were 3.2 
targets being tracked during the simulation 
time. Regarding each parameter set, we ran the 
simulation 50 times and got the average 
performance P. However, in the calculation of 
P, something should be noted: during the 
initial period of simulation, the robots need 
some time to find the targets, and before some 
targets is found, our potential field based 
control algorithm will not work. We called the 
initial time for searching targets as “warm up” 
period. To eliminate the influence of “warm 
up” period, we discard the data of the first 
5000 simulation steps in each simulation run. 
Since each run is 50000 steps, the performance 
P is the result of the last 45000 simulation 
steps.  
 
4.2. Simulation results 
In our simulation, we test and compare the 
system performance in following conditions: 
• Pure potential field based control without 

adaptively setting weight: in Eq. 1, let 
1ijw ≡ . 

• Weighted potential field based control: in 
Eq. 1, adaptively decreasing ijw  by the 
method introduced in previous section. In 
our simulation, the reduction ratio was 0.1. 

• Conditional weighted potential field based 
control: adaptively select one or all the 
attractive forces to follow by the method 
introduced in previous section. In our 
simulation, the good range was set as 
0.30m, 0.35m, 0.40m, 0.45m, and 0.50m. 

 
Fig. 8 and Fig. 9 show the simulation results. 
In Fig. 8, we compare the system performance 
of the  3 control algorithms. In Fig. 9, we 
compare the influence of the value of good 
range in conditional potential field based 
control algorithm. These results will be 
discussed next. 
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Fig. 9. The Relation between the Value of 
Good Range and the Performance 

 
 
4.3. Discussion 
Fig. 8 shows that  our potential field based 
approach is effective. While the total scannable 
area is only 9.42% of the entire area, the 
system performance P of 4.36 can be achieved , 
which means in average one robot was 
tracking about 1.45 targets at the same time. In 
addition, the simulation results also prove that 
our two modifications to pure potential field 
based control, adaptively changing weight and 
setting good range, are effective. They can 
improve about 6% of the system performance. 
In our approach, the distributed control is 
accomplished by less computational efforts 
compared with traditional centralized control. 
And that is a real time control algorithm, 
which is more practical and feasible. Therefore, 
we may draw a conclusion that our potential 
field based control algorithm is a promising 
methodology in solving the museum problem. 
 
To make our conditional weighted potential 
field based control algorithm work better, 
something should be noted, i.e. the selection of 

the value of the good range. From Fig. 9, we 
can find that value has influence on the system 
performance. The smaller the value, the 
smaller chance that the robot can follow two 
targets simultaneously, thus losing the 
advantage of potential field based control. The 
bigger the value, the bigger the chance that the 
robot will present some “hesitation” behavior, 
thus the robots may lose the targets. From our 
simulation, we find that about 90% of the 
sensor range is a nice choice for the value of 
good range. 
 
Our potential field based control algorithm is 
satisfactory in the museum problem. However, 
there is some deficiency that can not be 
neglected. In our definition of museum 
problem, we assume the interest area (museum) 
is a “clean” area, where exists no obstacles or 
only little convex obstacles. That is because 
potential field based control algorithm has 
difficulties in overcoming concave obstacles. 
This problem is called as local minimum 
problem [8]. For example, if there is a concave 
obstacle between the robot and the target, the 
attractive force from the target and the 
repulsive force from the obstacle may make 
the robot “stuck” in the concave. In some 
papers, i.e. [8] and [9], some methods are 
mentioned to solve this problem. However, 
there is no formal solution for local minimum 
problem up to now. This deficiency needs 
more consideration in future study on potential 
field based control algorithm. 
 

V. CONCLUSION AND FUTURE 
WORK 

 
5.1. Conclusion 
Museum problem is a traditional problem in 
multi-robot system. Its essential problem is to 
achieve collective work among the robots. In 
this paper, we present our conditional weighted 
potential field based control algorithm, which 
is a simple, low computational cost, real time 
algorithm. In our approach, the robots are 
moving under the vector sum of the local force 
imposed on it, therefore accomplish 
collaboration. Additionally, some 
modifications are done to improve the 
performance. Finally, our simulation results 
dhow the efficacy of our algorithms. Potential 
field based control algorithm is a promising 
algorithm to solve the problems of multi-robot 
system. 
  
 
 



 The First Humanoid, Nanotechnology, Information Technology, Communication and Control 
Environment and Management (HNICEM) International Conference 

March 27-30, 2003, Manila, Philippines 
 
 

8 

5.2. Future work 
As mentioned before, the potential field based 
control has a deficiency, which is the local 
minimum problem. This problem confines the 
usage of this algorithm in some certain case, 
i.e. “clean” area without concave obstacles. 
Obviously, local minimum problem is one of 
the further problems need consideration. 
 
Another problem in museum problem is in the 
searching part. Both in Parker’s paper [5] and 
this paper, we ignore the initial part of the 
museum problem: searching for the targets. 
Potential field based control can achieve 
tracking when some targets is within the sensor 
range. However, it can not help in the search 
part. How to find an effective method to search 
and find targets in the museum problem is not 
trivial. This is a subject of our current research. 
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