
 
Searching and Tracking for Multi-Robot 

Observation of Moving Targets  
 
 

Zheng LIU1, Marcelo H. ANG Jr.2, and Winston Khoon Guan SEAH3 
1Dept. of Electrical & Computer Engineering and 2Dept. of Mechanical Engineering, 

National University of Singapore, 3Institute for Infocomm Research, Singapore. 
g0202255@nus.edu.sg, mpeangh@nus.edu.sg, winston@i2r.a-star.edu.sg  

 
 
Abstract: Searching and tracking are important issues in multi-robot observation of 
multiple moving targets. In this paper, our distributed memory based searching and 
artificial potential field based tracking algorithms are presented. For searching, a 
memory table, either local or shared, helps to find targets. For tracking, an artificial 
potential field based motion control algorithm provides real-time tracking with 
collision avoidance. Simulations demonstrate the capability of our distributed 
searching and tracking works. 

 
 
Introduction 
 
In last two decades, multi-robot cooperative sensing is extensively studied for security, 
surveillance, and reconnaissance tasks [1]. The mobility of robots advanced traditional static 
sensor networks, and the cooperation improved the system performance. A typical multi-robot 
cooperative sensing problem is the “museum” problem: within a large area, given a group of 
robots whose sensor ability is limited, how to maximize the observation of targets? 
 Theoretically, centralized control algorithms can be used for museum problem and 
achieve optimal performance. However, in practice, centralized control is seldom used 
because the central commander needs to know the information of each robot or node to make 
decision, also, all possible scenarios have to be predicted and corresponding actions 
programmed for the robots to react accordingly. Furthermore, centralized control degrades the 
robustness of the system. When the control canter crashes, the system can not continue to 
work even though some robots are still functional.  
 Current research for the museum problem is mostly in distributed manner that enables 
each robot to control itself based on the locally sensed information or shared information 
through intercommunications. Parker et al. designed a distributed artificial potential field 
based control algorithm for Cooperative Multi-robot Observation of Multiple Moving Targets 
(CMOMMT) [2-3]. Jung et al., [4-5] proposed an optimization algorithm to distribute the 
robots to enlarge the observable area. In our previous work [6], we presented a conditional 
weighted artificial potential field based control algorithm, which could achieve robot 
cooperative searching without a central commander. 
 In this paper, we present our distributed searching and tracking algorithms for the 
museum problem. In Section 1, we introduce memory table based searching strategy, and in 
Section 2, we present conditional weighted artificial potential based motion control for 
tracking. Then, we discuss the simulation and results in Section 3. Finally, we summarize our 
contributions and introduce our future work in Section 4. 
 
 



1. Memory based searching 
 
1.1 The motivation and assumption for using memory 
 
For museum problem, the aim is to maximize the number of the observed targets. Therefore, 
finding targets is the premise. However, in previous work, such as [2-5], the focus is tracking, 
and random search is used to find targets. However, to solve museum problem better, the 
searching part is not trivial and random search is far from satisfactory. 
 In a real world environment, the movement of visitors is not entirely random. The 
targets may appear more frequently in some “preferred areas.” This is a clue for better 
searching – search around the preferred areas instead of scattering around randomly and 
aimlessly. In our approach, we make the following assumptions for our memory based 
searching algorithm: 

• Targets have preferred areas in the environment. 
• Robots can locate themselves in the environment. (The technique for localization in 

indoor environments is already quite advanced now. For example, the AHLoS 
system [7] can locate an indoor robot with an error in the order of centimeters in 
magnitude.) 

• Robots are controlled in distributed manner. They can share information through 
intercommunication. However, if intercommunication is not available, they still 
function. 

 
 
1.2 The implementation of our memory based searching 
 
1.2.1 Memorization 
 
Because robots can localize themselves in the museum, we partition the entire museum to 
small grids, and let each robot memorize the target appearance of the grids in its memory 
matrix F: 

• fij, 1 = target appearance history in grid ij  
• fij, 2 = last update time of fij, 1  

 
 Each robot has such a memory matrix, and this matrix is created and maintained by 
one robot individually. In this matrix, the “target appear history” is a time-related value that 
increases or decreases depending on the previous observation history of the grid. The matrix 
F is updated in each simulation step. In simulation step t, for all grid ij, if grid ij is 
observable (within the sensor range of the robot), the corresponding elements fij,1 and fij,2 
will be updated by the following rule:   

• If target is found:   new fij,1 = + preference_add + old fij,1 * fij,2 / tcurrent  
• If no target is found: new fij,1 = - preference_sub + old fij,1 * fij,2 / tcurrent  
• Set fij,2 = tcurrent 

 (preference_add and preference_sub are small positive constants used to update the 
estimated preference value fij,1.) 
 Because fij,2 is the last observation update time of grid ij, the value of fij,2 will be 
small compared to tcurrent if the last observation is very old. Therefore, very old observation 
fij,1 will have little influence when update the fij,1. This is due to the assumption that older 
information is less reliable. 
 
 



1.2.2 Intelligent selection 
 
The memory table (matrix F) is used to help find the most promising area for searching: for 
all grid ij, calculate the possibilities pij = fij,1 * fij,2 / tcurrent, then find the largest pij. The 
corresponding grid ij is the most promising area to find a target. This selection is done when 
the robot needs to search for target. One robot can do this selection by its F matrix 
individually, without the need to communicate with others.  
 
 
1.3 The sharing of memory among robots 
 
The memory table in Section 1.2 is for a single robot who can only sense a small area 
around itself. Since the robots are moving and sensing different regions, the F matrix is 
different for each robot because F only records the local observation. If all robots can share 
this matrix, they may have a much larger “view” of the environment. In our approach, we 
let all robots share matrix F to create and maintain a global memory matrix G for searching. 
Obviously, information sharing through intercommunication is the necessary condition for 
this approach. 
 The global memory table G is generated and updated by collecting the information 
from the F matrices of all the robots. In each simulation step, we update each element gij of 
G using Eq. 1.: 
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 The denominator is a scaling factor to make the elements in the global memory 
matrix G comparable with those in local memory matrix F. It is also used to encourage the 
robot to explore unobserved area. For instance, early update time will lead to greater g, 
which means unobserved (or observed long ago) area will be more attractive for robots to 
search. 
 When a robot needs to search for target, it will calculate out the largest gij and then 
move towards the corresponding grid ij. In our approach, all robots in search state will go to 
the same most promising grid. This is based on following considerations: 

• Normally, robots are distributed around the museum. If each robot only searches in a 
promising grid around itself, some areas may not be covered. 

•  If more than one robot arrive at this most promising grid and they do not find any 
target there, they will decrease the gij value much faster than when only one single 
robot is in this grid. Therefore less time will be wasted in this grid. 

 
 
2. Artificial potential field based tracking 
 
2.1. Overview of our potential field based motion control 
 
Artificial potential field based control is well known for its simplicity and efficiency 
because it is reactive and can be implemented in distributed manner. Artificial potential 
field based motion control assumes that robots (obstacles) and targets carry opposite 
charges; therefore attractive force exists between robot and target, and repulsive force exists 
between robots (and obstacles). Based on this assumption, let each robot move under the 
vector sum of all the forces imposed on it, thus accomplish tracking and avoid collision 



simultaneously. Obviously, there are two key problems in this control algorithm: (1) 
Calculating the attractive and repulsive forces (both are called as local forces); (2) 
Calculating the vector sum of the local forces for a robot. 
 
 
2.2. The calculation of local forces 
 
In our approach, each robot is assumed to have a panoramic sensor, which can differentiate 
the sensed objects as obstacles, targets, or robots when the objects are within the circular 
sensor range around the robot.  
 We define the orientation of the attractive force is towards the target, and the 
orientation of the repulsive force is opposite to the obstacle or the other robot.  
 The magnitude of the local forces is shown in Fig. 1. (Rr-o is the distance between 
robot and target, Rr-r is the distance between robots or robot and obstacle) 
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Fig. 1. Magnitude of local forces. (a) attractive force, (b) repulsive force 
 
 
2.3. The calculation of vector sum of local forces 
 
The pure potential field based control equally adds the local forces. However it may degrade 
the performance of the system. For example, in Fig. 2-a, two robots are following the same 
target simultaneously. In this case, the two robots and the target will keep a triangle pattern 
to move until another target or robot appears and disturbs the balance. This is a waste of 
resources because one of the robots can leave and search for other targets without tracking a 
target already being followed.  
 To avoid the deficiency of pure potential field based control, we set weights to 
attractive forces before adding them up (shown in Eq. 2.). This is the weighted potential 
field based control algorithm. 
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 In Eq. 2, n is the number of attractive targets; m is the number of repulsive robots; 
wij is the weight of the attractive force between target oj and robot vi; att_fioj is the attractive 
force to target oj; rep_fik is the repulsive force from robot vk. In Parker’s approach [2], 
whenever another robot was found nearby the target, the weight was decreased. However, in 
our approach, we only decrease the weight of the attractive force between the farther robot 
and the target (as shown in Fig. 2-b). 
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Fig. 2. Two robots follow one target simultaneously. (a) triangle pattern, (b) example: decrease weight 
adaptively: if Rkoj is smaller than Rioj, weight wij will be decreased, else wij unchanged. 

 
 Another case needs to be considered is that a robot tracks two oppositely moving 
targets. In this case, the attractive forces may counteract each other, and then the robot will 
have little motivation to track. We call this as “hesitation” behavior. When two targets are 
at the edge of the sensor range, “hesitation” may cause the robot to lose both targets. 

 To avoid the “hesitation” behavior, we add a restriction to the calculation of the 
summation of the local forces:  

• If at least one target is already within “good” range (a range smaller than the sensor 
range), the robot will move under the weighted vector sum Fi_sum calculated by Eq. 
2. 

• If no target is within good range, the robot will follow the nearest target, or search 
for target if no target found. 

 
 This restriction will avoid “hesitation” behavior by forcing the robot to give up 
following one target. We call the control algorithm with such restriction as conditional 
weighted potential field based control algorithm.  

 In our simulation for tracking, we will test and compare the performance of these 
algorithms: (1) Pure potential field based control; (2) Weighted potential field based 
control; (3) Conditional weighted potential field based control. 
 
 
3. Simulation and results 
 
3.1. Simulation configuration and methodology 
 
Museum problem is a combination of both searching and tracking. However, the objectives 
are not the same. For searching, short search time is the aim; whereas for tracking, long 
tracking time is preferred. Therefore, it is reasonable that we run simulations to test the 
searching and tracking algorithms separately. The software simulator used is Webots 3, a 
embedded differential-wheel type robot simulator.  
 
 
3.2 Searching performance 
 
The simulation configuration for searching is as follows: 

• A bounded square area 5.0 x 5.0 m (museum) evenly partitioned to 100 grids.  
• 8 targets: move in and out of the museum through 8 doors. On average, each target 

stays in the museum 1500 simulation steps, and then get out; after 1200 simulation 
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steps, they reenter. The preferred area is the 9 grids with grid66 as the center. 
• 4 robots: they search for the targets, and if a target is found, they track it. However, 

when a target moves out of the museum, the robot cannot follow it out; it has to 
search for a new target in the museum again. 

• The sensor range of the robot is 0.8m, the preference_add is 0.1; preference_sub is 
0.05. 

• One simulation episode involves total simulation time of 30000 steps. For one set of 
parameters, we try 50 episodes to get the average.  

 
The definition of parameters used to evaluate the performance is as follows:  
• Prefer_factor (pf): pf represents the preference level that targets move toward the 

preferred area. pf is calculated out by comparing the real visit frequency and normal 
visit frequency of the preferred area:  

real visit frequency of the preferred area
  

normal visit frequency of the preferred area
pf =  

 - Real visit frequency: the real visit frequency during the simulation. 
 - Normal visit frequency: the visit frequency if targets have no preference. In 

our simulation, the normal visit frequency for the 9 grids is the result of 9 
times the average visit frequency of all grids.  

• Search steps (ss): the average steps that a robot needs to find a target 
  

 As introduced in Section 1. We compare the performance of our memory based 
searching in two scenarios: without preferred areas and with preferred areas. We also test 
the three searching methods: no memory, local memory (F matrix), and shared memory (G 
matrix). 
 For one set of parameters, we run 50 episodes and get the average result shown in 
Fig. 3.  
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Fig. 3. Searching simulation results 

 
The simulation results show that our memory based searching algorithm works and 

when the visit preference (convergence) of targets increases, it performs better. However, 
when targets randomly move in the area, memory becomes useless because there is no rule 
to predict the appearance of targets. The simulation results also show that the robot team 
with shared memory is superb to the team without information sharing. A reasonable 
explanation is that shared memory “enlarges” the observable region of a single robot, and in 
some sense achieves higher level cooperation among robots. 
 
 



3.3 Tracking performance 
 
The simulation configuration for tracking is as follows: 

• The museum: a 5.0 x 5.0m square area.  
• 9 targets move randomly within the museum.  
• 3 robots. The sensor radius is 0.5m. Therefore the highest overall sensor coverage is 

about 9.42% of the entire area. 
• For the function defined in Fig. 1-a and 1-b, we select following parameter settings: 

Ro1 = 0.1m, Ro2 = 0.3m, Ro3 = 0.4m; Rr1 = 0.2m, Rr2 = 0.5m.  
• Different values of good range are tested: 0.30m, 0.35m, 0.40m, 0.45m, and 0.50m. 
• One simulation episode is 45000 steps, and we run 40 episodes for one parameter 

setting. 
 
 We define the system performance P as the average number of the targets being 

tracked, i.e. P = 3.2 means in average there are 3.2 targets being tracked during one 
simulation episode.  

 In our simulation, we test and compare the system performance under following 
conditions: 

• Pure potential field based control without adaptively setting weight. 
• Weighted potential field based control. (the reduction ratio is 0.1) 
• Conditional weighted potential field based control.  
 
 Fig. 4 and Fig. 5 are the simulation results. 
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           Fig. 4. Performances under                          Fig. 5. The relation between the values 

        different control algorithms                           of good range and the performance 
 
 The simulation results show that our potential field based approach is effective. 
While the total sensor coverage is only 9.42% of the entire area, the system performance P 
of 4.36 is achieved, which means an average of 4.36 targets can be tracked. In addition, the 
simulation results show that our two modifications to pure potential field based control, 
adaptively changing weight and setting good range, are effective.  
 How to find an appropriate size of the “good” range is another problem in our 
approach. The smaller the value, the smaller the chance that the robot can follow more than 
one target simultaneously; the bigger the value, the bigger the chance that the robot will 
present some “hesitation” behavior. From our simulation, we find that about 90% of the 
sensor range is a nice choice for the value of “good” range.  
 
 
4. Conclusion 



 
In the paper, we address the problem of searching and tracking of multiple targets using 
multiple robots. Our distributed searching algorithm relies on the robots remembering the 
preferred areas for the moving targets. Improved performance is achieved by sharing the 
memory by intercommunications. 
 An apparent disadvantage of our memory based searching is that it can hardly 
handle dynamically changing environments. How to deal with dynamical environments and 
find a searching strategy is a challenge for our future research.  
 Once the targets have been searched or are within the sensing range of the robots, 
the next problem is the tracking of the moving targets. Potential field based control is a 
simple and scalable real-time algorithm for tracking moving targets and avoiding obstacles. 
We introduced “weighting” to avoid more than one robot tracking the same target. 
Furthermore, we have “conditional” weighting to avoid the “hesitation” behavior by the 
robots. Simulation results show efficacy of the algorithms. However, the local minima 
problem arises when the attractive and repulsive forces balance and thus the robot cannot 
move. Some heuristics, such as wall-following method [8], were proposed to solve local 
minima problem. However, up to now, no general solution exists. Recently, some other 
algorithms are introduced for the reactive motion control, such as [9], in which the motion 
of the robot was decided by cooperative and competitive Extended Kohonen Maps (EKMs). 
Obviously, to design an effective and robust motion control algorithm is one of the future 
tasks for us.  
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