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Abstract:  
How to enable a robot to explore in an unknown 
environment containing obstacles via local sensing 
is an important research issue for robot navigation, 
map building, and localization. In this paper, a 
reactive and visibility-based exploration algorithm 
is proposed. By line-of-sight sensors, the robot can 
find the occlusion points between covered and 
uncovered regions, and then approach these 
occlusion points to “sweep” the area. In addition, a 
prediction model based on local sensing is applied 
to refine the trajectory when the robot is moving; 
therefore as the robot tries to cover unknown area, 
it also tries to maximize the monitoring of covered 
area. Simulation experiment shows the efficacy of 
our approach.  
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1. Introduction  

Exploration is one of the most basic capabilities 
for mobile robots to acquire information on 
unknown environments. It is the fundamental for 
robot localization and map building because 
exploration directly affects the input of the robot 
system. Without complete exploration, the robot 
cannot effectively find usable landmarks for 
localization or draw a complete map of the 
environment.  

Exploration problem stems from the traditional 
coverage problem. However, the coverage problem 
mostly focuses on the sensible area that requires 
the optimal placement of static sensors to 
maximize the observation of the environment at 
one time point, while exploration concentrates on 
the sensed area after a period of movement of the 
robot. For example, as depicted in Figure 1., 

assuming the robot has panoramic line-of-sight 
sensor with infinite range, the robot in (1-a) is the 
winner of coverage because it stops at the end 
point that has much larger sensible area than in (1-
b); however, from an exploration point of view (1-
a) is inferior to (1-b) because the lower right 
region inside the small cell is not sensed.  

The key problem for exploration can be elaborated 
as the following: “Given what you know about the 
world, where should you move to gain as much 
new information as possible?” [1]. A good 
exploration algorithm should have two properties, 
completeness and effectiveness. Completeness 
requires the robot to cover most of the 
environment; effectiveness emphasizes on the 
efficiency that the robot should achieve the 
completeness by minimal efforts (moves).  

In this paper, we propose a visibility-based 
algorithm for robot exploration in unknown 
environments containing structured obstacles, i.e., 
polygonal obstacles. Assuming the robot has line-
of-sight sensors with infinite detection range, e.g. 
ideal panoramic laser sensor or vision sensor, our 
exploration algorithm deploys the robot to move 
toward the occlusion points between covered and 
uncovered area. Therefore the robot can 
continuously search for unknown area to ensure 
the completeness of the exploration. In addition, a 
prediction model based on local sensing is used to 
adjust the motion of the robot; the aim is to 
maximize the coverage of the environment. By 
integrating these two approaches, we hope the 
robot can perform well in exploration and not lose 
the coverage if possible, e.g., the motion shown in 
Figure 2. 

The remaining parts of this paper are organized as 
follows. Section 2 introduces the related work in 
robot exploration and coverage. Section 3 outlines 
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our visibility-based exploration algorithm 
including occlusion point approaching and 
prediction based refinement of exploration 
trajectory. Section 4 shows the efficacy of our 
approach by simulation. Finally, Section 5 
concludes this paper and introduces our future 
work.

Fig. 1.  Coverage and exploration  
(Black dot: start point; gray dot: end point) 

Fig. 2.  Aim of our approach: to explore with 
maximal coverage  

(Black dot: start point; gray dot: end point) 

2. Related Work   

The study on robot exploration is often integrated 
with the research on robot localization and map 
building, e.g. SLAM ([2, 3]). However, most of 
such work focuses on the processing of sensor data, 
e.g., fusion, filtering, etc. Few of them concern the 
exploration strategies or algorithms, which are in 
fact non-trivial especially for real applications. 
There are mainly two classes of approaches for 
robot exploration ranging from simple to complex, 
i.e., potential field based approach and frontier-
based approach.   (1- a) 

Potential field based approach concerns the 
obstacles inside the environment because they are 
usually the key factors affecting the observation of 
the environment. For example, in [4], Mataric et al 
introduce an artificial potential field based 
exploration algorithm for a team of robots. The 
idea is to map the sensed obstacles and robots as 
repulsive force sources and let the robots move 
under such forces; therefore the robots can be 
dispersed within the whole area. The potential 
field based approach can also be applied for 
tracking moving target, such as cooperative multi-
robot tracking of multiple moving targets [5].  

 (1- b) 

The simplicity of potential field approach makes it 
widely used in multi-robot systems. However, the 
simplicity also constrains the exploration 
performance because the robots only move by the 
received repulsive forces and they do not have 
target positions to approach to. This is somehow 
like a static deployment algorithm that is in fact a 
solution for coverage problem aiming to maximize 
the sensible area. For example, if the robots do not 
receive any repulsive forces (no obstacles or robots 
nearby) or the repulsive forces are balanced (in 
equilibrium states), they do not intend to move to 
further explore the environment. Therefore, the 
quality of exploration largely depends on the 
quantity of the robots. Without enough robots, a 
robot team cannot occupy the whole region for 
complete exploration even if they have infinite 
exploration time.  

Frontier-based approach is derived from the 
exploration strategy that moves the robot to the 
most promising place to increase the sensed area. 
To achieve this, the robot needs to assess the 
covered space (sensed area) and unknown space to 
plan for the next move. A well known frontier-
based exploration algorithm is proposed by 
Yamauchi [6]. With a grid represented map of the 
environment generated by local sensing, the robot 
can find the frontiers (boundary/edge) of the open 
space and then move toward the most promising 
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frontier according to some metrics. This approach 
can also be extended to multi-robot scenario [7], 
whereby the sharing of locally sensed information 
enables robots to explore more effectively. 
Recently, based on the concept of frontier, Gap 
Navigation Trees (GNT) is proposed to effectively 
represent the environment for better exploration 
[8]. Furthermore, frontier can also be applied for 
tracking moving targets. In [9], a robot can 
estimate the probability of losing a moving target 
via evaluating the target’s distance to the frontier.  

Compared with potential field based exploration, 
frontier-based exploration is more advanced 
because it can design motion trajectory for robots 
based on the map of the environment (drawn via 
local sensing or by other means). However, to map 
the environment, identify the frontiers and select 
the most promising frontier may require large 
memory space and lead to heavy computation 
burden.

In this paper, we propose a visibility-based 
approach for exploration. This approach inherits 
the advantage of frontier-based exploration that it 
can generate optimal movements for the robot to 
explore. In addition, our approach only requires 
the information of the occlusion points between 
covered and uncovered space. The details of our 
approach are to be introduced in next section.  

3. Our Visibility based Exploration   

As introduced previously, our research aim is to 
design an exploration algorithm that can enable the 
robot to explore in an unknown environment 
completely and effectively. Since the exploration 
strategy depends largely on the properties of the 
environment and robots, we clarify the 
assumptions of our approach first:  

Environment: bounded; two dimensions; 
contains polygonal obstacles. We can assume 
a normal size room that only has walls as the 
environment to be explored.  
Robot: equipped with panoramic line-of-sight 
sensor, the range of the sensor is infinity. The 
infinite sensing range may be realistic 
assumption because some vision sensor or 
laser sensors, e.g., SICK, can provides a view 
within 15 meters or more. Such range is 
comparable or even larger than the dimension 
of normal indoor environment.   

Based on above assumptions, we may find that for 
the robot, the distance to unknown area is not the 
key issue for exploration because the sensor range 

is infinite. The more important issue is the angle to 
the occlusion points of the obstacle that blocks 
sensing (eye-sight) of the sensors. As shown in 
Figure 3, the robot cannot see beyond the black 
obstacle therefore the gray region is uncovered. To 
solve this problem, a natural thought is to let the 
robot move along a leftward curve toward 
occlusion point A (small black point); therefore the 
robot can observe the uncovered region move 
efficiently.

To achieve this desired motion, the robot needs 
two basic behaviors, approaching to critical 
occlusion point, and adjusting motion to increase 
the coverage.  

Occlusion pint A

Obstacle

Robot

Fig. 3. A robot equipped with infinite line-of-sight 
panoramic sensor in an environment containing 

polygonal obstacles.  

3.1 Approaching to the Critical Occlusion 
Points

First, we define the obstacle edge, free edge and 
occlusion point. The boundary of the visibility 
polygon of the robot consists of two types of edges: 
obstacle edges and free edges. Obstacle edges are 
part of obstacle boundaries. They directly block 
the sensor’s line of sight. Free edges result from 
occlusion of the line of sight elsewhere. The 
occlusion points are the near ends of the free edges 
to the robot. The nearest occlusion point is termed 
as critical occlusion point. For instance, as 
depicted in Figure 4, the visible region of robot O
is polygon AA’B’BDMNC’CEPF; obstacle edges 
are A’B’, BD, DM, MN, NC’, CE, EP, PF, and FA;
free edges are AA’, B’B, and C’C; occlusion points 
are A, B, and C; critical occlusion point is A.   

The occlusion points indicate the edge/boundary 
between covered and uncovered region. If the 
robot wants to approaches to the unknown area, it 
needs to move toward the occlusion points. For 
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example, in Figure 4, if the robot can approach to 
critical occlusion point A, it may sense the region 
behind this point (the top-right gray region).  

Fig. 4. Free edge, obstacle edge, and occlusion 
point  

In our approach, the link between occlusion point 
and its projection (e.g., AA’) is in fact the frontier 
between covered and uncovered space. However, 
we only let the robot move toward the occlusion 
point A, not the frontier AA’. This is based on the 
following considerations: 

In an environment containing structured 
polygonal obstacles, it is easier to use points 
to represent the obstacles. When the robot 
moves, the frontier of sensible region keeps 
changing but unless the robot across some 
specific region, the occlusion points do not 
change.
Most frontier-based exploration algorithms 
need the robot to draw and store the map of 
the environment to detect and select the 
frontier; this may require large storage space 
of the sensor data and also demand heavy 
computation. However, for our occlusion 
point based approach, the robot only needs to 
find the end points of the obstacles as the 
occlusion points. By storing these occlusion 
point information, the robot does not have to 
build a detailed map of the environment.  

In an environment with many polygonal obstacles, 
a robot may sense many occlusion points at a time. 
Each of the occlusion points calls the robot to 
search for the unseen region behind it. To 
effectively explore in the environment, the robot 
needs to visit these occlusion points sequentially. 
In our approach, we choose the nearest occlusion 
point to the robot as critical occlusion point to be 
explored first. When an occlusion point is finished, 
i.e., the region around it is all covered and it is no 
longer an occlusion point, the occlusion point will 

be removed from the list of occlusion points. In 
addition, when a new occlusion point is found, it 
will be added to the list. By this means, the robot 
may explore in the environment effectively.  
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Robot
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If the robot moves toward the critical occlusion 
point, it becomes nearer to the obstacle and the 
uncovered region. This is a necessary step for 
exploration; however, if the robot only moves 
directly to the critical occlusion point (e.g., point A
in Figure 4), it can not increase the sensed area 
because the link (AA’) does not move. Observing 
human behavior for exploration, a natural behavior 
is to approach to the occlusion point along a curve 
that can change the angle of the free edge of 
visible region, e.g., the trajectory shown in Figure 
3. To mimic such behavior, the robot needs to take 
account for the increasing of sensed area by its 
local sensing. To solve this problem, we propose a 
prediction based refinement of the trajectory of the 
robot. This is to be introduced in next sub-section.  

3.2 Adjusting Motion to Increase Coverage. 

As introduced previously, approaching directly to 
the occlusion point cannot increase the sensed area. 
The robot needs to make a curve-like trajectory. 
We propose a prediction based method to solve 
this problem. The basic idea is to let the robot 
assume several possible new locations around its 
current location in the next step. Based on current 
local sensing, the robot predicts the change of 
sensed area in each “new location” and then can 
find the new location that can generate maximal 
increase of the sensed area.  

Figure 5 shows how the prediction algorithm 
works. In (5-a), the black dot is the robot current 
location; the gray dot is the proposed new location. 
At current location O, the robot can detect the 
occlusion point A, its projection A’, and distance 
AA’. Assuming the robot will move to location P,
the motion distance OP and angle AOP are known,  
then the area to be sensed can be predicted as 
sector AA’A’’, whereas AA’ = AA’’. In (5-b), the 
black dot is the robot current location; the gray dot 
is the proposed new location. Just like in (5-a), 
occlusion point A, its projection A’, distance AA’,
OP and angle AOP are known, then the area to be 
lost can be predicted as triangle AA’A’’, whereas 
A’’ is the projection of A if the robot moves to P. It 
worth to be noted that for uncovered region, the 
new projection point of the occlusion point has to 
be estimated (by assuming AA’’ = AA’ in 5-a), 
while for covered region, the new projection is 
known (A’’ in 5-b).  
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Fig. 5. Prediction of changes of sensing area  
(Black dot: current location; gray dot: proposed 

new location) 

In our approach, the robot moves to a position that 
locally maximizes the effect of current coverage 
and future exploration. Depending on the type of 
navigation function chosen, there can be different 
approaches to come up with the locally optimal 
position. e.g. If the function is smooth then a good 
approximation would be to take the local gradient 
direction for a small step. 

3.3 Visibility-based Exploration   

Above two sub-sections elaborate the two basic 
behaviors for our visibility-based exploration. 
Approaching to critical occlusion point helps the 
robot to explore the uncovered area. Prediction of 
changes of sensible area enables the robot to adjust 
its motion for better coverage. These two 
behaviors are integrated for the robot to explore.  

In our approach, the robot works following the 
steps below: 

Step 1: Sense the environment, find all 
occlusion points. If an occlusion point has 
been covered previously, this point will not 
be added to the occlusion point list.  

Step 2: Choose the nearest occlusion point as 
critical occlusion point.  

A

A’

A’’

OP

(5-a) Step 3: Predict the changes of sensible area 
each occlusion point in the list, not only for 
the critical occlusion point. For example, 
when the occlusion point list includes four 
occlusion points A, B, C, and D, while the 
robot plans to approach critical occlusion 
point A, it predicts the change of sensible area 
regarding all the occlusion points A, B, C, and 
D.
Step 4: Select the best direction to maximize 
the coverage using equation (1).  
Step 5: To decide the moving direction, 
combine the direction to critical occlusion 
point and the direction to maximize coverage, 
as shown in Figure 6.  

A

O P

A’

(5-b)

A’’

Step 6: move along the decided direction, 
then examine the critical occlusion point, if it 
is covered, i.e., not an occlusion point in 
current visible region, remember this point as 
covered. 
Step 7: go to step 1.  

The best step to move is taken by locally moving 
towards the gradient of Vfinal where  

Vfinal = w1 Vexploration + w2 Vcoverage.

Taking the gradient,  
Vfinal = w1 Vexploration + w2 Vcoverage.

The future exploration component is encoded as 
moving towards the critical occlusion points in 
order to explore the region beyond the current 
visibility in the quickest possible way. The 
quickest possible way to reach a critical occlusion 
point is the unit vector pointing towards the 
occlusion point. 
FCritical Occlusion Point = tangential(robot position, 
critical occlusion point); 

The maximal coverage component is encoded as 
the swinging behavior of the robot in order to 
maximize the current coverage. The direction that 
maximizes the coverage for one visibility edge is 
to swing the visibility edge around the occlusion 
point, i.e. to move perpendicular to the direction to 
the occlusion point. 
FMaximal Coverage = normal(robot position, critical 
occlusion point); 

These two components are added up to get Ffinal.

Ffinal = w1FCritical Occlusion Point + w2FMaximal Coverage  (1) 

Observing equation (1), if there has a critical 
occlusion point, the robot will move toward it with 
the consideration of coverage; if there has no 
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critical occlusion point inside the visibility region, 
the robot will only move to the location to 
maximize the coverage of the environment. It 
should be noted that if there has no critical 
occlusion point and possible next location to 
maximize coverage, the robot will stop and cannot 
move to explore.  

Compared with the frontier-based exploration, our 
approach does not require the robot to map the 
sensed environment in details, e.g., grid 
represented map of all the stuffs sensed. The robot 
only needs to remember the occlusion point 
information (step 2, 6). Such abstract information 
can enable the robot to explore in the environment 
with satisfactory performance. 

Fig. 6. Moving towards critical occlusion point 
with the consideration of coverage

(Solid black arrow: direction to critical occlusion 
point; solid gray arrow: direction to the best 

location for coverage; dashed black arrow: final 
moving direction) 

4. Simulation and Discussion  

We test our exploration algorithm using LEDA 
[10], a C++ Library of Efficient Data types and 
Algorithms. To justify the efficacy of our approach, 
we compare it with the random exploration. The 
random exploration algorithm let the robot move 
forward until it detects an obstacle ahead, then it 
changes the direction and then moves forward until 
another obstacle is found ahead.  

Figures 7 and 8 show the exploration trajectory of 
our visibility-based approach and the random 
exploration respectively. Comparing the trajectory 
in these figures, we may find that the two basic 
behaviors, approaching to critical occlusion point 
and refining the motion based on prediction, can 
effectively lead the robot to explore in the 
unknown environment. The performance is 

satisfactory that the exploration result is complete 
and effective.   

Figure 9 compares the exploration performance 
between our approach and random exploration. 
The x-axis is the simulation timeline; the y-axis is 
the accumulated percentage of covered area. At 
any time, higher y value indicates better 
performance because the robot has covered more 
area. The result shows that random exploration 
cannot cover the environment effectively 
compared with our approach.  

In Figures 10, 11, and 12, our approach is 
compared with random exploration in another 
environment. The simulation results again show 
the efficacy of our approach. 

A Obstacle

Robot

As introduced previously, our visibility-based 
exploration algorithm only needs the robot to have 
abstract memory of the occlusion points, i.e., 
remember whether an occlusion point has been 
covered or not. This property brings great 
advantage compared with frontier-based approach 
that requires the robot to build a detailed map of 
the sensed environment. However, as introduced 
previously, to decide the moving direction by 
equation (1), the robot needs to have at least an 
occlusion point in its visible region (FCritical Occlusion 

Point  0), or have possible next step to increase 
the coverage (FMaximal Coverage  0). If both FCritical 

Occlusion Point and FMaximal Coverage are zero, the robot 
cannot move any more. This is a local minima 
problem depicted in Figure 13. If the robot has 
covered all the detected occlusion points inside its 
visibility region, it can only move to the location 
to maximize the coverage, therefore it cannot 
move out of this region to further explore the 
environment. 

Fig. 7. Visibility-based exploration trajectory  
(start from left bottom) 
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Fig. 8. Random exploration trajectory  
(start from left bottom; dotted area: uncovered 

region) 
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Fig. Fig. 11. Random exploration trajectory  
(start from mid bottom) 
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Fig. 13. Local minima problem   
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Simulation results (e.g., videos) can be found in 
http://guppy.mpe.nus.edu.sg/~mpeangh/kevin/.

5. Conclusion and Future Work  

In this paper, our visibility-based exploration
algorithm is introduced. Assuming the 
environment is structured that only contains 
polynomial obstacles, and the robot has infinite 
range line-of-sight sensors, we propose an 
exploration algorithm that lets the robot approach 
the critical occlusion point and modify the motion 
based on the prediction of sensible area. This 
reactive exploration algorithm can work based on 
local sensing without the need for detailed 
mapping. The efficacy is proved by simulations.  

The advantage of our approach also leads to the 
limitation of our approach. While our visibility-
based exploration algorithm greatly reduces the 
need for memory space and the complexity of 
computation, the exploration may not always be 
complete. This is due to the local minima problem 
that if the robot has no occlusion point in its 
visible region and possible next step to increase 
the coverage, it will stop exploration. To solve this 
problem, we propose two kinds of heuristics. One 
is to change the prediction model once the robot is 
captured by local minima. Enlarge the prediction 
circle radius or adjust the prediction direction may 
help the robot find better next step location to 
escape the local minima. Another solution is to let 
the robot move randomly until it finds a new 
occlusion point. We will implement and test these 
two heuristics in our future research to improve the 
performance of our visibility-based exploration 
algorithm.  
Another meaningful work is to extend our 
visibility-based exploration algorithm to multi-
robot systems. The requirement of exploration and 
the simplicity of our approach naturally satisfy the 
property of multi-robot systems. However, how to 
let the robots fuse their sensed data to 
cooperatively find occlusion points, and predict the 
changes of sensible area, is non-trivial research 
topic to be studied.  
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