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Abstract

The localization problem is important in mobile otd and wireless sensor network and has been dtudie
for many years. Among many localization methods, libp-count based approach is simple and scalable;
however, the localization accuracy is not satigfiagctf the node density is low. To solve this prfol, in

this paper a multi-robot approach is proposed tbhzetthe cooperation and mobility of the robots to
improve the node distribution (density), thus erdiag the hop-count based localization. By an auctio
based task allocation scheme, the robots can ratgatith the static sensor nodes and then selechtist
suitable robots to move to the area of sparse dedsity, thus increasing the localization accurfacythe
static sensor nodes. On the other hand, the ratsbscan localize themselves with the help of tiaics
sensor nodes. The efficacy of this approach is shmysimulation.
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1. Introduction

In robotics research, it is important and necestainow the location of the mobile robots withpest to
the environment or the global coordinate for maind& of applications, such as exploration and map
building, distributed sensing, pattern formatiord anarching, and robot soccer. For instance, in étark
approach of Cooperative Multi-robot Observation Miiltiple Moving Targets (CMOMMT, [1]), one
critical assumption is that the robots are abldotalize themselves with respect to a global coatdi
system; without this location information, robotsnoot effectively cooperate to work. From the
perspective of wireless sensor networks reseaodalitation is also meaningful in applications aitad
aggregation, velocity estimation, and geographierawouting. For example, to achieve better routiith
less overhead, Ko and Vaidya [2] propose the Looafiided Routing (LAR) algorithm that utilizes the
location information to limit the search space foute discovery; therefore the power consumptioth an
overhead are greatly reduced.

Due to the sensor limitation, environment confinatneand cost constraints, it is difficult to achéev
satisfactory localization for both mobile robotsdawireless sensor networks. In robotics, usuallp tw
classes of localization schemes are used. One dgsso get the position via positioning
systems/equipments, such as the Global PositioByggem (GPS). However, positioning systems are
usually expensive and the implementation is coimgtaby the environment, e.g., GPS cannot worlhén t
regions without the satellite coverage. Anothesgls to get the position relying on the processihthe
data obtained through sensing or intercommunicstierg., SLAM (Simultaneous Localization and Map
building). However, such methods usually requirenplex computation (in sensor data processing and
matching) and the location estimation may takerg lbme to “converge” to the real location gradyall
Furthermore, because this kind of approach usuelgs Kalman filter [3] or particle filter [4] to @dict
and refine the location estimation, if the roba@tnteis large or the environment is complex, theessgiace
(for Kalman filter) or the number of particles (fparticle filter) will be excessively large and tivaole
system may not work appropriately. Therefore, ghliaation of this approach is normally limitedgmall



robot groups or small environment. In addition, tinaditional localization methodologies are highly
dependent on the quality of the sensors. To imptiedocalization accuracy, the system designeve ta
select accurate but expensive sensors. Obvioustyjg also not applicable for large robot groupsnass
sensor networks.

For wireless sensor networks, especially the adAedworks, the localization is also a hard probtiara to
the constraints in form factor (small size), barditvj power, and cost. In current research, the mvetit
known localization method is the multilateratiorhish can estimate the location of the nodes basdtso
distance to the neighbors and the neighbors’ longb]. Such algorithms need to know the distamersy
the sensor nodes; however, for mass sensor netwibikdifficult to get acceptable distance infation
by the simple ranging sensors or the received biggnength index (RSSI). To solve this problem, App
Point-in-Triangulation (APIT) is proposed to redube reliance on the information of the distanceagn
neighbors [6]. However, this approach is still remige free in that it requires knowing the chariggange.

In recent years, the hop-count based localizatwrerse is proposed and studied for infrastructuss-le
wireless ad-hoc networks [7]. This localization estie can be simply implemented in ad-hoc networks
without adding extra sensors or equipments. Howef/dre nodes are sparsely distributed in the péts

the location estimation may be very coarse becthesdop count is inaccurate. To address this pnople
we propose a robotics approach that deploys meltipbots to increase the node density of the nodes
sparse areas in the network to improve the lodadizgrecision. On the other hand, from the viewha
robots, the robots in the networks can also lotaenselves using the hop-count based localizafibe.
incorporation of robotics to ad-hoc networks is dfeial to both.

In this paper, the hop-count based localizatiorhobtand its constraints are introduced in Sectiofh2n,
our multi-robot “intelligent” mobility enhanced latization approach is presented in Section 3. Ratig
which, the simulation results are shown in SecfioRinally, Section 5 concludes this paper.

2. Hop-count based Localization

In wireless ad-hoc networks, one node can onlyctirétalk” with its neighbors within one hop rangé

the destination node is beyond this range, the comcation packets have to be ferried by intermediat
nodes through multi-hops. Based on this commuminathethodology, the hop count (number of hops)
between two nodes is a metric to represent thardist between them. This is the basis for hop-count
(connectivity) based localization.

To apply hop-count based localization in ad-hoevoekts [8], two assumptions should be satisfied. @ne
that the position of some nodes in the networkniswn, and they serve as the reference/anchor noldes
broadcast their position throughout the entire oekywthe other is that the “dumb” nodes, which nézd
learn their position, can find the shortest linksigecting to at least three reference nodes thronghhop

or multi-hops. Based on these two assumptionsdtiveb nodes, by finding the shortest path (minimal
number of hops) to the reference nodes, can rouggtlynate the distance to the reference nodes lmased
the hop count; and then, since the position ofréierence nodes is known, the dumb nodes can dstima
their position by triangulation [9]. In theory, thecalization error of the hop-count based locdioais in

the same order of the magnitude of the hop distaRoe many applications that do not have stringent
accuracy requirements, such accuracy is acceptable

Comparing to other localization methods, the hoprtobased localization only needs the hop-count
information, which is a by-product of the routingofocols for wireless ad-hoc sensor networks, é&d-,
hoc On Demand Distance Vector Routing [10]. Thefd normally does not incur much communication
overheads, and is scalable for mass sensor netwbnkesmost well known hop-count based localization
algorithms are DV-Hop [11] and Hop-TERRAIN [12] alithms.

For the hop-count based localization, one main Hemk is that the location estimation accuracy ddpen
largely on the node density of the network. If tioele density is low, e.g., one node has very feghters,
the link between dumb nodes (to be localized) aidrence nodes may take more hops compared with



dense networks [13]. This problem is illustrated=ig. 1, where the arrows indicate the shortest (the
connection with lowest number of hops) from nodéoAB. If the node density is high (1-a), node A can
easily find a “straight” path to node B; howevdrthie node density is low (1-b), the shortest Ifnkm
node A to node B has to be “indirect”. Therefoléh@augh the real distance between node A and Blere
same in both scenarios, the hop count between ihelifferent. Obviously, the overestimated hop doun
number in the sparse networks may lead to large erdistance estimation.

To address this problem, two classes of approaateproposed. One is to adjust the distance estimat
according to the node density. For example, DV-tatgorithm [11] refines the location estimation by
adjusting the hop distance according to the hop#soamong reference nodes; density-aware hop-count
based localization (DHL) [14] adjusts the hop dist of the node according to its number of neighbor
By these means, if the network is sparse and tikebletween nodes takes more hops, the hop distamce

be reduced and thus the errors in distance estimatie reduced. This class of methods usually géeeer
large communication overhead and cannot perforrhiwvelon-uniform networks.

Another class of approaches to address the probigimregard to sparse networks is to increase tuen
density of the sparse area. Lim and Rao introducbilennodes to the traditional static ad-hoc neksor
[15]. The idea is to let multiple robots move ramdip thus may occupy the node sparse area and then
serve as the intermediate nodes to “bridge” thécsteodes with shorter path. This approach is shown
through simulation to be an improvement over tiaddl, static, hop-count based localization methods
However, random mobility usually takes an excedgil@ng time for the mobile robots to move to the
demanding locations where nodes are sparse; im wthrels, the performance gains from random mobility
are not reliable or predictable. In our research, plan to address this problem by enabling the lmobi
robots to move to the most demanding area inteitlgeThe details are introduced in the next sectio
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Fig. 1. Same Distance, Different Hop Count

3. Our “Intelligent” Approach
To enhance the hop-count based localization, agamreh aims to enable the mobile robots to movkeo

node sparse areas; thereby increasing the nod#ydensnprove the localization precision. In tiEsction,
we present our approach by introducing the envimtirmain research issues, and our solutions.

3.1 Environment and Assumptions



A simple diagram of the task environment is showirig. 2. The locations of the static and mobildes
are unknown.
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Fig. 2. Environment
(<>: reference node’ : static nod@, : motnledt node)

The following are the characteristics of the enmin@nt and the mobile robots:

® The environment is a large bounded area.

® There are static nodes scattered throughout theommvent. Several (at least 3) of them are the
reference/anchor nodes that have accurate knowleflgheir positions in the environment. This
location information is broadcast to the entirentek.

® A team of mobile nodes (robots) can move in thérenment. The robot team can be heterogeneous
in functionality.

® Static nodes and mobile nodes are distinct. They arle to communicate by wireless ad-hoc
communications.

® For non-reference/anchor nodes and mobile nodesbgolute positioning means (such as GPS) are
available.

® The mobile nodes consist of simple robot with sefise.g., the range sensor to detect the obstacles
and static nodes. When a static node is withinstresor range of the robot, the robot can detect and
identify the ID of the static node.

® The static nodes and mobile nodes can fail at iamgy. t

® In this network, the multi-hop network communicatiorotocol and the Media Access Control (MAC)
([16, 17]) can enable the nodes to find the shogath (link with lowest hop number) to communicate

In addition, we make the following assumption:
® The nodes (both static and mobile) are fully comeeowithout any partitioning: one node can
communicate with any other node through one haputi-hop wireless link.

3.2 Main Research Issues

The main purpose of our research is to enable thglenrobots to move to the most demanding arags th
increasing the node density to improve the loctibmaprecision for the hop-count based localization
scheme. This is an integration of the capabilitésad-hoc networks with cooperative robotics, saams
achieve efficiency and accuracy not previously eehble using localization methods from ad-hoc
networks or robotics alone.



Essentially, this is a task allocation problemwinich the movements to specific locations are #s#g to

be performed, and the resources in question aremthigile robots. In general, there are mainly four

research issues that need to be examined as follows

® \Where are the most desirable locations to move-tofiere to move

® Once these locations are identified, how should rift®ots cooperate in order to move to these
locations? In other words, which robot(s) is mastable to move to the desired area? — who to move

® Considering a robot that has been allocated aitot&ab move to, how should the robot move to that
location? — how to move

® What if the robot fails? How should the algorithetover from failure? — failure recovery

3.2.1 Where to Move

Considering the main research issues, the firsbitapt point is to identify the locations requirirapots to

move to. As outlined in previous research work,dbeuracy of hop-count based localization is aéfédty

the node density in the network: areas with lowenddnsity are more likely to generate localizatomrs.

At this juncture, it is meaningful to introduce additional assumption: the number of neighbors nbde

is an indicator of the local node density of thedaa This is a reasonable assumption as a nodefevith

neighbors within direct communications range wosljgest that area is sparse in node density. In our

approach, the robots are going to move to thecstatiles with few neighbors. To achieve this, weppse

an auction based task allocation scheme to asshyis to move to the sparse area. Regarding th®auc

the static nodes with insufficient numbers of neigis (and hence likely in low node density regiomil)

become the auctioneer who issues a move requegyes the bid from the robot(s), and then assthaes

robot(s) to move. Comparing to the MURDOCH algarithwhich is an auction based task allocation

framework “built upon a principled, resource centpublish/subscribe communication model” [18], our

approach is unique in the following aspects:

® In our approach, the auctioneer to initiate taska static sensor node, and not a robot. In mast re
applications, the number of static sensors is madgler than the number of robots; obviously, it is
easier to let the static nodes initiate tasks bsxdbey have higher chances to find the tasks. For
example, we can deploy many cheap static thernmalose to monitor the temperature of the room and
if there is a fire, the sensor can call robotshielp.

® |n our approach, the negotiation among robots #aticsnodes is through the ad-hoc communications,
which let the information transmitted hop-by-homsBd on this communication methodology, it is
easy to limit the communications within a sub-regiaf the environment by setting the maximal
communication hops. This can reduce the commupicativerheads, and not affect the system
performance because in many cases only the rokatsta the task area should be involved.

In the environment, all the static nodes in theensgarse area have very few neighbors. Obviousdy; t
will all require the robots to approach them. Iir approach, there is only one active auctioneer tane.
Hence there is a need to select which static nothe the auctioneer. Since the node with fewesgthieirs
is likely to have the largest localization estiraterror, it is given the priority to become thetaneer.

Each static node makes a 1-hop broadcast to igghbeis. All nodes will therefore know the numberlief

hop neighbors it has. If a node has very few nedghli.e., less than “least neighbor threshold”iil
broadcast this information to the entire network. odes will therefore know nodes that need helg a
can determine which node has the least numberighbers. That node then becomes the auctioneer. The
details of this distributed algorithm are shownAtgorithm 1. Each static node executes this atbori

Algorithm 1 .Selection of Auctioneer. This algorith is executed for each static node i.
1. Initialize all values: LeN; = number of neighbors of node= O0,L = ID of the static node with lowest
number of neighbors = 0l = number of neighbors of notle= 0
2. Broadcasti, “hello”™> to one hop neighbors
3. Keep listening for a while (several times mdrart communications time)
If it receives one hop neighbor’s broadcast dutiigtime, e.g.<j, “hello”™ , N;=N; +1
4., Check the value o
If N; >= least-neighbor-threshold (e.g., 6), wait uatilignal is received before going to Step 1.



(Waiting means is in node dense area, no need participate iaubgon)
5. LetL=i; N_. =N
6. Broadcasti, N;> throughout the entire network
7. Keep listening for a while (several times mdvart communications time)
Every time it receives a message, esq1, N>,
If Np, <N, L=m; N_ = N, (choose the node with the lower number of neighbors
If N, =N, andm <L, L=m; N_. =Ny, (if two nodes have same number of
neighbors, chodsedne with lower ID)
8. If L =i, then nodé becomes the auctioneer, and the auction starts
Else, wait until a signal is received beforingao Step 1.

In this distributed auctioneer selection algorithihe static nodes need to be coordinated to breadceal
wait. A node is randomly selected as a coordinatothe start. (For example, it can be node 0.) This
coordinator starts the selection process accordirggorithm 1, and sends the triggers requirec§St4
and 8). When a node is selected as the auctioih@gl, request robots to approach. This node (euneter)

will also serve as the coordinator to select the aectioneer. Since the static node does not hbselute
positioning sensors or equipments, the locationrination of this node is estimated by hop-counetas
localization.

3.2.2 Who to Move

Knowing where to move, the next issue is to chabsemost suited robot(s) to move to the area. én th
proposed auction scheme, the auctioneer will brastdihe task (its own position) throughout the renti
network. The robot who receives this message wik @ bid (robot’s position and speed) if it isdr@.e.,
the robot is not executing the task assigned byptheious auctioneers). Then, the auctioneer, demto
minimize the time that the robot(s) may spend irvimg to the locations, chooses the most suitatidet(s)
to do the task by awarding a contract. For thigppse, a metric using both position and speed iged
and used to select the most suitable robot(syéaeest robot(s) with the highest speed is (areyéed the
contract (i.e., assigned the task to move towandsatictioneer). Details of the auction are preseite
Algorithms 2 (from point of view of auctioneer) aBdfrom point of view of robot). It should be ndtehat

in the auction, since the static nodes and mololots do not have absolute positioning sensorg; the
location information is estimated by hop-count lolleealization.

Algorithm 2. Auction on Auctioneer’s Side (for thgelected static node which is the auctioneer)
1. Estimate its own locationx;, ¥i> by hop-count based localization
2. SetRobotPookE number of robots already recruited = 0;
R = number of robots neededeast-neighbor-threshold — N
3. Broadcasti, Xx;, ¥, “auction request”>to all robots
4. Keep listening for a while
If it receives a reply from robetduring this time, e.gsr, B>
(r is the ID of robotB; is the bid offered by roba)
Record this information in a que@e in which the robots are ordered by the valueidf b
(The highest is at the beginning).
RobotPool= RobotPook 1.
5. Comparer andRobotPool
If R > RobotPoolavailable robots are not enough,
Unicast a contradti, x;, ¥ , “contract™ to each of the robots Q.
LetR =R - RobotPool
Goto Step 3.
If R <=RobotPoal
Unicast contractsi, Xx;, ¥; , “contract”™> to each of the firdR robots inQ
6. Finish auction

(Note thatB; is calculated by the robot giving the bid usingd@tithm 3.)



Algorithm 3. Auction on Robots’ Side (e.g., robgt r
1. Estimate the locationx,, y;> by hop-count based localization
2. Keep listening for a while
If it receives an auction request from the au@@me.g.<i, x;, ¥, “auction request”>
Reply a bid asr, B;>. B, = 1/dist (s, ¥>, <X, y>) + speed()
3. Keep listening for a while
If it receives contract from the auctioneer, esg.x;, Y, , “contract”>
Set status as busy
Else goto step 1.

When the auctioneer has assigned the tasks t@kbeted robots, it will keep monitoring its neighibood.
If the required robots have arrived and thus thesity of the neighborhood (number of neighborsthea
the least-neighbor-threshold, the auctioneer wlkase the recruited robots by cancelling the eotgr and
this static node will not “call for help” (hold neauctions) in future. The freed robots can parétggn the
next auction. (A robot that is working on a task wot participate in new auctions until it is faeg

Now we compare our approach with a well-known tal&cation scheme for robots in sensor networks

proposed by Batalin and Sukhatme [19, 20]. Our @ggr is different in following aspects:

® In our task allocation scheme, at any time, onlg @ingle static node holds the auction. This
auctioneer will send the task information to théais and then allocate the task based on the bid
received. In [19, 20], all the static nodes in #ansor networks will set the navigation field as a
landmark (motion direction suggestion) for the riskia the vicinity.

® [or our auction based task allocation scheme, watians cannot be held together, the static nodes
will hold the auction sequentially, according te triority (inverse of the number of neighbors)[18,
20], the tasks can be allocated in parallel. Thmt® will choose the task based on the suggestibns
the nearby static nodes.

We note that the main difference in our auctioreblagsk allocation is that in our work, the staticle is
the master that controls the robots, while in Batahd Sukhatme’s work, the robots are the masheats
only ask for suggestions from static nodes and tiagy even violate the suggestions based on their ow
consideration. Since our research objective imtaace the hop-count based localization by depiptlie
robots to node sparse area, it is more suitablettthe static node (indicator of node sparse aceajrol

the robots.

In addition, our approach may generate less comratioh and computation overhead because only the
static nodes involved with the task will perforntians (auction); other static nodes are free aed fbb is
merely delivering messages. The drawback is thastistem cannot assign multiple tasks simultangpusl
the tasks have to be queued and auctioned oneebyOonthe other hand, Batalin and Sukhatme’s approa
requires the participation of all the static nodegen if a static node is far away from the tasé has no
robot neighbor, it still needs to calculate thekteesquirement. However, this approach can simutiasky
assign multiple tasks to the robots. In our taskhado of mobility enhanced localization, there arere
tasks (static nodes needing robots) than reso(robets); in this case, the ability of multi-taséncurrent
assignment may not be meaningful because even lthaugbot can receives many task enquiries, it can
only perform one task at a time.

3.2.3 How to Move

When a robot is assigned a target position, it sgedmove towards the target with obstacle avoidanc
based on its local sensing and communications. <Inple solution is to use the Artificial Potentiikld
(APF) method [21]. Essentially, the APF approachdets the goal and obstacles (neighboring robot) as
sources for attractive and repulsive forces, respmdyg. The vector sum of these forces is then used
determine the motion of the robot.



In our approach, when a robot is assigned a tasidt area), the location of the target area besdhe
attractive force for the robot. It should be notkdt both target location and robot location atéreges
based on the localization scheme.

3.2.4 Failure Recovery

The final main research issue concerns fault talsraOwing to the assumption that the robots méyafa
any time, as well as the possibility that the rghwoiay fail to find a path towards the goal due ltetacles
along the way or the local minimum problem inhelieMAPF methods [22], there is thus a need to clersi
task failure on the part of the robot. To addréss, tcontract renewal is used, whereby the assiggsd
expires in a preset time interval. If a robot canreach the target in the set time interval, oresos
communications with the auctioneer of the tasls deemed to have failed in its task. Then, thistawill
give up current task and participate in the nexdtian. On the auctioneer’s side, the static nodéchvh
issued the move request will restart another amdiioassign the work to other robot(s) to repldde t
failed one(s).

A further consideration is that the static nodey milao fail at any point in time. This may, for exale, be
in the form of communications failure. A possibl®lplem with this might be that robots allocatedttask
by the auctioneer (a static node with communicatifailure) may not be freed from the task if thatist
node fails to free it from the contract. This candealt with through a similar implementation dtiee
out” for the mobile nodes. That is, if the mobilede has not been freed from the task after a seriiiy
long time period, the robot will assume static ndai@ure, and then free itself to participate ire thext
auction.

3.2.5 Localization

Both static and mobile nodes need to estimate ffusitions to enable the “intelligent” mobility. Buction
based task allocation, the auctioneer needs talbasaits position to the robots and on the otlaadhthe
robots need to give a bid containing their locaiigiormation. In addition, to move to the targe¢arthe
robots also need to know the position of the target

In our work, the reference nodes know their respegiositions and broadcast their positions tortbdes
within the communications range. This informatisrthen propagated throughout the entire networgesin
we assume that the network is fully connected.igyrhethod introduced in [11], the average hop digta
can be calculated and together with the hop cautiie reference nodes, the node can roughly estiitgat
distance to the reference nodes. Since the locatibthe reference nodes are known, a node’s positin
then be calculated by triangulation.

For the triangulation in each “dumb” node or rolibe estimated distance to the reference nodeshand
location of the reference nodes are the input. @isly, the error in distance estimation will leadthe
error in location estimation. However, the trendledse two kinds of errors may not be consistdrihd
errors of distance estimation are of the same eatia., overestimate or underestimate, they mageaia
themselves out in the triangulation in a “leastesgs-error sense”, and finally the localizatioroesmmay
be small. For example, consider one node at theecefithe environment and the four reference nades
at the corners which are away from this node withgame distance. If there are errors in the estmaf
the distance from this node to the four referenmges, and the errors are almost the same, no nhater
large the errors are, the location estimation @ tlode (by triangulation) is always nearly at tieater of
the environment. Therefore, in this paper, we wgh Histance and location estimation error to eatalthe
performance of the localization algorithms.

3.2.6 Communications



In ad-hoc networks, some kind of multi-hop netwadkmmunication protocol and the Media Access
Control (MAC) can enable the nodes to find the &strlink (lowest hop count) to communicate [16]. 17
Since the focus of this paper is on task allocatiem do not concern much on the problems associetéd
transmissions. In our approach, we assume theeamtiwvork can update the information periodicallshw
reasonable transmission delay.

4. Simulation Results and Discussion
4.1 Environment and Settings

To justify the efficacy of our “intelligent” motioapproach, we benchmark it against the “random’ienot

approach [15]. The simulation environment and isgstiare as follows:

® The simulator: Webots [23].

® Simulation environment: 4.5x4.5m square area innyd reference nodes, 30 static nodes, and 10
mobile robots. The robots, reference nodes, anit stades are represented by circles with radiss le
than 0.1m. This is a reduced scenario simulatinguaeum that has many sensors and some security
guards.

® In the environment, the reference nodes are platetie 4 corners; the static nodes are placed as

shown in Fig. 3. The initial position of the robassrandom. The density of the static node in the

environment is 1.48/f This is actually sparse sensor network becausedmmunication range and

sensor range of the robots and static nodes ate guiall. If the distribution of the static nodas i

uniform, in average one static node has only 1t&&csnode neighbors.

The communications radius of each node is 0.8m.

The update interval of the entire network by wissleommunication is 1.6 second.

The result is the average of 50 episodes. Eachiaiiom episode is 10000 steps long. 1 simulatiep st

is about 0.16 second in real world.

® For our “intelligent” motion approach. Differefgast-neighbor-thresholdsf “dense” are tested. For
example, when the threshold is 6, if a static noale 2 neighbors, it will require 4 robots to apploa
however, if the static node has 7 neighbors, it mit require any robot to come. The thresholds we
tested are 4, 6, and 8 for the thirty static nodes.

4.2 Results and Discussions

As mentioned previously in 3.2.5, the error in aigte estimation will affect the resultant location
estimation during the triangulation process, betttlend of these two kinds of errors may not besistent.
Therefore, we use both distance and location ettmeerror to evaluate the performance of the
localization algorithms. Besides, since the rolamesmoving and their real location is always chaggive
only use the estimation error of the static nodesvialuate the performance of the localization rtlgms.

For each dumb node, the distance error is the geed the differences (absolute values) between
estimated distance and real distance to the fdarenrece nodes; the location error is the distaratesden
estimated location and its real location. In ounudation, we use the average of the 30 dumb nodes’
distance error and location error to evaluate ylséesn performance.

Fig. 4 shows the average distance and locatiomastin errors in the end of the simulation. We fiad
that intelligent mobility (threshold = 4, 6) achésvbetter localization performance than random litphbis
we expected. By the auctions, the robots can gradgtand intelligently move to the most demandarga
(node sparse area) to serve as “bridges” to shimehink between static nodes and reference noBss.

5 and 6 show the decreasing of distance/locatibmason errors during the simulation (when thrddho
6). The intelligent mobility can reduce the erraster than the random mobility. Observing the bitanf
the robots in the simulation, we also find thainitelligent mobility mode, when several robots assigned
the same target node to approach to, they usualenn a group. This motion pattern can increakes t
chance to construct the “bridge” between staticesaahd reference nodes.



Besides, we also find that different threshold dérise” results in different performance. As show#ip.
4, the threshold as 4 (threshold and static noiile isa0.13) generates the best result. With tlceciasing of
threshold number, the performance becomes worsewaen the threshold is 8, our intelligent mobiigy
even worse than the random mobility mode. The ptessixplanation is that if the threshold is toqgé&r
the static nodes will require more robots to apphodhis may slow down the progress because moe ti
is needed to wait for the last robot to come befbestarget static node can release the robotté for
the next task. Furthermore, when the neighbor nunsb&bove a threshold, e.g., “magic number = &],[2
increasing neighbor number may not greatly impithnelocalization precision.
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Fig. 6. Location Estimation Error vs. Time

Another significant difference between random armtdliigent mobility is in the performance fluctuats.
This can be seen from Figs. 7 and 8, which showdi$tance and localization error for each apprastér
10000 simulation steps for each simulation episétBndom mobility produces much more variation in
performance than intelligent mobility across ther6s of the simulation. These significant fluctoas in
performance between each run for random mobiliey erident from both performance perspectives of
distance error and localization error. The standi@ndation of the distance/location estimation esmf the
50 runs in the last simulation step is shown in. BigThis shows that the intelligent mobility mocan
achieve more repeatable and consistent estimafidreslack of repeatability and consistency for @nd
mobility can be attributed to the fact that the if@bobots move in random, unpredictable directjarsd
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hence the improvement in localization informatiepends largely on chance in that the robots hapipen
move to locations with low node density. In contrdéise performance gains through the use of igefit
mobility are much more repeatable and consisteng @ the fact that the mobile robots know the
approximate locations of the areas of low node iterend thus moving purposely towards those loceti

to improve localization accuracy.
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In this paper, we only compare our intelligent niopapproach to the random mobility approach psgmb
by Lim and Rao [15]. To the best of our knowleddesre are no other algorithms that address improved
hop-count based localization using mobility.

5. Conclusion and Future Work

In this paper, an intelligent multi-robot approastproposed with the aim to improve the accurackayg-
count based localization in a wireless ad-hoc nekwbhis algorithm is proposed with due considenratio
efficiency and fault tolerance. The core of thigoaithm lies in the auction based task allocatitgodthm
with no fixed auctioneer such that any node inrtevork can “call for help” through self discovenk/its
surrounding node density.

Through simulations, it is shown that this new lilgent mobility model out-performs the current nebaf

random mobility, both in terms of distance errod dmcation error. The intelligent mobility model aéso
found to produce more consistent and repeatabldtsess compared to random mobility. To furthet tes
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the efficacy of this approach, we are planningmplement it in real robots and wireless sensor ogsy
as a part of TARANTLAS project [25].

In this paper, the threshold of the minimum numieneighbors for the surrounding area of a nodeeto
considered sufficiently dense is also investigakémlvever, it is yet unknown how to determine théropl
threshold. Intuitively, this is a function of thenéronment size, number of nodes in the area, &ed t
communications radius of each node. In our fut@search, we plan to test more scenarios to find a
method to determine the optimal threshold of “dénse

In our current approach, we have not put much esiplta the communication issues such as transmissio
throughput, contention, or route failure recovelye only simulate the update interval (delay) in our
approach. To further validate our algorithms, wechéo make the assumptions on communications more
realistic in our future research.
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