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Abstract—This paper describes a distributed layered architec-
ture for resource-constrained multirobot cooperation, which is uti-
lized in autonomic mobile sensor network coverage. In the upper
layer, a dynamic task allocation scheme self-organizes the robot
coalitions to track efficiently across regions. It uses concepts of ant
behavior to self-regulate the regional distributions of robots in pro-
portion to that of the moving targets to be tracked in a nonstation-
ary environment. As a result, the adverse effects of task interference
between robots are minimized and network coverage is improved.
In the lower task execution layer, the robots use self-organizing neu-
ral networks to coordinate their target tracking within a region.
Both layers employ self-organization techniques, which exhibit au-
tonomic properties such as self-configuring, self-optimizing, self-
healing, and self-protecting. Quantitative comparisons with other
tracking strategies such as static sensor placements, potential fields,
and auction-based negotiation show that our layered approach can
provide better coverage, greater robustness to sensor failures, and
greater flexibility to respond to environmental changes.

Index Terms—Motion control, multirobot architecture, self-
organizing neural networks, swarm intelligence, task allocation.

I. INTRODUCTION

S ENSOR networks have recently received significant atten-
tion in the areas of networking, embedded systems, per-

vasive computing, and multiagent systems [1] due to its wide
array of real-world applications (e.g., disaster relief, environ-
ment monitoring). In these applications, the distributed sensing
task is achieved by the collaboration of a large number of static
sensors, each of which has limited sensing, computational, and
communication capabilities.

One of the fundamental issues that arises in a sensor network
is coverage. Traditionally, network coverage is maximized by
determining the optimal placement of static sensors in a cen-
tralized manner, which can be related to the class of art gallery
problems [2]. However, recent investigations in sensor network
mobility reveal that mobile sensors can self-organize to provide
better coverage than static sensors [3], [4]. Existing applications
have utilized only uninformed mobility (i.e., random motion or
patrol) [1]. In contrast, our work focuses on informed, intelligent
mobility to further improve the coverage.

Our network coverage problem is motivated by the follow-
ing constraints that discourage static sensor placement or un-
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informed mobility: a) unknown target distributions or motion
patterns, b) limited sensing range, and c) large area to be ob-
served. All these conditions may cause the sensors to be unable
to cover the entire region of interest. Hence, fixed sensor loca-
tions or uninformed mobility will not be adequate in general.
Rather, the sensors have to move dynamically in response to the
motion and distribution of targets and other sensors to maximize
coverage.

Inspired by robotics, this problem may be regarded as that
of low-level motion control to coordinate the sensors’ target
tracking movements in continuous workspace. Alternatively, it
can be cast as a high-level task allocation problem by segmenting
the workspace into discrete regions [Fig. 1(a)] such that each
region is assigned a group or coalition of sensors to track the
targets within. This paper presents a distributed architecture
that integrates low-level motion control with high-level task
allocation for autonomic mobile sensor network coverage in
complex dynamic environments (Section III). We will now refer
to mobile sensors as robots since they are the same in this paper’s
context.

II. RELATED WORK ON COVERAGE

Existing sensor network coverage applications can be clas-
sified under the following characteristics: 1) network mobility
(static versus mobile); 2) network density (dense versus sparse);
3) target distributions (known versus unknown; and 4) target
motion patterns (e.g., static, random, evasive). Static sensor net-
works [5] are often densely deployed for complete coverage of
the area to be observed. Such networks typically require man-
ual positioning of the sensors and cannot be easily deployed in
contaminated or hostile regions. Mobile sensors, on the other
hand, can be used for this purpose. Current implementations of
mobile sensor networks have focused on evenly dispersing the
sensors from a source point throughout the observed region [6]
without considering the target distributions. Recent efforts have
attempted to self-organize the mobile sensors to that of the tar-
get distributions, which can potentially decrease the number of
deployed sensors (Section VI-B1). However, the target distri-
butions are either static [3] or known beforehand [7]. Our work
in this paper differs from all these by deploying a sparse net-
work of mobile sensors to track unknown time-varying target
distributions.

III. OVERVIEW OF MOBILE SENSOR ARCHITECTURE

Our mobile sensor architecture consists of two layers of co-
ordination [Fig. 1(b)] lower task execution layer and higher task
allocation layer. It differs from existing layered architectures for
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Fig. 1. (a) A 4 m× 3 m environment that is divided into six regions. The circle at the bottom right represents the robot’s sensing radius of 0.3 m (drawn to
scale). The environment is 42.44 times as large as the robot’s sensing area. (b) Distributed layered architecture for multirobot cooperation (MRTA, multirobot task
allocation; EKM, extended Kohonen map).

multirobot coordination [8], [9] by adopting a reactive method,
rather than deliberative planning, for task allocation. Both layers
employ concepts of self-organization that exhibit the following
characteristics of autonomic systems:

1) Self-configuring: Both the task allocation and execution
schemes enable the sensor network to adapt to dynami-
cally changing environments.

2) Self-optimizing: Both schemes aim to maximize coverage
and minimize robot interference.

3) Self-healing: The task allocation scheme is robust to robot
failures while the task execution scheme is able to self-
repair unexpected damages to the robot formation.

4) Self-protecting: The task execution scheme enables the
robot to negotiate unforeseen complex obstacles.

These autonomic properties will be discussed in Section VI.
In the lower task execution layer, robots use a reactive motion

control strategy based on self-organizing neural networks [10]
to coordinate their target tracking within a region without the
need of communication (Section IV). This strategy is also re-
sponsible for their navigation between regions via beacons or
checkpoints identified by a motion planner [11]. To perform
these tasks, it has to coordinate multiple concurrent behaviors,
which include target reaching, obstacle avoidance, and robot
separation to minimize task interference. It differs from other
behavior coordination mechanisms (BCMs) [12] in the follow-
ing ways:

Self-Organization of Continuous State and Motor Control
Spaces: A high degree of smoothness and precision in motion
control is essential for efficiently executing sophisticated tasks.
This can only be achieved with continuous response encoding
(i.e., infinite set of responses) of very low-level velocity/torque
control of motor/joint actuators. Our proposed BCM uses self-
organizing neural networks to map continuous state space to
continuous motor control space. We have shown in [11] and [13]
via quantitative evaluation that such neural networks can pro-
duce fine, smooth, and efficient motion control. In contrast,
BCMs that employ discrete response encoding (i.e., finite, enu-
merated set of responses) [12], [14] produce high-level motion
commands (e.g., forward, left, right) that are usually too coarse
for fine smooth robot control. Consequently, the robot may fail
to negotiate unforeseen complex obstacles.

Complexity of Robot Motion Tasks: Existing BCMs tend to
under-utilize the sensory inputs that can potentially yield use-
ful information for coordinating behaviors and choosing the
most appropriate action. As a result, the robot is less capable of
performing complex motion tasks such as negotiating unfore-
seen concave and closely spaced obstacles and tracking multiple
moving targets. Three classes of BCMs face this problem: be-
havior arbitration, action voting, and action superposition. Arbi-
tration strategies [14] allow only one winning behavior among a
group of competing ones to produce the action. This precludes
the execution of several, possibly conflicting behaviors in par-
allel. In action voting schemes [12], each behavior can vote for
various predefined discrete actions to different degrees and the
action with the highest vote is performed. Both behavior arbi-
tration and action voting methods suffer from the drawbacks of
discrete response encoding discussed in the previous paragraph.
Action superposition techniques (e.g., potential fields) [11], [15]
combine all the potential actions, each generated by a behavior,
using vector sum to produce a single action. They may cause
the robot to fail in complex motion tasks [16] even though they
utilize continuous response encoding. On the other hand, a robot
endowed with our proposed BCM can achieve these tasks (Sec-
tion VI-A).

In the higher task allocation layer, robots use a dynamic ant-
based scheme [17] to cooperatively self-organize their coali-
tions in a decentralized manner according to the target distribu-
tions across the regions (Section V). It contrasts with the other
works of biologically inspired robot swarms [15] that emphasize
control-rather than task-level cooperation.

Our ant-based scheme addresses the following issues, which
distinguish it from the other task allocation mechanisms:

Task Allocation for Multirobot Tasks: Existing multirobot
task allocation (MRTA) algorithms (i.e., auction- and utility-
based) [18], [19] generally assume that a multirobot task can
be partitioned into several single-robot tasks. But this may not
be always possible or the multirobot task can be more effi-
ciently performed by coalitions of robots. Furthermore, the par-
titioned single-robot tasks are sometimes assumed to be inde-
pendent, i.e., no interference would occur. However, the robots
are bound to interfere with each other’s ongoing activity ei-
ther physically (e.g., space competition) or nonphysically (e.g.,
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shared radio bandwidth, conflicting goals). In the extreme case,
when too many robots are involved, little or no work gets done
as they completely restrict each other’s movement. Hence, task
interference has an adverse effect on the overall system per-
formance. Knowing that physical interference can be implied
from robot density, our task allocation scheme dynamically dis-
tributes robots in real-time by estimating robot densities in dif-
ferent regions to minimize interference.

Coalition Formation for Minimalist Robots: Existing multi-
agent coalition formation schemes [20] require complex plan-
ning, explicit negotiation, and precise estimation of coalitional
cost. Hence, they may not be able to operate in real-time in
a large-scale sensor network. Our task allocation method via
self-organizing swarm coalitions is reactive, dynamic, and can
operate with uncertain coalitional cost and resource-constrained
robots.

Cooperation of Resource-Constrained Robots: Robots with
limited communication and sensing capabilities can only ex-
tract local, uncertain information of the environment. As such,
distributed methodologies are required to process and integrate
the noisy, heterogeneous information to improve its quality so
that it can be effectively utilized to estimate the coalitional
cost and boost the task performance. Furthermore, if the robots
have limited computational power, their cooperative strategies
cannot involve complex planning or negotiation. Existing task
allocation mechanisms [18]–[21] have either assumed perfect
communications, high computational power, centralized coordi-
nation, or global knowledge of the task and robots. For example,
recent applications of sensor network coverage [4] and multi-
robot systems [22] employ coalition leaders, one in each region,
to negotiate with each other. This negotiation is conducted it-
eratively using an auction-based mechanism and attempts to
balance the proportion of robots to that of the targets across
all regions. To do so, each coalition leader must be able to ob-
tain the exact number of robots and targets in its region as well
as the task performance of these robots. Furthermore, it has to
synchronize its negotiation with the coalition leaders in other re-
gions via long-range communication. Note that this negotiation
can be conducted completely by a central coordinator running
a centralized coalition formation scheme, but it requires more
resources. In contrast, our proposed method does not require
such expensive resources, thus catering to resource-constrained
robots. The robots endowed with our ant-based scheme require
only local sensing information and short-range communication.
The robot coalitions can also be self-organized asynchronously
without negotiation.

IV. SELF-COORDINATED TASK EXECUTION

A. Overview

Our proposed BCM, called cooperative extended Kohonen
maps (EKMs), is implemented by connecting an ensemble of
EKMs [11], [13], each of which is a neural network that extends
the Kohonen self-organizing map [23]. Its self-organization of
the input space is similar to Voronoi tessellation such that each
tessellated region is encoded by the input weights of an EKM
neuron. In addition to encoding a set of input weights that self-

Fig. 2. Behavioral coordination mechanism that is implemented by an ensem-
ble of EKMs.

organize the sensory input space, the EKM neurons also produce
outputs that vary with the incoming sensed inputs.

Our cooperative EKMs framework consists of four modules:
target-reaching, obstacle avoidance, robot separation, and neural
integration (Fig. 2). The target localization EKMs in the target-
reaching module (Section IV-B) are activated by the presence
of targets within the robot’s target-sensing range. Each EKM re-
ceives a sensed target location and outputs corresponding excita-
tory signals to the motor control EKM in the neural-integration
module at and around the locations of the sensed targets.

The obstacle-localization EKMs in the obstacle-avoidance
module (Section IV-C) are activated by the presence of obstacles
within the robot’s obstacle-sensing range. Each EKM receives
a sensed obstacle location and outputs corresponding inhibitory
signals to the motor control EKM in the neural-integration mod-
ule at and around the locations of the sensed obstacles. The
robot-localization EKMs in the robot-separation module work
in a similar fashion as the obstacle localization EKMs except
that they process the sensed robot locations.

The motor control EKM in the neural-integration module
(Section IV-D) serves as the sensorimotor interface, which in-
tegrates the activity signals from the EKMs for cooperation
and competition to produce an appropriate motor signal to the
actuators.

The cooperative EKMs framework allows the modules to
operate asynchronously at different rates, which is the key to
preserving reactive capabilities. This contrasts with action vot-
ing and superposition BCMs, which require synchronization.
For example, the target reaching and robot separation mod-
ules operate at about 256 ms between servo ticks, while the
obstacle-avoidance module can typically operate faster at inter-
vals of 128 ms. The neural-integration module is activated as
and when neural activities are received. One noteworthy aspect
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of our framework is that no communication between robots is
needed for the robots to cooperate in the tracking of multiple
moving targets. In this paper, we demonstrate that robots, which
are able to discriminate between targets, obstacles, and robot
kins, are adequate for achieving the cooperative task.

B. Target Reaching

The target-reaching module adopts an egocentric representa-
tion of the sensory input vector up = (α, d)T where α and d
are the direction and distance of a target relative to the robot’s
current location and heading. It uses the target localization EKM
to self-organize the sensory input space U . Each neuron i in the
EKM has a sensory weight vector wi = (αi, di)T that encodes
a region in U centered at wi . Each target that appears within
the robot’s sensory range activates a different target localization
EKM. That is, n target localization EKMs will be activated for
n targets. The same target can activate a different EKM at a
different time. Based on each incoming sensory input up of the
target location, the target localization EKM outputs excitatory
signals to the motor control EKM in the neural-integration mod-
ule (Section IV-D). The target localization EKMs are activated
as follows:

Target Localization: For each sensory input up of a target,
p = 1, . . . , n (i.e., n targets),

1) Determine the winning neuron s in the pth target local-
ization EKM. Each winning neuron s is the one whose
sensory weight vector ws = (αs, ds)T is nearest to the
input up = (α, d)T :

D(up ,ws) = min
i∈A(α)

D(up ,wi). (1)

The difference D(up ,wi) is a weighted difference be-
tween up and wi :

D(up ,wi) = βα (α − αi)2 + βd(d − di)2 (2)

where βα and βd are constant parameters. The minimum
in (1) is taken over the set A(α) of neurons encoding very
similar angles as α:

|α − αi | ≤ |α − αj |,
for each pair i ∈ A(α), j /∈ A(α). (3)

In other words, direction has priority over distance in the
competition between EKM neurons. This method allows
the robot to quickly orientate itself to face the target while
moving toward it. An EKM contains a limited set of neu-
rons, each of which has a sensory weight vector wi that
encodes a point in the sensory input space U . The region
in U that encloses all the sensory weight vectors of these
neurons is called the local workspaceU′. Even if the target
falls outside U′, the nearest neuron can still be activated
[Fig. 3(a)].

2) Compute output activity api of neuron i in the pth target
localization EKM:

api = Ga(ws ,wi). (4)

Fig. 3. Conceptual description of cooperative EKMs. (a) In response to the
target ⊕, the nearest neuron (black dot) in the target localization EKM (ellipse)
of the robot (gray circle) is activated. (b) The activated neuron produces a target
field (dotted region) in the motor control EKM. (c) Three of the robot’s sensors
detect obstacles and activate three neurons (crosses) in the obstacle localization
EKMs, which produce the obstacle fields (dashed ellipses). (d) Subtraction of
the obstacle fields from the target field results in the neuron at � to become
the winner in the motor control EKM, which moves the robot away from the
obstacle.

The function Ga is an elongated Gaussian:

Ga(ws ,wi) = exp
(
− (αs − αi)2

2σ2
aα

− (ds − di)2

2σ2
ad

)
. (5)

Parameter σad is much smaller than σaα , making the
Gaussian distance-sensitive and angle-insensitive. These
parameter values elongate the Gaussian along the direc-
tion perpendicular to the target direction αs [Fig. 3(b)].
This elongated Gaussian is the target field, which plays an
important role in avoiding local minima during obstacle
avoidance.

The output activities of the neurons in the n target localization
EKMs are aggregated in the motor control EKM to produce a
motion that moves the robot toward the targets. This will be
explained in Section IV-D. We will now present the obstacle
and robot localization EKMs, which are activated in a similar
manner as the target localization EKMs.

C. Obstacle Avoidance and Robot Separation

The obstacle-avoidance module uses obstacle localization
EKMs. The robot has h directed distance sensors around its body
for detecting obstacles. Hence, each activated sensor encodes a
fixed direction αj and a variable distance dj of the obstacle
relative to the robot’s heading and location. Each sensor’s in-
put uj = (αj , dj )T induces an obstacle localization EKM. Note
that the distance sensors operate differently from the target sen-
sors. A target sensor (e.g., vision camera) can sense multiple
targets whereas each distance sensor (e.g., laser) can only re-
flect the nearest obstacle in its sensing direction. Hence, unlike
the target localization EKMs, the number of obstacle localiza-
tion EKMs that are activated does not depend on the number
of obstacles, but on the number of distance sensors. The obsta-
cle localization EKMs have the same number of neurons and
input weight values as the target localization EKMs, i.e., each
neuron i in the obstacle localization EKM has the same input
weight vector wi as the neuron i in the target localization EKM.
The EKMs output inhibitory signals to the motor control EKM
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in the neural-integration module (Section IV-D). The obstacle
localization EKMs are activated as follows:

Obstacle Localization: For each sensory input uj , j =
1, . . . , h (i.e., h distance sensors),

1) determine the winning neuron s in the jth obstacle local-
ization EKM. The obstacle localization EKM is activated
in the same manner as Step 1 of target localization (Section
IV-B).

2) compute output activity bji of neuron i in the jth obstacle
localization EKM:

bji = Gb(ws ,wi) (6)

where

Gb(ws ,wi) = exp
(
− (αs − αi)2

2σ2
bα

− (ds − di)2

2σ2
bd(ds, di)

)

σbd(ds, di) =
{

2.475, if di ≥ ds

0.02475, otherwise.
(7)

The function Gb is a Gaussian stretched along the obstacle
direction αs so that motor control EKM neurons beyond
the obstacle locations are also inhibited to indicate inac-
cessibility [Fig. 3(c)]. If no obstacle is detected, Gb = 0.
In the presence of an obstacle, the neurons in the obsta-
cle localization EKMs at and near the obstacle locations
will be activated to produce obstacle fields (6). The neu-
rons nearest to the obstacle locations have the strongest
activities.

The separation between a robot and its other kins is achieved
with robot localization EKMs. These EKMs work in the same
way as obstacle localization EKMs, i.e., each neuron i in the
qth robot localization EKM outputs an inhibitory activity rqi

to the motor control EKM in the neural-integration module
(Section IV-D). However, the robot localization EKMs produce
wider robot kin fields. This has the effect of keeping a robot
away from targets that are close to other robot kins. As a result,
the overlap in the coverage of targets between robots is min-
imized. Unlike the distance sensors, a robot kin sensor (e.g.,
communication) can sense multiple robots. Hence, if there are
m robots detected, m robot localization EKMs will be activated.
The robot localization EKMs have the same number of neurons
and input weight values as the target and obstacle localization
EKMs.

D. Neural Integration and Motor Control

The neural-integration module uses a motor control EKM to
integrate the activities from the neurons in the target, obstacle
and robot localization EKMs. The motor control EKM has the
same number of neurons and input weight values as the target,
robot, and obstacle localization EKMs. The neural integration
is performed as follows:

Neural Integration:
1) Compute activity ei of neuron i in the motor control EKM:

ei =
n∑

p=1

api −
h∑

j=1

bji −
m∑

q=1

rqi (8)

Fig. 4. Motor control EKM. The neurons map the sensory input space U
indirectly to motor control space C through control parameter space M.

where api is the excitatory input from neuron i of the
pth target localization EKM (Section IV-B), bji is the in-
hibitory input from neuron i of the jth obstacle localization
EKM, and rqi is the inhibitory input from neuron i of the
qth robot localization EKM (Section IV-C).

2) Determine the winning neuron k in the motor control
EKM. Neuron k is the one with the largest activity:

ek = max
i

ei . (9)

The motor control EKM also has a set of output weights, which
encode the outputs produced by the neuron. It is trained to parti-
tion the sensory input space U into locally linear regions. Unlike
existing direct-mapping methods ( [24]) that perform discrete
response encoding (Section I), the output weights Mi of neuron
i of the motor control EKM represent control parameters in the
parameter space M instead of the actual motor control vector
(Fig. 4). The control parameter matrix Mi is mapped to the ac-
tual motor control vector c by a linear model (10). Compared to
direct-mapping EKM, indirect-mapping EKM can provide finer
and smoother robot motion control. Detailed comparison and
discussion have been reported in [11] and [13]. With indirect-
mapping EKM, motor control is performed as follows:

Motor Control: Compute motor control vector c:

c = Mkzk (10)

where

zk =

∑
i∈N (k) G(|ei − ek |)wi∑

i∈N (k) G(|ei − ek |)
. (11)

G(|ei − ek |) is a Gaussian with its peak located at neuron k
and N (k) defines a small set of neurons in the neighborhood of
neuron k. At the goal state at time T, zk (T ) = (α, 0)T for any α.

In activating the motor control EKM [Fig. 3(d)], the obstacle
fields are subtracted from the target field (8). If the target lies
within the obstacle fields, the activation of the motor control
EKM neurons close to the target location will be suppressed.
Consequently, another neuron at a location that is not inhib-
ited by the obstacle fields becomes the most highly activated
[Fig. 3(d)]. This neuron produces a control parameter that moves
the robot away from the obstacle. While the robot moves around
the obstacle, the target and obstacle localization EKMs are con-
tinuously updated with the current locations and directions of
the target and obstacles. Their interactions with the motor con-
trol EKM produce fine, smooth, and accurate motion control of
the robot to negotiate the obstacle and move toward the target
until it reaches the goal state zk (T ) at time step T . In the case
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of multirobot target tracking task, the robots act like obstacles
to other robots, thus separating them from each other.

E. Self-Organization of EKMs

In contrast to offline learning methods, online training is
adopted for the EKMs. Initially, the EKMs have not been trained
and the motor control vectors c generated are inaccurate. Nev-
ertheless, the EKMs self-organize, using these control vectors
c and the corresponding robot displacements v produced by c,
to map v to c indirectly. As the robot moves around and learns
the correct mapping, its sensorimotor control becomes more
accurate. At this stage, the online training mainly fine tunes
the indirect mapping. The self-organized training algorithm (in
obstacle-free environment) is as follows:

Self-Organized Training: Repeat
1) Get sensory input up .
2) Execute target reaching procedure and move robot.
3) Get new sensory input u′

p and compute actual displace-
ment v as a difference between u′

p and up .
4) Use v as the training input to determine the winning neu-

ron k (same as step 1 of target reaching, except that up is
replaced by v).

5) Adjust the input weights wi of neurons i in the neighbor-
hood of the winning neuron k toward v:

∆wi = ηG(k, i)(v − wi) (12)

where G(k, i) is a Gaussian function of the distance be-
tween the positions of neurons k and i in the EKM and η
is a constant learning rate.

6) Update the output weights Mi of neurons i in the neigh-
borhood of the winning neuron k to minimize the error
e:

e =
1
2
G(k, i)‖c − Miv‖2. (13)

That is, apply gradient descent to obtain

∆Mi = −η
∂e

∂Mi
= ηG(k, i)(c − Miv)vT . (14)

The target, obstacle, and robot localization EKMs self-organize
in the same manner as the motor control EKM except that step 6
is omitted. This will result in the same set of input weight vectors
for all the localization and motor control EKMs after training. At
each training cycle, the weights of the winning neuron k and its
neighboring neurons i are modified. The amount of modification
is proportional to the distance G(k, i) between the neurons in the
EKM. The input weights wi are updated toward the actual dis-
placement v and the control parameters Mi are updated so that
they map the displacement v to the corresponding motor control
c. After self-organization has converged, the neurons will stabi-
lize in a state such that v = wi and c = Miv = Miwi . For any
winning neuron k, given that zk = wk , the neuron will produce
a motor control output c = Mkwk , which yields a desired dis-
placement of v = wk . If zk �= wk but close to wk , the motor
output c = Mkzk produced by neuron k will still yield the cor-
rect displacement if linearity holds within the input region that
activates neuron k. Thus, given enough neurons to produce an

approximate linearization of the sensory input spaceU , indirect-
mapping EKM can produce finer and smoother motion control
than direct-mapping EKM.

V. SELF-COORDINATED TASK ALLOCATION

Many multirobot tasks, e.g., foraging [21], transportation, and
exploration, have been inspired by social insects [25], in partic-
ular, ants. Our MRTA scheme encapsulates three concepts of ant
behavior to self-organize the robot coalitions according to the
target distributions across regions: (a) encounter pattern based
on waiting time, (b) self-organization of social dominance, and
(c) dynamic task allocation.

A. Encounter Pattern Based on Waiting Time

Encounter patterns provide a simple local cue for ants with
sensory and cognitive limitations to assess regional densities of
ants and objects of interest, which are crucial to regulating the
division of labor [26]. Instead of relying on global communi-
cation to relay target positions and density estimation [27], our
scheme uses encounter patterns to predict target density via lo-
cal sensing. Regional robot density is captured in a similar way
using local communication.

An encounter pattern can be derived from a series of waiting
time or interval between successive encounters. This simple
form of information processing has accounted for the complex
adaptive process of task allocation in ant colonies [28]. In our
coverage task, the waiting time of a robot is defined in terms of its
encounters with the other robots and targets. A robot encounter
is defined as a reception of a message from another robot in the
same region. A target encounter is defined as an increase in the
number of targets tracked between the previous and the current
time steps. For a robot i in region r, the waiting time for other
robots wir (k) and targets w′

ir (k) is the time interval between
the (k − 1)th and kth encounters. Note that each waiting time
is subject to stochastic variation. Hence, multiple samplings
of waiting time have to be integrated to produce an accurate
estimation of the regional density. The average waiting time
Wir (k) between the (k − 1)th and kth robot encounters for a
robot i in region r is computed as

Wir (k) =
1
n

wir (k) +
n − 1

n
Wir (k − 1)

n = min(k, nmax) (15)

where nmax is the maximum number of encounters that is moni-
tored. This limit allows the robot to forget the early samplings of
waiting time, which have become obsolete. The average target
waiting time W ′

ir (k) is updated in the same manner. Both wait-
ing times are updated according to the changing environment
and are inversely proportional to the robot and target densities
in region r. The target density directly reflects the task demand
of the region. The robot density reflects the amount of physical
interference in the region, which is inversely proportional to the
task demand. Therefore, the task demand Sir (k) of a region r
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can be determined by robot i as the ratio of the waiting times:

Sir (k) =
Wir (k)
W ′

ir (k)
. (16)

The task demand Sir (k) will be used in the self-organization of
social dominance as well as in dynamic task allocation.

B. Self-Organization of Social Dominance

The division of labor in an ant colony is strongly influenced by
its social dominance order [29], which self-organizes to match
the task demands of the colony and the changing environment.
Our scheme is inspired by this concept to move robots out of a
region that has a lower target-to-robot density ratio than the other
regions. Instead of fixing the dominance order [30], the social
dominance of the robots in each coalition is self-organized ac-
cording to their individual task performance. Robots in the same
coalition engage in dominance contests at a regular interval τ if
they are within communication range. The winner increases its
tendency to stay in the current region, while the loser increases
its tendency to leave the current region and join another coali-
tion in other regions. When robot i encounters robot j in region
r, the probability of robot i winning a contest against robot j is
defined as

P (robot i winning) =
n2

i S
2
ir

n2
i S

2
ir + n2

j S
2
jr

(17)

where Sir and Sjr are, respectively, the task demand of region
r determined by robot i and robot j, and ni and nj are the
number of targets currently under observation by robot i and
robot j, respectively. Equation (17) implies that robot i would
most likely win the contest if it observes more targets than robot
j. However, if both are tracking the same number of targets,
then their individual evaluation of the task demand can be used
to differentiate them. This will distinguish a robot that has been
observing the targets for a long time from another that just
encounters the same number of targets.

To inject the influence of social dominance on the self-
organization of robot coalitions, each time a robot i wins a
contest (17), it increases its tendency of staying in the current
region, which is represented by the response threshold θi(t) to
be used for dynamic task allocation:

θi(t) = θi(t − 1) + δ (18)

where δ is small constant. Conversely, each time the robot loses,
it decreases its tendency of staying in the region:

θi(t) = θi(t − 1) − δ. (19)

θi varies in the range [0, 1] to prevent robots from being overly
submissive or dominating.

C. Dynamic Task Allocation

The distributed task allocation algorithm in ants can effi-
ciently arrange the ants in proportion to the amount of work in
the changing environment [31]. In a similar manner, our scheme
aims to self-organize the robot coalitions according to the target
distributions across the regions.

Our dynamic task allocation scheme is based on the notion
of response thresholds [25]. In a threshold model, robots with
low response thresholds respond more readily to lower levels
of task demand than do robots with high-response thresholds.
Performing the task reduces the demand of the task. If robots
with low thresholds perform the required tasks, the task demand
will never reach the thresholds of the high-threshold robots.
However, if the task demand increases, high-threshold robots
will engage in performing the task.

MRTA strategies that utilize fixed response thresholds [21],
[27] are incapable of responding effectively to dynamic envi-
ronments [25]. In contrast, the thresholds in our scheme are
continuously updated by the self-organizing process of social
dominance.

To be effective in task allocation, a robot must at least have
some knowledge of the task demands in its neighboring re-
gions in order to make rational task decisions. To do so, robot
i maintains a memory of the task demand Sir of each region r
(initialized to 0) and the amount of time Tir that it previously
spent in region r. Tir can be used as a certainty measure of
Sir . In addition to computing Sir using (16), Sir can also be
updated when robot i receives a message from a neighboring
robot j with Sjr less than Sir . Then Sir and Tir are updated to
take the values Sjr and Tjr respectively. In this manner, the task
demands of the regions are kept in memory. Robot i can then
predict which region has the greatest task demand and join that
region. At every time interval of τ , if Sir receives no update, the
certainty value Tir is decreased by τ , while the task demand Sir

is increased by a small amount such that its magnitude reflects
the robot’s motivation to explore.

Our distributed MRTA scheme uses a stochastic problem-
solving methodology. It is performed at intervals of τ to allow
for multiple samplings of waiting time during each interval. The
probability of a robot i to stay in its current region c is defined
as

P (stay) =
S2

ic

S2
ic + (1 − θi)2 + T−2

ic

. (20)

On the other hand, the probability of a robot i to leave region c
to go to region r is defined as

P (leave) =
S2

ir

S2
ir + θ2

i + T−2
ir + d2

cr

(21)

where dcr is the precomputed collision-free distance between
region c and region r, which can be viewed as the cost of task
switching. Note that a robot that loses in the dominance contest
in a coalition does not always leave the region. If it experiences
a higher task demand in its region than in other regions, it will
have a high tendency of remaining in its coalition.

From (20) and (21), if the robot does not respond to any
regions, it will not switch task and will remain in the current
coalition. The robot may also respond to more than one region.
This conflict is resolved with a method that is similar to (17).
The probability of a robot i choosing a region r that it has
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Fig. 5. (a)–(d) Motion of robot (gray) in an environment with two unforeseen obstacles (black) moving in anticlockwise circular paths. The robot successfully
negotiated past the extended walls and the dynamic obstacles to reach the goal (small black dot). (e) Motion of robot (dark gray) in an environment with an
unforeseen static obstacle (light gray). The robot successfully navigated through the checkpoints (small black dots) located at the doorways to reach the goal.

responded to is

P (choose) =
(Sir lnTir )

2∑
r (Sir ln Tir )2

. (22)

If the robot i chooses region r that is not the current region
c, then it will employ cooperative EKMs to move through the
checkpoints plotted by the planner to region r. The generation
of checkpoints is performed by the approximate cell decompo-
sition method for motion planning [11].

VI. EXPERIMENTS AND DISCUSSION

A. Qualitative Evaluation of Cooperative EKMs

1) Robot Motion in Complex, Unpredictable Environments:
This section presents a qualitative evaluation of the obstacle
negotiation capabilities (i.e., self-protecting property) of a non-
holonomic mobile robot endowed with cooperative EKMs in
complex unpredictable environments. The experiments were
performed using Webots, a Khepera mobile robot simulator,
which incorporated 10% noise in its sensors and actuators.
Twelve directed long-range sensors were also modeled around
its body of radius 2.5 cm. Each sensor had a range of 17.5 cm,
enabling the detection of obstacles at 20 cm or nearer from the
robot’s center and a resolution of 0.5 cm to simulate noise.

Two tests were conducted to demonstrate the capabilities of
cooperative EKMs in performing complex obstacle negotiation
tasks. The environment for the first test consisted of three rooms

connected by two doorways [Fig. 5(a)–(d)]. The middle room
contained two obstacles moving in anticlockwise circular paths.
The robot began in the leftmost room and was tasked to move
to the rightmost room. Test results show that the robot was able
to negotiate past the extended walls and the dynamic obstacles
to reach the goal.

The environment for the second test consisted of three rooms
connected by two doorways and an unforeseen static obsta-
cle [Fig. 5(e)]. The robot began in the top corner of the leftmost
room and was tasked to move into the narrow corner of the right-
most room via checkpoints identified by a motion planner [11].
The robot was able to move through the checkpoints to the goal
by traversing between narrowly spaced convex obstacles in the
first and the last room and overcoming an unforeseen concave
obstacle in the middle room. This result further confirms the
effectiveness of cooperative EKMs in handling complex unpre-
dictable environments.

Similar tests have also been performed on robots that use po-
tential fields. The robots were trapped by the extended walls and
narrowly spaced obstacles in the first and second test, respec-
tively. This is because the obstacle avoidance behavior counter-
acted the target reaching behavior to cancel each other’s effort.

These two tests show that for potential fields, though each
behavior proposes an action that is optimal by itself, the vector
sum of these action commands produces a combined action that
may not satisfy the overall task. Cooperative EKMs, however,
considers the preferences of each behavior and integrates them
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Fig. 6. (Top row) Robot (gray) using action superposition ASM got stuck at the stationary target. Eventually, the three mobile targets moved out of the robot’s
sensing range (circle). (Bottom row) Robot using cooperative EKMs could negotiate past the stationary target to track all the targets.

Fig. 7. Cooperative tracking of moving targets. When the targets were moving out of the robots’ sensory range, the two robots moved in opposite directions to
track the targets. In this way, all targets could be observed by the robots.

to determine an action that can satisfy each behavior to a certain
degree. Such tightly coupled interaction between the behaviors
and BCM enables the robot to achieve more complex tasks.

2) Cooperative Multirobot Tracking of Moving Targets:
This section evaluates qualitatively the cooperative tracking ca-
pability of a team of robots, each fitted with cooperative EKMs,
to maximize the coverage of multiple mobile targets (i.e., self-
optimizing property). Two tests were conducted using Webots
simulator with settings similar to those in Section VI-A1. The
first test (Fig. 6) was performed to highlight the advantages of
cooperative EKMs over potential fields utilized by [3] and [6]
for the same task. The robot using potential fields got trapped
by the static target while attempting to track all four targets.
Eventually, the three mobile targets moved out of the robot’s
sensing range, causing the robot to observe only one out of four
targets. In contrast, the robot fitted with cooperative EKMs was

able to negotiate past the stationary target to track the three
moving targets as well. All four targets were thus observed by
the robot. The results of this test demonstrated that local min-
ima situations could greatly decrease the coverage of targets
by robots using potential fields. However, robots endowed with
cooperative EKMs can still provide maximum coverage under
these situations.

The next test (Fig. 7) illustrates how two robots endowed
with cooperative EKMs cooperate to track four moving targets.
When the targets were moving out of the robots’ sensory range,
the robot below chose to track the two targets moving to the
bottom left while the robot above responded by tracking the
two targets moving to the top right. In this manner, all targets
could be observed by the robots. This test shows that the two
robots can cooperate to track multiple moving targets without
communicating with each other.
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Fig. 8. Self-healing of multirobot formation. When the robots in room 1 were
removed (left), the remaining 60 robots were able to self-configure and extend
their coverage into this room (right); thus repairing the damage.

3) Self-Healing of Multirobot Formation: We now evaluate
qualitatively the self-configuring capability of a team of robots,
each fitted with cooperative EKMs, to repair unexpected dam-
ages to its formation. Fig. 8 shows the same environment in
Fig. 1(a) covered by a robot team. When the robots in room
1 were removed (possibly due to bomb blast), the remaining
60 robots in the other rooms were able to self-configure and
extend their coverage into this room. Hence, the formation is
self-healed.

B. Quantitative Evaluation of Ant-Based MRTA and
Cooperative EKMs

We now present quantitative evaluations of the ant-based
MRTA and cooperative EKMs schemes for distributed mobile
sensor network coverage in a complex unpredictable environ-
ment. The experiments were performed using Webots simulator
with settings similar to those in Section VI-A1. Each robot could
also sense targets and kin robots at 0.3 m or nearer from its center
and send messages to other robots that were less than 1 m away
via short-range communication. A 4 m× 3 m environment [Fig.
1(a)] was used to house the Khepera robots and targets, which
were randomly scattered initially. The number of robots varied
from 5, to 10, to 15, which corresponded to total robot sens-
ing area of 11.8%, 23.6%, and 35.3% of the environment size.
The mobile targets were forward-moving Braitenberg obstacle
avoidance vehicles [32] that changed their direction and speed
with 5% probability. The speed range of the robots and targets
are 0–16 cm/s and 0–12 cm/s, respectively.

1) Sensor Network Coverage: The first performance index
determines the overall sensor network coverage of the robots:

sensor network coverage =
T∑

t=1

100
n(t)
NT

(23)

where N is the total number of targets, n is the number of targets
being tracked by the robots at time t, and the experiment lasts
T amount of time. N and T are fixed respectively as 30 targets
and 10 000 time steps at intervals of 128 ms.

Using this index, a quantitative test was conducted to com-
pare the network coverage of the robots adopting five distributed
tracking strategies: 1) potential fields; 2) cooperative EKMs;
3) static placement; 4) auction-based negotiation; and 5) ant-
based MRTA. Note that this index reflects the self-optimizing
capability of the robots’ tracking strategy. Unlike the latter three

strategies, potential fields and cooperative EKMs are reactive
motion control techniques that do not involve explicit task allo-
cation. With static placement, static sensors are placed at least
0.6-m apart to ensure no overlap in coverage. With auction-based
negotiation and ant-based MRTA, the robots are fitted with coop-
erative EKMs to coordinate their target tracking within a region,
avoid obstacles, and navigate between regions.

Test results [Fig. 9(a)] show that ant-based MRTA provides
better coverage than the other strategies. The differences in
coverage between any two strategies have been verified using
t-tests (α = 0.1) to be statistically significant. Note that five
mobile robots endowed with our method can track better than ten
static sensors. Although auction-based negotiation uses complex
negotiation, longer communication range, and more information
about the robots and targets, it does not perform better than our
ant-based scheme. This will be explained in Section VI-B3.

2) Total Coalitional Cost: The second performance index
determines the total coalitional cost of the robots, which is
inspired by the set partitioning problem [20]. Given a set of
connected regions where coverage tasks are to be performed,
and a set A of M robots, the task allocation algorithm assigns
a robot coalition Cr ⊆ A to the coverage task in region r such
that a)

⋃
r Cr = A, b) ∀r �= s, Cr

⋂
Cs = ∅, and c) each Cr has

a positive cost |(nr/N) − (mr/M)|, where mr and nr are the
number of robots and targets in region r, respectively, and N
is the total number of targets. The objective is to minimize the
total coalitional cost [20]:

total coalitional cost =
∑

r

∣∣∣nr

N
− mr

M

∣∣∣ . (24)

This index varies within the range [0, 2]. A coalitional cost of 0
implies that the robot distribution over all regions is exactly pro-
portional to the target distribution. In this manner, interference
between robots is at its minimum, which will improve overall
coverage. High costs imply the opposite. Note that this index
reflects the self-configuring capability of the robots’ tracking
strategy.

Test results [Fig. 9(b)] show that auction-based negotiation
and ant-based MRTA have the lowest coalitional costs. Hence,
we can conclude from Fig. 9(a) and (b) that, with a lower cost,
a higher coverage can be achieved. Although auction-based ne-
gotiation achieves slightly lower coalitional cost than ant-based
MRTA, its coverage is lower. This will be explicated in the
next section. Coalitional cost has been validated using t-tests
(α = 0.1) to be significantly different for various strategies ex-
cept those without explicit task allocation (i.e., potential fields
and cooperative EKMs). This is expected since they do not per-
form coalition formation, which accounts for their higher costs.

Coalitional cost is higher with fewer robots because with less
robots, it is more difficult to achieve the same proportion of
robots to that of the targets over all regions.

3) Degree of Specialization: To achieve low coalitional cost,
the robot coalitions must be highly responsive, i.e., they can
self-configure rapidly according to the changing distributions
of targets across regions. In a temporally varying environment,
an ant colony has to increase its responsiveness to cope with fre-
quent changes in task demands by employing more generalist
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Fig. 9. Comparison of performance using different motion control and task allocation strategies. (a) Sensor network coverage, (b) total coalitional cost, and
(c) mean degree of specialization. ABMRTA, ant-based MRTA; ABN, auction-based negotiation; CEKM, cooperative EKMs; PF, potential fields; γ , total robot
sensing area to environment size ratio.

Fig. 10. Comparison of proportions of time in (a) region switching and
(b) target searching (i.e., not observing any targets) between explicit task allo-
cation schemes. ABMRTA, ant-based MRTA; ABN, auction-based negotiation;
γ , total robot sensing area to environment size ratio.

ants, which perform a range of tasks [33]. Similarly, we will
like to examine the effect of our nonstationary task environ-
ment, induced by moving robots and targets, on the degree of
specialization in the robots. Based on Shannon–Wiener infor-
mation variable H , the third performance index quantifies the
degree to which a robot specializes in a region:

degree of specialization = 1 − H

H = −
∑

r

pr logR pr (25)

where pr is the proportion of time a robot stays in region r for
the task duration of T and R is the total number of regions. This
index varies within the range [0, 1]. A degree of 1 implies the
robot specializes in tracking only one region, whereas a degree
of 0 means the robot spends equal proportion of time tracking
in all R regions.

Fig. 9(c) shows the mean degree of specialization of all the
robots, which is lower for auction-based negotiation and ant-
based MRTA. Hence, we can conclude from Fig. 9(b) and (c) that
a larger number of generalist robots leads to a lower coalitional
cost. Although auction-based negotiation achieves lower degree
of specialization and coalitional cost than ant-based MRTA, its
coverage is lower. This is because reducing the degree of special-
ization will incur more time in task switching and consequently
decrease the time for performing the task [34]. In our test, this
means that a robot endowed with auction-based negotiation will
switch between several regions, thus incurring longer time in
travelling between regions and searching for targets (Fig. 10).
As a result, it spends less time in target tracking. This accounts
for the poorer coverage of auction-based negotiation than ant-
based MRTA.

Fig. 11. Comparison of proportions of robots within different ranges of degrees
of specialization.

For ant-based MRTA, the mean degree of specialization is
slightly higher with a smaller number of robots [Fig. 9(c)]
because each robot receives fewer messages from the other
robots. As a result, the robots are less certain about the task
demands in other regions. This causes the robots to be more
specialized and less inclined to explore other regions. Hence,
they spend less time in region switching [Fig. 10(a)]. On the
other hand, the mean degree of specialization for auction-based
negotiation is slightly lower with fewer robots because fewer
robots are available for switching regions to minimize coali-
tional cost when the target distributions change. Therefore, each
robot switches region more often [Fig. 10(a)]. For explicit task
allocation schemes, we can observe in Fig. 10(b) that a larger
number of robots incurs longer target-searching time. This is
due to greater interference between robots. With cooperative
EKMs or potential fields, fewer robots result in higher mean
degree of specialization because the robots interfere less with
each other and stay longer in a particular region.

The time spent in region switching and target searching
(Fig. 10) can also reflect the amount of energy expended in robot
motion, which is not due to target tracking. As such, they can
be used as metrics of energy efficiency. Even though ant-based
MRTA provides better coverage than auction-based negotiation,
we can observe that it is more energy efficient as it spends less
time in region switching and target searching.

Fig. 11 shows the proportions of robots within different ranges
of degrees of specialization for the case of ten robots. Using ant-
based MRTA and auction-based negotiation for explicit task
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TABLE I
PERFORMANCE COMPARISON OF EXPLICIT TASK ALLOCATION SCHEMES

allocation, most of the robots have degrees of specialization
<0.6. The other two methods without explicit task allocation
have comparatively larger number of robots with degrees of
specialization ≥0.6. Hence, the methods with explicit task al-
location are less rigid to changes in regional task demands and
incur lower coalitional cost.

4) Summary of Test Results: Compared to the other schemes,
ant-based MRTA and auction-based negotiation have lower de-
gree of specialization, coalitional cost, and higher coverage.
But the degree of specialization cannot be too low as the cost of
generalization (i.e., excessive time spent in region switching and
target searching) would then exceed its benefits. This explains
the higher coverage of ant-based MRTA over auction-based ne-
gotiation.

In the next few subsections, we will show more quantita-
tive test results that address other important issues in a sensor
network and its task environment.

5) Coverage of Evasive Targets: Our approach has been
tested on the coverage of evasive targets that avoid the tracking
robots. Compared with the tests of 15 robots tracking randomly
moving targets (Fig. 9), our ant-based scheme can still main-
tain a 53% coverage. On the other hand, the coverage of static
sensors dropped significantly from 34% to 10%, whereas the
coverage of the other schemes dropped slightly.

6) Robustness to Sensor Failures: Our scheme is robust to
sensor failures (i.e., self-healing property), which is crucial for
operating in dynamic, uncertain environments. For example, in
the event that five mobile sensors fail completely, our scheme
can still outperform a fully operational static sensor network
(Fig. 9(a)).

Apart from sensor deaths, the sensors may also malfunction
partially by experiencing faulty on-board sensing hardware or
actuators. We have investigated the case of actuator failures in
one-third of a network of 15 mobile sensors. This is similar
to deploying a heterogeneous network of ten mobile and five
static sensors, except that in our test the sensors are not able
to detect actuator malfunctions and be excluded from the task
allocation process. Table I shows that when five sensors fail
to move, the task allocation schemes achieve poorer coverage,
higher coalitional cost, and higher mean degree of specializa-
tion. These five sensors that are unable to switch regions have
degree of specialization of 1, which results in an overall increase
in the mean degree of specialization of the network. The loss of
mobility in these sensors reduces the network’s self-configuring
capability; thus increasing the coalitional cost and consequently
decreasing the coverage (Section VI-B2). Our ant-based scheme
can still achieve better coverage than auction-based negotia-
tion in the case of actuator failures. This has been explained in
Section V-B3.

7) Varying Dynamism of Task Environment: The self-
configuring capabilities of the explicit task allocation schemes
have been evaluated under varying degrees of dynamism of
the task environment. To do so, we vary the speed range at
which the targets move. Slower-moving targets will change the
regional target distributions less, thus making the task envi-
ronment less dynamic. The speed range of the targets in the
previous tests have been set to 0–12 cm/s. To compare with the
previous results, we test the schemes with a reduced target speed
range of 0–4 cm/s (i.e., less dynamic environment). As shown in
Table I, when the targets move more slowly, the task allocation
schemes achieve better coverage and lower coalitional cost but
higher mean degree of specialization. Since the target distribu-
tions change slower, the robots do not need to switch regions
so often. Hence, they tend to specialize in specific regions. The
slow-changing target distributions also give the robots greater
amount of time to self-configure their coalitions more propor-
tionally; thus achieving lower coalitional cost. When the robot
distributions are more proportional to that of the targets, a bet-
ter coverage can be achieved (Section VI-B2). Under different
degrees of environmental dynamism, our ant-based scheme can
provide better coverage than auction-based negotiation even
though it has higher coalitional costs and mean degree of spe-
cialization (Section VI-B3).

VII. CONCLUSION

This paper describes a distributed layered architecture for
resource-constrained cooperation of mobile sensors. This frame-
work can be adapted to other autonomic multiagent systems for
distributed problem solving. By identifying the different gran-
ularities of coordination between agents (namely, for task de-
composition, allocation, and execution), autonomic solutions
can be devised for each of them. It has been demonstrated in
Section VI how our task allocation and execution schemes em-
ploy self-organization techniques to achieve self-configuration,
self-optimization, self-healing, and self-protection. Our ant-
based scheme can be used to assign tasks optimally in an auto-
nomic system. It requires a task demand/utility function to be
specified [e.g., (16)], which can be used by autonomic agents
for self-configuration to optimize task performance. Our coop-
erative EKMs strategy can be used by autonomic mobile agents
to move toward their assigned tasks, reduce interference, and
maintain connectivity. To do so, the tasks and agents are mod-
eled as targets or obstacles. Both schemes are robust to sensor
failures and varying task dynamism. Automatic task decom-
position will be considered in our future work on autonomic
multiagent systems.
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