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Abstract 
In this paper, a new neural network controller for the 

constrained robot manipulators in task space is 
presented. The neural network will be used for adaptive 
compensation of the structured and unstructured 
uncertainties. The controller consisted of a model-based 
term and a neural network on-line adaptive compensation 
term. It is shown that the neural network adaptive 
compensation is universally able to cope with totally 
different classes of system uncertainties. Novel adaptive 
learning algorithms for tuning the weights of neural 
network are proposed. A suitable error filtered signal for 
training the neural network can be easily obtained from 
the controller design without using any model knowledge 
of the robot manipulator itself The closed-loop system 
with neural network adaptation on line is guaranteed to 
be stable in the Lyapunov sense. Detailed simulation 
results are given to show the effectiveness of the proposed 
controller. 

1. Introduction 

To apply robot manipulators to a wider class of tasks, it 
is necessary to control not only the position of a 
manipulator but also the force exerted by its end-effector 

on an object or environment. 
Force control of manipulators has been studied by 

many researchers [ l]-[3]. Constrained motion control has 
been extensively studied in recent years. In constrained 
motion control, the robotís end-effector is assumed to be 

in contact with rigid frictionless surfaces [5]. As a result, 
kinematic constraints are imposed on the manipulator 
motion, which correspond to some algebraic constraints 
among the manipulator state variables. It is necessary to 
control both the motion of the robotís end effector on the 

constraint surfaces and the generalized constrained 

forces. 
A general theoretical framework of constrained motion 

control is rigorously developed in [5]. The proposed 
controller is based on a modification of the computed 
torque method. In [4], linear descriptor system theory is 
applied to design control laws for constrained motion 
control. The controller is derived based on a linearized 
dynamic model of the manipulator. In [6], state feedback 
control and dynamic state feedback control are used to 
linearize the robot dynamics with respect to motion and 

contact force subsystems respectively. 
The above methods of controller design are based on 

the knowledge of the exact dynamic model of constrained 

robot systems. From a practical point of view, in many 
applications, robot models have many uncertainties in the 

values of the parameters describing its dynamic 
properties, such as unknown moments of inertia. In 
addition, there is also the problem of unmodelled 
dynamics (e.g., friction). It is hard to estimate the exact 

form of the model and the values of the dynamic 
parameters, thus complicating the control design problem 

significantly. This has motivated the use of adaptive 
control, sliding mode control, robust control, etc for 

controller design for constrained robots. 

The ability of the neural network (NN) to approximate 
arbitrary non-linear functions and to learn through 
examples lends it to many useful applications in control 
engineering. Many researchers have applied the NN in 

robot motion control with substantial success [7, 81. Few 
research works (Katie and Vukobratovic [IO], Yamada 
and Yabuta [9]) have done in implementing NN to the 

robot force control. 

In this paper, we consider the design of NN controllers 
for force control in constrained robots. A nonlinear 
transformation is used to decouple the robot dynamics 

into two subsystems - motion subsystem and force 
subsystem respectively. A NN control law is proposed 
based on the decoupled dynamic equations, and a suitable 
online update law for the NN is derived. Simulation 

results illustrate the effectiveness of the proposed 

controller. 

2. Dynamic Model of Constrained Robot 

Based on the Euler-Lagrangian formulation, in the 
absence of friction, the motion equation of an n - link 
rigid, non-redundant constrained robot can be expressed 

in joint space as 

M(q)4 + C(% ci)4 + g(q) = f + u (1) 

where q E Rî is the joint displacement vector, u E Rî is 

the joint space torque; M(q) E Rîëî is the inertia matrix, 
c(q, 4)s E Rî is the vector characterizing Coriolis and 

Centrifugal forces, and g(q) E Rî is the gravitational force 
f E Rî is the vector of constraint forces in joint space. 

Three simplifying properties should be noted about the 
dynamic structure in Equation (1) [ 121. 
Property 1. M(q) is a symmetric positive definite matrix, 
and is bounded both above and below, that is, there exist 

positive constants CI,, and p,,, such that, 

ì0 1, 5 M(q) 5 P.,, I,, 
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Property 2. Given a proper definition of the matrix C, 
the matrix M(q)- 2C(q, 4) is skew symmetric. 

Property 3. M(q), C(q,q) , G(q) are linear in terms of a 
suitable selected set of the robot parameters. 

Let PERî denote the generalized position vector of 

the end-effector in Cartesian space. If the constraints 
imposed are described by a holonomic smooth manifold, 
then the algebraic equation for the constraints can be 
written as 

D(P) = 0 (2) 
where the mapping @ : Rî + Rîí is twice continuously 
differentiable, m is the times of the constraints. 

Assuming that the vector p can be expressed in joint 
space by the relation 

P = h(q) (3) 
where the mapping h: Rî + Rî is invertible and twice 
continuously differentiable, then the constrained equation 
in joint space can be written as 

e(q) = o(h(q)) = 0 (4) 
The Jacobian matrix of the constrained equation (4) is 

(5) 

which is nonsingular due to the assumption that the robot 
is nonredundant, and the robot is at a nonsingual 
configuration. 

When the end-effector is moving along the constrained 
surface, the constraint force in joint space is then given 

by 
f =JT(q)/z (6) 

where il E Rî is the associated Lagrangian multiplier [5]. 

When motion of the robot is constrained to be on the 

surfaces (2) only (n-m) coordinates of the position vector 
can be specified independently. Control of all the position 
coordinates need to be controlled in the constrained 

motion of the robot. Therefore, motion control is in the 
(n - m) mutually independent coordinates, 

WP)=[Y,(P)>ìë,v,mî,(P)lí T Y(P) are assumed to be 

twice continuously differentiable and independent of 
a(p) in the finite workspace R . Thus, once Y(p) is 
regulated to the desired value Yd((t), combining with the 
constraints (2), the end-effector configuration of robot is 

uniquely determined. 

Define a set of coordinates as 

r=[r,ë,rl]í r, =V,(P)~~~~A(P)Ií 

rp =[W,(P),...,W,~,,(P)I~ 

Differentiate (7), we have 
;=J,i,=J,cj 

(7) 

(8) 

where 

J _ar(p)_ BT(P) auí(P) 7 
P 

aP 3P 3P I 

J =yc[J7tq) pTcq)] 
ëI  

Qq)=gg (9) 

where 
4 = Q(q); (10) 

Q(4) = ;;I; 
[ 1 

-I 

(11) 

Furthermore 

i = Q(q)i: + Q(q)i WI 
Substitute (6), (lo), (12) into (I), we have 

M(q)Qi:+ C, (q>4)i + g(q) = u + Jí (q)A (13) 

where C, (q,4) = M(q)Q(q) + C(q, 4)Q(q) (14) 
Multiply both sides with Qí(q), then the dynamic 

equation (13) can be expressed in terms of the new 

coordinates, 
4 

~(q)i:+C(q,G)i+i(q)=Qí(q)u+Qí(q)Jí(qV (15) 
where 

a(q) = Qí(q)M(q)Q(q) (16) 

C(q, ci) = Qí (q)C, (q>4) (17) 

g(q) = Q7 (4)8(q) (18) 
Define the following partitioning matrix 

[:j=[b- e.,] (19) 

Evaluate the dynamic term in equation (15) 

@(q)=Oar, =O, k, =?, =O. we have r= =Eir,,, 

then the dynamic equation (15) can be expressed in two 

parts 

E,ii?E:%+E,CE:ip+E,g=E,Qíu+jl (20) 

E,i?E;$ + E,CE;$ + E,g = E,Qíu (21) 

In (20) and (21) we have used the fact that 

E,Qí (q)Jí (q)A = 2, E,Qí (q)Jí (q) = 0 
By exploiting the structure of the equation (15) two 

properties could be obtained. 

Property 4. The matrix i?(q) is symmetric and positive 
definite. Also E,M(q)E; is symmetric and positive 

definite. And i?(q) is upper bounded and lower bounded, 
i.e. there exist two positive constants z~, and p,,, such 
that, 

a,, 1î s M(q) 5 $,,Iî 

The proof is given in the Appendix. 

Property 5. The Matrix if(q) - X(q, 4) is skew 

symmetric. 

The proof is given in the Appendix. 

The actual position along the free motion zI (in task 
space) is 

LI rP (22) 

while satisfying Equation (2) (i.e., the robot maintains 
contact on the constrained surface). The actual contact 
forces z2 is 

z* =;i (23) 

The manipulator is required to track a time-varying 

position trajectory r,,,,(t) and a time-varying force 

trajectory& (1) The control objective is to find a 
From its inverse, we obtain 
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feedback control law so that the constrained 

manipulatorís actual position and force track the desired 

position and force trajectory rpcl 0) and A,,(r) 
respectively, i.e. 

z,(t)-r ,+, (t)=r, -r ,,,, (t)+O, as t+m 

z,(t)-il,(t)=R(t)-;l,,(t)~O, as t-km. 

3. Controller for Constrained Robot 

In this section, based on the derived dynamic equation 
of constrained robot (15), an on-line adaptive NN 

controller is developed for solving the adaptive motion 
and force control problem. 

Defining 

e, =rP -rptl (24) 

e, = [(l-&W (25) 

k,r = I,</ - h,e, - A,e/ (26) 

where eP is the tracking error; e, is the accumulated force 

error; r,,r is a ìcombinedî reference trajectory; A, and 

~~ are tunable matrices. 

Define s as 
s=ip -LFí = e,, + A,e, + A,e, (27) 

The proposed control law is 

u = Q-r MEi Y,,, + Q-í CE: I,,? + Q-í gí -J7 (q)r, - QE: s + v 

=MQEcF,,? +C,Eli,,, +g-Jír, -QE:s+v (28) 

where h(q), ?, (q, 4) and g(q) are the estimates of M(q), 

C, (q,4) and g(q) . M(q), c(q,q) and g(q) are estimates 

ofM(q), c(q,G) and g(q). v is the neural network 

compensator signal counteracting the manipulator 

uncertainties. 

Substitute the control law (28) into (13) we obtain 

MQEIíS = -C,EZTs - QEfs - AMQE:ëi;, - AC,ETr, 

-Ag+v-Jî(r2 -il)=-C,E,Ts 

- QE;s - (q(ip, ,i&) - v) - JT (r2 - 1) (29) 

where 

m = M(q) - h(s) 1 

AC, =C,(wi)-bwk 

Ag = g(q) - i(q) 1 and 

dip, 1 Fpr ) = AMQE; ë,î + AC, E; iP, + Ag (30) 

rl(ipr > ipr ) represents the uncertainties in the robot 

dynamics. 

Multiply both sides with E,Qí, and using the property 

E,Qí (q)JT (q) = 0 , the above equation becomes 

E,Qí MQE; S = - E,Qí C, E; s - E,Qí QE; s 

-E,QíWP,&-v) (31) 

4. Neural Network Compensator Design 

The two-layer feedforward neural network shown in 

Fig.1 is used as the compensator. It is composed of an 
input buffer, a non-linear hidden layer, and a linear output 

layer. The mathematical representation of the network is 

given by 

v = W2f(Wíx+bí)+b2 (32) 
where w I E p, ~xn-nl) ) wí E Rîììî denote the 

interconnection weights for the hidden and output layers 
respectively, bí E Rîìî , b2 E Rî;í the bias terms to the 

nodes of the corresponding layer, x E Rí*(ì-ìë)î . nH is the 
number of hidden units. 

Fig. 1. NN Controller Structure 

Assumed that the system uncertainties 

equation (30) can be approximated by an 

approximation error of E, : 

dip7 3 ;pr,=v(W~, bí, ) x +&, 

rl(ì,,,fp,) in 
NN with an 

(33) 

where v wí, ( bí, x) is the best approximation of 

V(iP, 3 4 ) using the feedforward neural network. 

The difference between the system uncertainties and 

the NN compensation maybe expressed as 

Av=v(Wí, 6í, x)-v(W,b,x)+~, (34) 
where W , b are the current weights of the NN, Wí , bí 

are the best weights of the NN. 

Theorem I 
If the initial weights W and biases b in equation (34) 

are in the neighborhood of the desired weights Wí and 
biases b' , then equation (34) becomes 

Av=+f(@+;* +Wífí(@(@ëx+bîë) 

f&, (5) + E, (35) 

where @ë=wî-Wí, wí =w~*-Wí, g* =b2í-b2, 

bîí = bî -bí and E, (5) denotes the vector of high-order 

terms of the Taylor expansion of v(W, b, x) at Wí and b' 

The proof is given in the Appendix. 

Consider the Lyapunov function candidate 

V=síE,$?Elsí +tr(~ër~,~t~l)+tr(~ìë~~~ë~z) 

+tr(bzír~,~ëbí)+tr(bî*7T;ë~*) (36) 

where r, E RnH w , r2 E Rîëî denote the diagonal positive- 

definite matrices. 
Differentiating V with respect to time yields 
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V=j.ëE,ME;sí +síE,ME;s+síE,ME;s 

+tu(~ë7r,-ëWí)+fy(W2ír~ë~*) 

+tr(bcîr,-ëbí)+tr(b*lr,ëb2) 

Theorem 2 
(37) 

expressed in joint variables as 

O.~COS(~,) - 0.6 IcosQ,) - 0.55 = 0 It then follows that 

J(q) = [-0,4sin(q,),0,6lsin(q,)]. 
The nonlinear transformation is selected as 

Consider the system equations (3 l), and the rate of 
change in the Lyapunov function equation (37). If the 

0.4cosq, -0.6lcosq, -0.55 

0.4sinq, -0.6lsinq, 1 (47) 

adaptive weights updating laws are set to 

r&í = -@í = -r,~O(&r)W*rQE;Sxí 

tií =-W2 =-r,QE:sfT(s) 

d'=-~'=-r,f'(S)W~eE:s 

p=-;L_r2QE;S 

then 

ti = -2síE>QíQE; s < 0 

The proof is given in the Appendix. 

From (36) and (42) it is evident that ljsll at least 

converges exponentially to zero, i.e., e,, -+ 0, and 

e, -+O as t-+m. 

5. Simulation Results 

(38) 

(39) 

(40) 

(41) 

(42) 

The position output is 
y(t) = rP = 0.4sin q, -0.6lsinq, (48) 

The NN controller is chosen as three inputs, 

X = lrP,(t -2),r,,(t -I),r,,?(t)p , six hidden neurons and two 

output neurons. All the weights and biases are set 

randomly in [-0.5 - 0.51 initially. The weights are updated 

at each sampling time in on-line fashion. The controller 

gains are selected as A, =30, A, = I , r, = 0.041, and 

r2 =0.04/, . Sampling time is 0.001s. The performances 

of the proposed scheme are tested by tracking desired 

motion and force trajectories under different conditions. 

Case 1: 

The simulation has been performed to evaluate the 

effectiveness of the proposed neural network controller 
using the model of five-bar linkage parallelogram robot 

with two degrees of freedom (DOF) as shown in Fig. 2. 

X 

> 

Fig. 2. Configuration of the robot moving 
along the vertical surface 

The robot dynamic coefficient matrices in equation (1) 

and forward kinematics are given by 

1.747 
M(q) = 

-0).46Xos& -4,) 

-0.4620s& -9,) 1.439 1 (43) 

0 
c(q,,q,,q,,G*)= 

0.476sin(q, -q,)G2 

-0.476sin(q, -q,)4, 0 1 
0 

g(q,,q,) = o [I 
(44) 

(45) 

X [I [ 0,4cos(q,)-0.6lcos(q,) 

= 0.4sin(q,)-0.6lsin(q,) 1 (46) 
Y 

The robot is in contact with a rigid frictionless surface 

as shown in Fig. 2. It satisfies cb(p)=x-0.55= 0 when 
expressed in task space. The constraint can also be 

To simulate uncertainties exist in the robot, here we 
choose the nominal dynamic parameter of the robot as 

h(q) = 
[ 

I -0.2cos(q, -9,) 

-0.2cos(q, -9,) 0.5 1 (49) 

c(q,>q,~q,>q,)= 
[ 

0 O.Zsin(q, - 4, )4, 
- 0.2sin(q, - q, )4, 0 1 (50) 

0 
!?(q,,q,) = o [I (51) 

The robot is required to move along the constraint 
surface tracking a time varying position with trajectory 

r, (t) = 0.35 - 0.25 * sin(0.5 * pi * t) , while exerting ION force 

on the constraints. 
The simulation results are shown in Figs. 3-5. The time 

responses of the position tracking error with and without 
NN are shown in Fig. 3. Fig. 4 shows the force tracking 
error of the robot with and without NN. The NN outputs 
are plotted in Fig. 5. 

02, 1í , , , . . . , . 

0°50 1 1 1 2 1 1 3 I 1 í * 

tiecs; 
7 í / 8 . 9 10 1 

Fig. 3. Plots of position error 

(With NN: solid line, without NN: dotted line) 
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Fig. 4. Plots of force error 
(With NN: solid line, without NN: dotted line) 

f(secsl 

Fig. 5. Outputs of the neural network 
(v,: solid line, v2: dotted line) 

Case 2: 
In this case, we choose the nominal dynamic parameter 

of the robot as 

ad= :, oîj [ 1 
0 0 

&l,4,>4,>rj,)= o o [ 1 
0 

%i(q,,q,) = o [I 

(52) 

(53) 

(54) 

The desired position and force trajectory are the same 

as case 1. 
The simulation results are shown in Figs. 6-8. The 

position and force tracking errors of the constrained robot 
with and without the NN are plotted in Fig.6 and Fig.7. 

The outputs of NN are plotted in Fig. 8. 

Fig. 6. Plots of pdsition error 
(with NN: solid line, without NN: dotted line) 

ttsecsl 

Fig. 7. Plots of force error 
(with NN: solid line, without NN: dotted line) 

J-----J 

ftsecsl 

Fig. 8. Outputs of the NN 
(v,: solid line, v2: dotted line) 

From the simulation results above, we can find that in 
presence of the uncertainties, the suggested on-line 
adaptive NN controller can efficiently compensate for the 

parameter uncertainties. The NN controller has good 
tracking capability, especially in position tracking. 

6. Conclusion 

An on-line adaptive neural network controller, which 
uses a two-layer feed-forward neural network, is 
proposed for the constrained robot in the task space. The 

NN weights updating law using is derived. The 
simulation was carried out based on the dynamic model 
of the 2-dof robot. The simulation results show that the 
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proposed neural network with the on-line updating law 
can compensate the uncertainties efficiently. 

[II 

PI 

[31 

[41 

151 

Fl 

[71 

PI 

[91 

References: 

K. J. Salisbury, ìActive Stiffness Control of a 

Manipulator in Cartesian Coordinates,î Proceedings 
of the IPih IEEE Conference on Decision and 
Control, Albuquerque, New Mexico, pp. 95-100, 

1980. 
M. H. Raibert and J. J. Craig, ìHybrid Position/Force 
Control of Manipulators,î ASME Journal of Dynamic 
Systems, Measurement, and Control, Vol. 102, No. 2, 
pp.126-133, June 1981. 
N. Hogan, ìImpedance Control: An Approach to 
Manipulation: Part I, II, III,î ASME Journal of 
Dynamic Systems, Measurement, and Control, Vol. 

107, No.1, pp. l-24, March 1985. 

J. K. Mills and A. A. Goldenberg, ìForce and 
Position Control of Manipulators During Constrained 

Motion Tasks,î IEEE Journal of Robotics and 
Automation, Vo1.5, No. 1, pp. 30-46. February 1989. 

N. H. McCIamroch and D. W. Wang, ìFeedback 
Stabilization and Tracking of Constrained Robots,î 

IEEE Transactions on Automation and Control, Vol. 
33, No. 5, pp. 419-426, May 1988. 

X. Yun, ìDynamic State Feedback Control of 
Constrained Robot Manipulator,î Proceedings of the 
271h IEEE Conference on Decision and Control, 
Austin, Texas, pp. 622-626, Dec. 1988. 

Y. H. Kim and F. L. Lewis, ìNeural Network Output 
Feedback Control of Robot Manipulators,î IEEE 
Transactions on Robotics and Automation, Vol. 15, 
No. 2, pp. 301-309, April 1999. 
S. S. Ge, C. C. Hang and L.C. Woon, ìAdaptive 
Neural Network Control of Robot Manipulators in 

Task Space,î IEEE Transactions on Industrial 
Electronics, Vol. 44, No.6, pp. 746-752, December 

1997. 
T. Yabuta and T. Yamada, ìForce Control Using 

Neural Networks,î Advanced Robotics, Vol. 7, No. 4, 
pp. 395-408, 1993. 

[lo] D. Katie and M. Vukobratovic, ìRobot Compliance 
Control Algorithm Based on Neural Network 
Classification and Learning of Robot-Environment 
Dynamic Models,î Proceedings of the 1997 IEEE 
International Conference on Robotics and 
Automation, Albuquerque, New Mexico, pp. 2632- 
2637, April 1997. 

[I I] K. Kiguchi and T. Fukuda, ìRobot Manipulator 
Hybrid Control for an Unknown Environment Using 
Visco-Elastic Neural Networks,î Proceedings of the 
I998 IEEE International Conference on Robotics & 
Automation, Leuven, Belgium, pp. 1447-1452, May 

1998. 

[ 121 J. J. Craig, ìIntroduction to Robotics, Mechanics and 
Control,î II Ed. Addsion Wesley, second edition, 
1989. 

Appendix 

Proof of Property 4 

M(q) is symmetric and positive definite. 
Thus 

M7 (9) = (Qí (q)M(q)Q(q))l = Qí(q)M(q)Q(q) (55) 
Therefore M(q) is symmetric, and positive definite. 

Similarly it can be shown that E,M(q)El is symmetric 

and positive definite. 

M(q) = Qí (q)M(q)Q(q) 2 a,,&,,(Q7 (q)Q(q))l, 

= cr,, I,! (56) 
where &,,(Qí(q)Q(q)) is the minimum eigenvalue of 

matrix Qí (q)Q(q) and 
- 
a.,, = ~d,,,,(QT (s)Q(s)) (57) 

E(q)= Q'(q)M(q)Q(q)1P.,,n,,,(Q'(q)Q(s))l, (58) 
where ,%,,,(Qí(q)Q(q)) is the maximum eigenvalue of 

matrix Qí (q)Q(q) and 

fl\, = P.,,&,, (Q' (q)Q(q)) 
Thus M(q) is bounded above and below. 

(59) 

Proof of Property 5 

ii - 2C(q, 4) 

= Qí(qWWQ(q) + Qí (q)~(q)Q(q) + Qí(qW(q)&) 
-2Qí(qW(q)Q(q) - 2Qí%4)Q(q) 
= Qí (q)(~(q) - 2C(q> 4))QCq) + K? (qW(q)Q(q) 
- QTM(q)i)(q)l (60) 
Since 

[Q'(q)M(q)Q(q)-Q'(q)M(q)Q(q)l' 
=-i)'(q)M(q)Q(q)+Q'(q)M(q)Q(q) (61) 

which is a skew symmetric matrix 

From property 1, m(q) - 2C(q,q) is skew symmetric, so 

the matrix ti - 2c(q, q) is also skew symmetric. 

Proof of Theorem1 

In the function vgiven in equation (32), the weights and 

biases wí, IV*, 6í and b2 are variables of the function 

v and vary with time. Hence, taking the partial derivative 

of v with respect to time yields 

-_=-.+dbí a9 awí 

at at at 

!a$ = fí(9) 

(62) 

(63) 

(64) 
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