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Abstract

In this paper, a new neural network controller for the
constrained robot manipulators in task space s
presented. The neural network will be used for adaptive
compensation of the structured and unstructured
uncertainties. The controller consisted of a model-based
term and a neural network on-line adaptive compensation
term. It is shown that the neural network adaptive
compensation is universally able to cope with totally
different classes of system uncertainties. Novel adaptive
learning algorithms for tuning the weights of neural
network are proposed. A suitable error filtered signal for
training the neural network can be easily obtained from
the controller design without using any model knowledge
of the robot manipulator itself. The closed-loop system
with neural network adaptation on line is guaranteed to
be stable in the Lyapunov sense. Detailed simulation
results are given to show the effectiveness of the proposed
controller.

1. Introduction

To apply robot manipulators to a wider class of tasks, it
is necessary to control not only the position of a
manipulator but also the force exerted by its end-effector
on an object or environment.

Force control of manipulators has been studied by
many researchers [1]-[3]. Constrained motion control has
been extensively studied in recent years. In constrained
motion control, the robot’s end-effector is assumed to be
in contact with rigid frictionless surfaces [5]. As a result,
kinematic constraints are imposed on the manipulator
motion, which correspond to some algebraic constraints
among the manipulator state variables. It is necessary to
control both the motion of the robot’s end effector on the
constraint surfaces and the generalized constrained
forces.

A general theoretical framework of constrained motion
control is rigorously developed in [5]. The proposed
controller is based on a modification of the computed
torque method. In [4], linear descriptor system theory is
applied to design control laws for constrained motion
control. The controller is derived based on a linearized
dynamic model of the manipulator. In [6], state feedback
control and dynamic state feedback control are used to
linearize the robot dynamics with respect to motion and
contact force subsystems respectively.

The above methods of controller design are based on
the knowledge of the exact dynamic model of constrained
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robot systems. From a practical point of view, in many
applications, robot models have many uncertainties in the
values of the parameters describing its dynamic
properties, such as unknown moments of inertia. In
addition, there is also the problem of unmodelled
dynamics (e.g., friction). It is hard to estimate the exact
form of the model and the values of the dynamic
parameters, thus complicating the controi design probiem
significantly. This has motivated the use of adaptive
control, sliding mode control, robust control, etc for
controller design for constrained robots.

The ability of the neural network (NN) to approximate
arbitrary non-linear functions and to learn through
examples lends it to many useful applications in control
engineering. Many researchers have applied the NN in
robot motion contro! with substantial success [7, 8]. Few
research works (Katic and Vukobratovic [10], Yamada
and Yabuta [9]) have done in implementing NN to the
robot force control.

In this paper, we consider the design of NN controllers
for force control in constrained robots. A nonlinear
transformation is used to decouple the robot dynamics
into two subsystems — motion subsystem and force
subsystem respectively. A NN control law is proposed
based on the decoupled dynamic equations, and a suitable
online update law for the NN is derived. Simulation
results illustrate the effectiveness of the proposed
controller.

2. Dynamic Model of Constrained Robot

Based on the Euler-Lagrangian formulation, in the
absence of friction, the motion equation of an n- link
rigid, non-redundant constrained robot can be expressed
in joint space as

M(q)§+C(q.9)g+8(q)= [ +u (O

where g e R" is the joint displacement vector, ue R" is

the joint space torque; M(q)e R™ is the inertia matrix,

C(g,9)g € R"is the vector characterizing Coriolis and

Centrifugal forces, and g(g) € R" is the gravitational force
f e R" is the vector of constraint forces in joint space.

Three simplifying properties should be noted about the
dynamic structure in Equation (1) [12].

Property 1. M(q) is a symmetric positive definite matrix,
and is bounded both above and below, that is, there exist
positive constants «,, and B,, such that,

a,l, M) pl,
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Property 2. Given a proper definition of the matrix C,
the matrix M(q)-2C(q, §) is skew symmetric.

Property 3. M(q), C(q,9), G(q) are linear in terms of a
suitable selected set of the robot parameters.

Let peR" denote the generalized position vector of
the end-effector in Cartesian space. If the constraints
imposed are described by a holonomic smooth manifold,
then the algebraic equation for the constraints can be
written as

D(p)=0 2
where the mapping ®:R” - R"is twice continuously
differentiable, m is the times of the constraints.

Assuming that the vector p can be expressed in joint
space by the relation

p="hq) (3)
where the mapping 4:R” — R’ is invertible and twice
continuously differentiable, then the constrained equation
in joint space can be written as

O(q) = P(h(9))=0 4
The Jacobian matrix of the constrained equation (4) is
Jigy= 2D L 22 0a) 5)
oq op 0Oq
which is nonsingular due to the assumption that the robot
is nonredundant, and the robot is at a nonsingual
configuration.

When the end-effector is moving along the constrained
surface, the constraint force in joint space is then given
by

f=J" (@A (6)
where A e R" is the associated Lagrangian multiplier [5].

When motion of the robot is constrained to be on the
surfaces (2), only (n-m) coordinates of the position vector
can be specified independently. Control of all the position
coordinates need to be controlled in the constrained
motion of the robot. Therefore, motion control is in the
(n— m) mutually independent coordinates,
Y(p)=ly.(p)v,.(p), ¥(p) are assumed to be
twice continuously differentiable and independent of
®(p) in the finite workspace Q. Thus, once W¥(p) is
regulated to the desired value ‘¥, (), combining with the
constraints (2), the end-effector configuration of robot is
uniquely determined.

Define a set of coordinates as

r=[r/7"rpT]T "/=[¢1(P),"'s¢m(1’)]r
r, =[W[(p)""’l/ln—m(p)]r (7)

Differentiate (7), we have

F=J,p=J )
where
S o) [0 o)
o op dp ap
_ or(H(q)) ;7 T 4
=5 Vi@ P @)
oY op

I 9
P 5 5 ©9)

From its inverse, we obtain

q=0(q)F (10)

where
Jg)]'
Q(q)—[P(q)} (a1
Furthermore
G=0(q)F +Qg)F (12)
Substitute (6), (10), (12) into (1), we have
M(@)0F +C\(q.4)F + g(q) =u+J" (q)A (13)
where C,(q,9) = M(9)Q(q)+C(q.9)Q(q) (14)

Multiply both sides with Q' (q), then the dynamic
equation (13) can be expressed in terms of the new
coordinates, )

M@ +C(q.9)F +8(q) =0 (u+ Q" (@) (@2 (15)

where
M(@)=0" (9M(@)g) (16)
C(g.9)=0"(9)C\(9.9) a7
2@)=0"(9e(q) (18)

Define the following partitioning matrix

El [, ©
=| " 19
I:EZ:I l:o ["-m] ( )
Evaluate the dynamic term in equation (15),

L. ry=0 v
®(q)=0=>r, =0, 7, =F, =0. we have r= =E,r,,
y ¥

I4
then the dynamic equation (15) can be expressed in two
parts
EME}7,+ ECE)F, +Eg=EQ u+A (20)
E,ME}¥ +E,CE]}, +E, g =E,Q"u #3))
In (20) and (21) we have used the fact that
EQ' () (9A=4, E,Q'(9)J' (9)=0.
By exploiting the structure of the equation (15), two
properties could be obtained.
Property 4. The matrix M (q)is symmetric and positive
definite. Also E,M(q)E, is symmetric and positive
definite. And M(q) is upper bounded and lower bounded,
i.e. there exist two positive constants a, and g, such
that,
a,l, SM(q)SﬂM[n
The proof is given in the Appendix.
Property 5. The Matrix M(q)-2C(g,4)is skew
symmetric.
The proof is given in the Appendix.

The actual position along the free motion z; (in task
space) is

o =r, (22)

while satisfying Equation (2) (i.e., the robot maintains

contact on the constrained surface). The actual contact

forces z, is

z, =4 (23)
The manipulator is required to track a time-varying
position trajectory r,, (1) and a time-varying force
trajectory A,(1). The control objective is to find a
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feedback control law so that the constrained
manipulator’s actual position and force track the desired
position and force trajectory r, (1) and A,(1)
respectively, i.e.

zl(t)—r,,{,(t)=rp —rp(t)—>0, as t >

2,()-A,()=At)-4,(t) >0, asi—w.
3. Controller for Constrained Robot

In this section, based on the derived dynamic equation
of constrained robot (15), an on-line adaptive NN
controller is developed for solving the adaptive motion
and force control problem.

Defining
e,=r,—r, 24)
e, = [(A-2,)ar (25)
Fo=Fu—Ne,—Aye, 26)

where e, is the tracking error; e, is the accumulated force

error; r_ isa “combined” reference trajectory; A, and

r
A, are tunable matrices.
Define s as
s=F,—F, =¢,+Ae, +Ae, 27
The proposed control law is
u=Q" MEl#, +Q ' CE!F, +Q7 & - (q)r,~QE]s+v

+CETF +§-J7r, -QE!s+v (28)

pr

= MQE] ¥,
where M(q),él(q,q) and g(q) are the estimates of M(q),
C,(g.¢) and g(q). A;/I(q), 5(q,q) and é(q) are estimates
of M(g),C(q,¢) and Z(g). v is the neural network
compensator signal counteracting the manipulator

uncertainties.
Substitute the control law (28) into (13), we obtain

MQE} s =~C\E," s — QE; s — AMQE] ¥, - AC,E, F,

—Ag+v=J'(r,=-A)= —C]Ezrs
— QE; s = (n(F,, ¥, ) —v)=J " (r, = 2) (29)
where
AM = M(q)-M(q),
AC, =Ci(q, D) -Ci(4.9) 5
Ag=g(9)-g(q), and
n(fp,,Fpr)zAMQEzTi’p, +AC1E27'fp, +Ag (€10)]
n(*,.¥,) represents the uncertainties in the robot
dynamics.
Multiply both sides with E,Q7, and using the property
E,0"(9)J7 (g) =0, the above equation becomes

E,Q' MQE, $ = ~E,Q' CEys - E,Q' QF; s
_EZQT(U(':/Jr’;pr)_v) (31)
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4. Neural Network Compensator Design

The two-layer feedforward neural network shown in
Fig.1 is used as the compensator. It is composed of an
input buffer, a non-linear hidden layer, and a linear output
layer. The mathematical representation of the network is
given by

v=W f(W'x+b')+b? (32)
where W' e R Ww?eR™™ denote  the
interconnection weights for the hidden and output layers
respectively, b'eR™", b’ eR"' the bias terms to the
nodes of the corresponding layer, xe R™ ™. ny is the
number of hidden units.

Fig. 1. NN Controller Structure

Assumed that the system uncertainties 7(#,.7,) in
equation (30) can be approximated by an NN with an
approximation error of ¢, :

G, F )=, b, x)ve, (33)
where v(W b, x) is the best approximation of
n(*,.r,) using the feedforward neural network.

The difference between the system uncertainties and
the NN compensation maybe expressed as

Av=wiW’, b, x)=v(W,b,x) + &, (34)
where W, b are the current weights of the NN, W’ , 5’
are the best weights of the NN.

Theorem |

If the initial weights ¥ and biases » in equation (34)
are in the neighborhood of the desired weights W* and
biases 5", then equation (34) becomes

Av=Wif(9)+b:+W (W' x+b")
+6,(6) + &, (39)
where W' =" —Ww', W =w? -w?, b =b" - b,
b'=b"-b" and &,(c) denotes the vector of high-order

terms of the Taylor expansion of v(W,b,x)at W and b".
The proof is given in the Appendix.

Consider the Lyapunov function candidate
V=s"EME!s" +0r(W T W)+ 0r (W T, W)
+r" T Y+ (BT 'B ) (36)
where [, e R | T, e R"™ denote the diagonal positive-

definite matrices.
Differentiating ¥ with respect to time yields
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V=s"EME]s +s"E,ME,s+s' E,ME, §
+eor W T W +r (W T
+tr(b"TB )+ er(b T, 0 %) (37)
Theorem 2
Consider the system equations (31), and the rate of
change in the Lyapunov function equation (37). If the
adaptive weights updating iaws are set io

W'=-W'=-T,7"(9W* QE sx" (38)

W=-W?=-T,0ETsf" (%) (39)

b'==b'=-T,f(SW QE!s (40)

b =-b*=-T,QE!s @1
then

V=-2s"E,Q"QE!s <0 42)

The proof is given in the Appendix.

From (36) and (42), it is evident that |s| at least
converges exponentially to zero, i.e., e, — 0, and

e, >0 as t—-ow.

5. Simulation Results

The simulation has been performed to evaluate the

affacti
effectiveness of the proposed neural network controller

using the model of five-bar linkage parallelogram robot
with two degrees of freedom (DOF) as shown in Fig. 2.

Fig. 2. Configuration of the robot moving
along the vertical surface

e
and forward kinematics are given by

[ 1747 -046%o0s, -,)]

M(g)= “
0467054, —q;) 1439
o - 0 0.476sin(q, - q,)q, |
C(q,q,q’q)=[ i ] J
1:92:91:9, -0.476sin(g, —g,)q, 0
(44)
g(‘ﬂ’nz ={0-’ (45)
10]

[x]_[04costq)-061c0sta)] 4
_ V)

|v] 7| 0.4sin(g,) - 0.61sin(g,) |

The robot is in contact with a rigid frictionless surface

as shown in Fig. 2. It satisfies ®(p)=x-0.55=0 when
expressed in task space. The constraint can also be

variables as
It then follows that

expressed in joint
0.4cosig,)-0.61coslg,)—0.55=0.
J(g)=[-0.4sin(g,),0.61sin(q,)]
The nonlinear transformation is selected as
.

r=rr,1 [0.4cosgq, —0.61cosg, —0.55 @
r 0.4sing, —=0.61sing,

14

The position output is
y(t)=r, =0.4sing, -0.61sing, 48)
The NN controller is chosen as three inputs,
|r (t=2).r, (t=1),r, mI’ , six hidden neurons and two
output neurons. All the weights and biases are set
amem s st [ A nclia . ialls, srnsalhtc nea rrmdatad
ral UU lly 11 l—U..) ~ U JJ 11 au_y. lllC Wclslllb alv upuatcu
at each sampling time in on-line fashion. The controller
I, =0.04/, and
I, =0.04/,. Sampling time is 0.001s. The performances

gains are selected as A, =30, A, =1,

of the proposed scheme are tested by tracking desired
motion and force trajectories under different conditions.

Case 1:
To simulate uncertainties exist in the robot, here we
choose the nominal dynamic parameter of the robot as

@) { 1 -0.2¢cos(q, - g, )] (49)

-0.2cos(g, - q,) 0.5

Lo 0 0.Zsin(qz—q,)¢}2“ 50
C(qnqz,‘hyqz) - [_ Olen(qz —q )q, 0 ( )

1 (51)

LYJ

The robot is required to move along the constraint
1nfnn
uriat

<o

£(9,.9,) [

tranl i Tt
iracking a time ‘v'al'yif‘lg pGSuh‘)n with trajectery

rface
() =0.35-0.25*sin(0.5* pi*1) , while exerting 10N force
on the constraints.

Th simulation results are shown in Figs. 3-5. The time
responses of the position tracking error with and without
NN are shown in Fig. 3. Fig. 4 shows the force tracking
error of the robot with and without NN. The NN outputs
are plotted in Fig. 5.
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Fig. 5. Outputs of the neural network
(v,: solid line, v,: dotted line)

Case 2:
In this case, we choose the nominal dynamic parameter
of the robot as
~ 1 0
=y o] 2
LU U.JJ
00
C9,9,9,9)=| . (53)
v Y]
- 0
8(g-9,) = M (54)

The desired position and force trajectory are the same
as case I.

The simulation results are shown in Figs. 6-8. The
position and force tracking errors of the constrained robot
with and without the NN are plotted in Fig.6 and Fig.7.

SATNT

The outputs of NN are plotted in Fig. 8.
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Fig. 8. Outputs of the NN
{(v,: solid line, v,: dotted line)

results above, we can find that in

From the simulation

presence of the uncertainties, the suggested on-line
adaptive NN controller can efficiently compensate for the
parameter uncertainties. The NN controller has good
tracking capability, especially in position tracking.

6. Conclusion

An on-line adaptive neural network controller, which

Fand_F
1wocu-jul wailu

noadur

*lo
NEIWorK,

ficurai

Toavaw

"""" a two- iaycer iS

a
proposed for the constrained robot in the task space. The
NN wemhrq is derived. The

51mulat10n was carrled out based on the dynamic model
of the 2-dof robot. The simulation results show that the

datma law
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proposed neural network with the on-line updating law
can compensate the uncertainties efficiently.
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Appendix

Proof of Property 4

M(g) is symmetric and positive definite.

T_hus

M (9)=(Q" (OIM(90(q)) = 0" (PM(9)Q(g) (55)

Therefore M(q)is symmetric, and positive definite.
Similarly it can be shown that E,M(g)E! is symmetric
and positive definite.
M(q)=Q" (@M (9)q) 2 &\ A, QT (9],
=a,l, (56)

where 1,.(Q"(¢)0(q)) is the minimum eigenvalue of
matrix Q' (¢)0(q) and

a, =a,\/}~mm(QT(Q)Q(C])) (57

M(q)= 0" (@M @DAG) < By Ana (@7 (NI, (58)

where 1 (Q"(9)Q(g)) is the maximum eigenvalue of
matrix Q7 (¢)Q(q) and

By =BT (9)0(9) (59)
Thus M(q) is bounded above and below.

Proof of Property 5

M -2C(q.9)

=0T (@M (9)Q(q) + Q" (DM (9)Q(9) + Q" ()M (9)O(g)
20" ()M (9)Q(9) - 20" C(q. 9)Qq)

=07 (9XM(g) -~ 2C(q.§)Q(q) + [Q" (9)M (9)O(q)

- 0" M(9)0(q)] (60)
Since
19" @M (@)29) - Q" @M@
=-0" ()M (9)0(q) + 0" ()M (9)0(q) (61)

which is a skew symmetric matrix
From property 1, M(q)-2C(q,4) is skew symmetric, so
the matrix M —2C(q.4) is also skew symmetric.

Proof of Theoreml
In the function v given in equation (32), the weights and
biases W', w?, b' and b?are variables of the function
vand vary with time. Hence, taking the partial derivative
of v with respect to time yields

v aW2 ACHIN: S

ER Sy W ot o (62)

af(Sl) _ af('9) o8 (63)
ot 08 ot

0.9 ow' ow ., ob' (64)

o o a

af(g) )
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[ B Ew) ¥ (S) |
a"gl(l) al91(2) al91(";:)
o5 (8yz) &, (3) U (S))
= a"g'l(l) 019‘1(2) algl.("H)
& G UG &y, B
L algl(l) al9!(2) al91(",/)
FACIS I 0
A0 G 0 (65)
| 0 0 P R
Substituting equation (63)-(65) into equation (62)
yields
v 6W2 ow'! ob'
o G )+ +W ALl -9)(—— +—) (66)
Let
W =W? ab*=b’
w'=w' ob'=b'
v+e, =v(W b, x)-v(W,b,x) (67)

Multiplying both sides of equation (67) by ofand
expanding the terms yield
Av=Wf(R+b2+ W (W 'x+b")
+6,(I + ¢, (68)
Proof of Theorem 2

The following relationships are found useful for the
proposed development:
I. Given a matrix

A=[a;], AeR”", where

tr(s)denotes a trace function which sums the

diagonal elements of a px p matrix, there exists

(A" A=Y a;.

For any two px1 matrices A=|a, a,
B=p, b, b,[,
A" B=tr(A"B)=1tr(B4A")

a,[ and

there exists

Substituting equation (31) into equation (37) yields
V=§"E,ME!s+s"E,ME]s+s"E,ME] s
2P T Y+ 20 T
+2r(bV T Y+ 20 T;'B ) (69)

Using the property 5. M -2C is skew-symmetric.

Equation (69) can be written as
V=2s"E,CEls+2s" E,ME!s + 20r(W" T,'W")
+2rP T WY+ 2B T Y+ 2r(b P T, B
=2s"E,CEls+2s" (-E,Q"C,El s— E,Q" QE!'5)
2T+ 20r (B TR ) 4 200 (62T T B Y
+ 20 Ty 4 257 (—E,07 (W2 £(9)
+H WAL ' x+b" ) +&,(¢) +£))
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= 25TE,Q7 QE s+ 2tr (W T W' )+ 20r (W T, W2
+ 2tr(1?"'r;'5')+ 2tr(52’r;'52)— 25TE,0TW £(9)
—2TE, Q"W (W x =25 E,Q"W (9B
~25"E,0"b? - 25"E,Q7¢,(¢) - 25 E,Q" & (70)
Through the relationships 1 and 2 mentioned above, we
have the following equalities

sTE,QW () =tr[ /(s E,Q"W?] (71)
sTE, Q"W (W x = tr{xs" E,Q" W (W] (72)
sTE,Q'b* =tr[s"E,Q7b?] (73)
sTE,Q'W (b =tr[s" E,Q"W [(9)b '] (74)
Substitute equation (71)-(74) into (70), we get
V = 25T E,Q" QEs, + 2r(W" T, W)
2T+ 2005 T B
+2r(b ' T;'6 ) = 2r [ f(H)sT E,QTW?)
~2r[sTE,Q"b ] 2tr[xs" E,Q" W [(9W ]
- 2r[s"E,Q'W['(9)b']
-2s"E,0"e,(¢)- 25" E, Q¢ (75)
If
(T - trlxsTE,QT W £ =0 (76)
(VT W) — o f(9)s” E,0" W =0 (77)
BTy~ s E,0T W £/(9)B =0 (78)
(b2 T;'b*) = tr[sTE,QTh*]=0 (79)

and equivalently, with the adaptive control law equation
(76) to (79) applied, there results
V=-2s"E,Q QFEls-2s"E,Q"¢,(¢)-2s"E,Q"¢
<-2s"E,Q"QETs <0 (80)
From (36) and (80), it is evident that |s| at least

converges exponentially to zero, i.e., e, >0, and

e,—»0as t—>w.

Equating the terms in equations (76) to (80) yields the
following adaptation laws for the weights and biases of
the NN:

W' =W =T, (W QE sx' (81)

W =W = _T,0E sf"(9) (82)

b'=-b' =T,/ (9W,QE]s (83)

b*=-b*=-T,QE]s (84)
where lewl‘_WI, WZ—WZ‘—WZ, bz_bz‘_bz’
b'=b"-b".
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