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Abstract

This paper reports observations on the form and behavior of the
coefficient matrix involved in the training of Radial Basis Function
(RBF) network for one dimensional learning (interpolation)
problem. Based on these, the paper first introduces a faster way for
training this particular RBF. Then it proposes a guideline on
choosing the RBF spread value to ensure not only a good
approximation quality, but also the least sensitivity to perturbations
in training data and numerical inaccuracies during evaluation.
With these results, a single dimensional approximation with RBF
network becomes straightforward. Several function approximation
examples are included to show the results of this proposed spread
value.

Index Terms—Radial basis function networks, interpolation,
toeplitz matrices, condition number.

1 Introduction

Radial Basis Function (RBF) is one of the most commonly used
supervised neural networks algorithm. Compared to Multi Layer
Perceptron (MLP), RBF, especially the one with Gaussian
nonlinearity, is interesting mainly due to its local support property.
This property enables it represent input-output mapping with more
local variations and discontinuities better than MLP's globalized
representation. It is even more interesting by considering properties
such as faster convergence with more guaranteed optimality, ease
of use and ease of interpretation thanks to huge amounts of
literature and analytical frameworks already available in this
subject. Unfortunately, these properties are achieved with resource-
hungry characteristics of RBF and a sometime-difficult-to-solve
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In this basic architecture, the supervised RBF network learns a
mapping by a strategy so-called Linear Interpolation. This is a
relatively simple yet fast and powerful strategy to get a zero
training error (not necessarily good generalization) compared to its
counterparts such as non-linear interpolation, linear and non-linear
regression. However, it is not plausible for use with a highly noisy
training data.

By this strategy, the following two restrictions are imposed to
the RBF algorithm:

1. Centers (#-s) and Spreads (o) must be pre-determined prior to
training to ensure linearity in the output layer.

2. Every actual output y(j) due to training pattern x(j) in (2) must
theoretically have the same value with the desired output d(j)
of training patterns. Hence, the output layer must be “solved”
(interpolation problem) rather than “approached” (regression
problem).

The second restriction requires the number of centers (m),
hence the number of hidden layer neurons, to be equal to the
number of training patterns (N). Therefore, the common approach
that we consider here is by using all training patterns as the centers.
As for o, a uniform choice of o is used for all hidden neurons, since
it is enough to achieve universal approximation capability of RBF
network while maintaining simplicity [3].

By the first restriction the output of the network for input x(j)
can be written as:

y(x()) =2 wi exp(- | 3)

Imposing the second restriction, the training problem to find wy
such that (3) represents the mapping problem correctly can be
rewritten in the matrix form as:

() - x|
202 )

problem (to be elaborated below) as a cost (see e.g. [1] pg. 293, [2] d() p1(x(1) @ (x(1) pn(x(D) || w
Ch.6). ‘ . , . d2) | | @(x2) (x2) - ey (xQ2) || w2
In this paper we mainly deal with the basic Gaussian RBF .= . . . )
network as described e.g. in [1], and utilized in commercial ' ' ' ’ '
software such as Matlab NN toolbox™ [2]. This kind of RBF has d(N) P1(x(N)) @2 (x(N)) on(x(N)) || wy
one hidden layer with gaussian nonlinearity and one linear output  or simply as:
layer. The output of hidden neuron & given training pattern j is: d=dw (5)
"x( j)—tk"z Note that, mathematically, Equation (5) is just a system of
P (x())) = exp(=————) (D linear equations with w as unknowns. So the training problem is
2?' actually a process of solving linear equations (5) for w. Provided
where the 7 and o are the Gaussian’s centers and spread  that could be done, we would get a unique and optimal mapping
respectively, while ||| is the euclidean norm. Output from all  which passes training patterns exactly (zero training error
hidden neurons are combined linearly in the output layer as: theoretically).
WEG)) = Xy wi i () @)
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Several difficulties arise in designing an RBF network with
good overall performance. First, is how to choose o as the
approximation quality is known to be quite sensitive to this variable
[4]. In [1], there is a formula suggested. Unfortunately, it is
unjustified and unclear on how to use. The other proposals require
significant modification on the original RBF architecture and
algorithm, which make it loose its simplicity, hence absorbing even
more computational resources (e.g., [6], [9]). Therefore, the
common practice is through trial and error.

Secondly is how to avoid the condition number of ®@ being so
large. As for this ill-conditioned problem, a more difficult yet less
accurate approach to solve (5) such as regularization should be
taken (e.g., [7], [8]). Thirdly, provided (5) is not so ill conditioned,
how to solve it efficiently. In RBF network literature, this problem
is usually left to the reader to refer to general numerical linear
algebra literature.

In this paper, by considering only a particular learning problem,
we found that these issues can be addressed at once by analyzing
the property of @ in (5).

That particular learning problem can be formulated as: “Given a
set of N different patterns {x(j), d(j) € 9}, find w in (3) or w in
(5) such that network in (3) will map F:x(j)—d(j) exactly in cases
where x(j)=0, T, 2T, ..., (N-1)T.” Thus, it is a single input and
single output learning problem, whose training cases are obtained
by sampling the input space at a fixed period T.

We will start by analyzing the form of @ in (5). As the result, it
is known that it will always be in the form of a specially structured
matrix called Toeplitz, with additional regularities in that it is also
real, symmetric, positive definite and nonsingular. Having
recognized this, we then suggest some special purposes algorithm
to achieve a faster training process.

Next, we observe the condition number of @ with respect to G,
T, and N. Based on this, we propose a guideline on choosing o
given T and N, to obtain an RBF network with good approximation
quality as well as the least sensitivity to perturbations in data and
numerical inaccuracies of the process.

Since the matrix concerned in this paper is highly structured,
then they will be written in a condensed form as commonly used in
mathematical field. For instance, an NxN matrix A, whose element
at row j and column k is Ap=(-k), is written as:
A=[Aplik=o.1,... N-1={(G-K), j.,k=0,1,2,...,N-1}.

2 First Observation: It is a Toeplitz system

In single input and single output approximation problem, the
most common and sensible way of generating cases for training the
network is by uniformly sampling the input space. Thus, if sampled
with period T, then the training set {x(j), d(j) € %, j=1, ..., N} will
contain {(0,d(0)), (T, d(T)), (2T, d(2T)), ..., (N-DT, d((N-1)T)} as

cases.
Following definition in (3), (4) and (5), matrix ® can be written
as:

® =exp(-A/202) (6)
where:

A=[A 1) k=01, N1
:{"x(j)—xk 17,/ k=0,1, ...,N—l}

Tk =2 G- 02 ™)

is a matrix called a distance matrix. As can be seen from the
existence of component (j-k) in (7), then matrix A is a matrix with
a highly regular structure called symmetric Toeplitz Matrix. This
type of matrix has entries that are constant along each diagonal.
Hence, ®@, a Gaussian function of the distance matrix A, is a
symmetric Toeplitz, with additional regularity in that it is always
real, symmetric, positive definite, and guaranteed to be non-
singular [5]. Therefore, (5) is a Toeplitz system.

This recognition should be taken advantage of to achieve a
faster learning process. As for a general Toeplitz system, there are
already some fast solvers for (5) available (only O[N?] floating
point operations needed compared to standard methods with O[N’]
complexities, see e.g. [10], [11]). By taking advantage of ®’s
additional regularities further simplification may be possible.

3 Second Observation:
Condition number of ® w.r.t. T, cand N

Fig. 1 shows a one dimensional function approximation with an
RBF network, trained using two different choices of spread (spread,
Z or o are used interchangeably throughout the text). Note that this
sample of approximation will be used consistently throughout the
text to clarify the idea presented.

The training patterns are generated by sampling the input space
(in this case the time domain) at period 7 =0.18. The function to be
approximated has a total period (Tsim) of 9.54 s. Therefore, 54
training cases are obtained.

S..M.U.LAT.LO.N R.E.S.U.L.T(Z=0.1077)
151
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S..M.U.LAT.LO.N R.E.S.U.L.T(Z=0.359)
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Fig. 1 Approximation result for different choice of spread (Z)
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The figure deceivingly suggest that both values of spread has
given the same quality of approximation (indicated by low
deviation between target and output of the network). Hence, they
can be used interchangeably.

However, if the values of condition number (CN) of ®@ involved
in both cases are compared, then we see that both have totally
different qualities. CNs of @ in Fig. 1(a) and (b) are 41.7804 and
5.1746x10° respectively. Recalling the definition of CN, we can
infer that the network resulted in Fig 1(b) has more probability to
be perturbed either by noise inherent in the training cases or by
numerical inaccuracies involved in the calculation of (5).

Unfortunately, perturbation is an inevitable condition on
training data. Hence, a network that is very sensitive to this is
clearly not so useful in practice. Therefore, it is important for us to
investigate the behavior of this CN in order to find a way to
improve it.

3.1 Condition Number
As a review, condition number k(®) is defined as:

K(®) =k, (®) = ||<1>||p “cp‘1

®)
p

where p represents the norm used in calculation. For example, in
this paper we will present some sample simulations resulted for
norm p=1 which is defined as:

L —— ©)

1<r<n g=1

Note that new indexes g=j+/ and r=k+1 are used to clearly denote
the index of a matrix element.

The importance of CN can be seen in:
W o

d

where od represents a change in d due to perturbations, while ow
represents the possible changes to the solution (w) in (5) due to &d.

Hence, one interpretation of k(®) is that it is a measure of how
big a relative error inherent in training cases will be maximally
amplified during the calculation of w in (5). The lowest value of
k(®) is 1, which reflects a well-conditioned system. Large k(D)
reflects an ill-conditioned linear system. The highest, which reflects
the singularity of @, is infinity. Readers are referred to e.g. [12] pp.
96, and [13] pp.53 for more details on CN.

Now let us collect all external factors that could possibly affect
this k(®). Let us rewrite (6) as:

< k(®) (10)

—a(j-0)? 3 9
D= J,k=0,1,...,N—1,wherea=T"/2c" (11)

Thus, the objective now can be stated as to observe the behavior of
CN of @ due to the change of external factors, @ and V.

There are several papers in mathematical field that provide an
analysis to estimate the bound of CN for a certain class of function
of distance matrix A (e.g., [5], [14]). However, none seems suitable
for Gaussian function of A such as in our case. Hence, we rely on
simulations to observe it.

To that objective, we have done quite extensive simulations to
observe the behavior of CN using norms 1,2, and frobenius norm
with respect to & and N. Note that since matrix @ is symmetric then

||(I)||1 = ||(I)||OO . First we do it with respect to « from =0 to o=30 for

N=5, 10, 50, 100, 500, and 1000. Next we do it with respect to N
from N=0 to 500 for different a-s. Two representative plots of
those simulations are displayed in Fig. 2 below by using norm 1.

Alpha

(a) CN versus «a plot

(b) CN versus N
Fig. 2 Behavior of CN of ® w.r.t. ¢ and N

Note that the non smoothness of some curves indicates that the
actual value of CN at those points are so inaccurate as the matrices
have already been very close to singular.

There are two motivating observations we can infer from the
two figures. Fig. 2.(a) reveals that the CN will decrease
monotonically w.r.t. the increase of « until it reaches its
presumably asymptotic value CN=1, which means very well
conditioned. This fact gives a direction of our next search for
improving the CN of @ by searching for the highest value of c.

Fig. 2.(b) reveals some presumably asymptotic values which
acts as the upper bound of CN for each a. These asymptotic values,
if it can be proven analytically, are really motivating. As they give
assurance that once the asymptotic value (or the upper bound) value
is known to be low enough, then however large the N (training
data) used, we can always solve (5) as safe as for low number of N.

2131



These two presumably monotonicity behaviors are newly
observed, according to Micchelli!, as literatures in the field of
mathematics usually report CN only in the form of upper and lower
bound. Further research needs to be set up to really prove this. The
investigation is now proceeded by searching for the highest value
of a.

By recalling that =T /2%, there are two variables that should
be considered in order to get the highest value of ., i.e. T, and o

The choice of T is clearly problem dependent. Lower value of T
(tenth of second or even smaller) is usually required to generate
training data from a possibly high-frequency system, in order to
ensure that the training data is sufficient to represent the mapping
of the original system. Consequently, an RBF network designer can
not freely choose the value for this. In order to remove the effect of
T from the choice of ¢, let us choose o=cT such that: a=1/2¢° . So
now our objective for improving CN of @ can be further refined to
finding the lowest value of spread (o) or similarly the lowest value
of ¢ so as to obtain the highest value of .

3.2 The Best Value of Spread

However, it is commonly known that there is a certain lower
bound of o not to be exceeded, in order that the RBF network can
generalize (approximate values in between training cases).
Matlab™ ([2], pg. 6-6), for instance, state this guideline as:
“...make sure that the spread is large enough so that active input
regions of the RBF neurons overlap enough so that RBF neuron
always have fairly large output at any given moment.”

Regarding generalization, there are many statistically proven
methods available in literature to measure this aspect. However, for
our purpose, a visual measure is considered sufficient. To be
precise, we regard an RBF network producing a good
generalization if the function it produces connects training cases
(points) smoothly, without having too much inflection or local
maxima/minima in between.

To illustrate this, Fig. 1 above has shown two approximation
results with good generalization due to the use of wide enough
spread values. In contrast, Fig. 3 below shows a bad generalization
due to a too narrow spread (although it gives a well conditioned ®).

S.LM.ULAT.LO.N RES.U.LT(Z=0.0718)
15
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Time

Fig. 3 Approximation result for too small choice of spread

' Private conversation with Charles A. Micchelli, Mathematics and
Statistics Dept., University at Albany, New York.

By considering this lower bound requirement for spread, then
the value of spread that we are looking for is the one at the lower
bound. In other words, since o=cT then the value of ¢ we are
looking for is the lowest value that is enough to produce a smooth
curve.

So our objective now can be refined to find the lowest value of
spread or similarly to find the lowest value of ¢ that is sufficient to
produce a smooth curve connecting training cases. We will rely on
the oncoming simulation in order to find this.

For the first simulation, recall that the output of our trained RBF
network for input x is:

Y=YV wpexp(- (12)

Recall that we can always regard the input x as x=bT following
o=cT such that (12) becomes:

(x—kT)?
— )

2
y@0 = 2wy exp(- LA (13)
2c

Equation (13) shows that ¢ is inherently independent from the
characteristics of training data (7). Hence, we can proceed to
simulation in a search for the lowest value of ¢ by using equation
(13) instead of (12).

We choose N=6 (6 hidden neurons/basis functions), in order to
give enough length for visual observation. Regarding this arbitrary
choice of N, recall that mathematically this RBF interpolation as in
(13) is a scheme of representation of a continuous function by the
sum of N basis functions of exp(-(b-k)*/2¢%), or the Gaussian
functions [4]. Variable w; determines the vertical scaling of each
basis function. While ¢ determines the spread of each basis
function, which in turn determine the amount of overlapping
between each basis function. Since a Gaussian function goes to zero
as its input x goes away from the center (which makes it said to
have a local support), then the choice of N should have no effect on
the observation other than larger N eases the observation. To clarify
this notion, in Fig. 4 below, the output network (bold line) is drawn
along with the unscaled basis function (thin line).

We start the simulation of (13) by using wy=1. Then by
observing the smoothness of the output, we choose the lowest value
of ¢ that gives a smooth enough curve. The sample of this process
is displayed in Fig. 4 below. Note that the dots in the bold line are
the training patterns as well as the centers of the basis functions.

Yy
1.75°
1.5

1.25
1
0.75
0.5
0.25

(@
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Fig. 4 Smallest value of ¢ that produces good generalization . STMULATION RESULT@Te=05 SAMPLEY)
From this simulation, we found ¢=0.6 to be the best candidate. A Newark Qutput
We then proceed by using random values of w, and repeat the ~
whole experimentation. From this, we again found that ¢=0.6 is still z T
the best candidate. This result suggests the use of 0=0.6 T as the é 8|
value of the spread we are looking for. With this choice of ¢ the =
value of a=1/2¢’=1.39, which according to our simulation gives H
asymptotic value of CN=2.9553 for N >18 for norm 1. This value ar
of CN tells that this choice of ¢ will always make @ very well ol
conditioned however large the number of training data is. »
We finally proceed to test this value of o to real approximation T s w1 o
cases. To do this, we generate four other training sets of artificial Time
functions besides the one we have already used. We then try to
approximate these training sets using values of ¢ from c=0.6 T to sy SIMULATION RESULT(2=05T, SAMPLE2)
o=T with 0.1T increment. ° JaningData .
From this second simulation, it is confirmed that 6=0.6 T is the ol s
lowest value of spread that gives the best approximation results for oulof 7§ & '
these arbitrary sample problems. As it below 0=0.6 T the quality ol
reduces quite significantly. In Fig. 5, we include the approximation
results of three training cases using both 0=0.6 T and 0=0.5 T. of
S..M.ULATILON RES.U.LT (Z=0.6T, SAMPLE 1) o
> Training Data v v
Network Output | oh 4
00 2 4 6 8 1‘0 12 °1I40 16

Time

S.IMULATION RES.U.LT(Z=0.6 T, SAMPLE 3)
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Fig. 5 Results of approximation using value 0=0.6 T and below 0=0.6 T

This result confirms the previous simulation’s result. Hence, in
conclusion, we suggest the use of 0=0.6 T as the spread for this
type of approximation. With this choice, the RBF network is
observed to produce an optimal reconstruction of mapping from
training cases.

4 Conclusions

This paper has suggested several improvements to make the
learning process of a single input single output mapping fast and
straight forward.

The coefficient matrix of an RBF network employed on this
one-dimensional interpolation problem is observed to have a real,
symmetric, positive definite and guaranteed nonsingular toeplitz
structure. This special structure can and should be taken advantage
of, in order to make training process much more efficient.

Relation between ill-conditioning of problem (5) with spread, T
(sampling period) and N (number of training cases used) has been
observed. The result suggests the use of 0=0.6 T to produce an
RBF network with optimal approximation quality due to better
conditioning of (5). With this proposal, interpolation with RBF
network is already a straightforward procedure. Given a one
dimensional training set with fixed sampling period, an RBF
network which optimally interpolates the data can be directly
constructed without the need for trial and error.

Moreover, with the previously observed asymptotic behavior of
CN, this choice of spread will produce @ with CN maximum
2.9553 regardless however large the training data is. According to
(10), this ensure that perturbation in training data will be amplified
maximally 2.9553 times.

The nice thing of the result presented here is that it is totally
independent on the type of function or mapping problem dealt with.
The only condition for its applicability is that the one dimension
input space is sampled at a fixed sampling period.

Noting how our proposed value of spread is related to 7, then
Franke’s conjecture that the value of spread depends on the training
data seems to be strengthened ([4], pp. 191).

Further work is needed to simplify algorithm in [11] in light of
additional specialty in matrix © and also to mathematically prove
the monotonicity behavior of CN of @ w.r.t. @ and N.
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