
Matrix-based Supervisory Controller of
Transition-Function Specified Robot Controllers

Niak Wu Koh*, Cezary Zieliński†, Marcelo H. Ang, Jr.* and Ser Yong Lim ‡

* National University of Singapore, Department of Mechanical Engineering
email: (nwkoh, mpeangh)@nus.edu.sg

† Warsaw University of Technology, Faculty of Electronics and Information Technology
email: C.Zielinski@ia.pw.edu.pl

‡ Singapore Institute of Manufacturing Technology
email: sylim@SIMTech.a-star.edu.sg

Abstract. Robot control systems generally require a layer that manages, in a mod-
ular manner, the hardware or low level control and a supervisory layer which allows
task specification for the execution of a task. This paper proposes the transition-
function specified controllers as a lower layer, with an improved matrix-based su-
pervisory controller for the high level operations.

1 Introduction

With a growing popularity in discrete event systems, its usage has been largely favoured
by the robotics and manufacturing community especially from the stance of task planning
and modelling (Morandin and Kato, 2005; Fourquet et al., 2005). Task planning describes
the ability to decompose a task into a set of primitives. Recomposing this primitive set
into a cognitively logical sequence, which when executed, enables the task to be carried
out autonomously or with user intervention as and when needed.

Whether a primitive has completed its execution is dependent on the current and
terminal state of the system. Therefore, a framework that caters to the development of
these primitives and the transmission of the system’s sensor information is mandatory.
Control of a system essentially boils down to the processing of information about the
current state of the system and its environment enabling a defined task to be executed.

The remainder of this article is organized as follows: Section 2 introduces the matrix-
based controller. Section 3 provides a brief outlook into the transition-function based
approach while Section 4 proposes the use of the matrix model as a supervisory controller.
Section 5 concludes.

2 Matrix-based Discrete Event Controller

With the use of manufacturing engineering concepts, a powerful rule-based matrix model
was developed by Tacconi and Lewis (1997) which has only been implemented to flexible
manufacturing systems (see Boghan et al., 2002; Mireles and Lewis, 2001). The pursuit of

1

mpeangh
Text Box
Koh, N W, C Zielinski, M H Jr Ang and S Y Lim, "Matrix_based supervisory controller for transition_function specified robot controllers". Proceedings of the Sixteenth CISM_IFToMM Symposium, Romansy 16, Robot Design, Dynamics and Control, ed. Teresa Zielinska and Cezary Zielinski (2006): 229-236. Warsaw: Springer. (Romansy 16 Robot Design, Dynamics and Control, 21 _ 24 Jun 2006,WarsawUniversityofTechnology,Warsaw,Poland) (Part of EERSS project withWarsaw, 2004_2007).

this research is to employ the discrete event controller to showcase its potential as a tool
for the execution of complex robotic tasks. Preliminary work regarding the development
and implementation of the matrix model from the modified to its improved state can be
viewed in Koh et al. (2005a) and Koh et al. (2005b) respectively.

A task consists of a sequence of jobs and its corresponding resources which, via the
use of input signals and a set of conditions, triggers the execution of each job. The entire
task is complete once an output signal is present.

With the matrix model, assembly/job sequencing, addition of resources, analyses
for deadlock and its avoidance and a dispatching design can be carried out allowing a
thorough analysis with a convenient solution to the simulation of the system in the form
of a Petri Net (Murata, 1989). The improved matrix discrete event model is described
in the subsequent sections.

2.1 Discrete Event Model State Equation

The task can be described by:

x̄ = Fv ⊗ v̄c ⊕ Fr ⊗ r̄c ⊕ Fu ⊗ ū ⊕ FD ⊗ ūD

→ x̄i = Fv(i, j) ⊗ v̄cj
⊕ Fr(i, j) ⊗ r̄cj

⊕ Fu(i, j) ⊗ ūj ⊕ FD(i, j) ⊗ ūDj

(2.1)

The condition (x) represents the state of the system and the equations shows how it
evolves over time.

Table 1.Variable definitions for Equation (2.1)

i, j [Row, Column]
Fv Job sequencing matrix
Fr Resource requirements matrix
Fu Parts input matrix
FD Dispatching matrix

x Condition
v Job vector
r Resource vector
u Input signal

uD Dispatch control vector

As the equations used in the matrix model are logical equations, standard matrix
multiplication and addition are replaced by AND/OR algebra and all vectors and matri-
ces are binary. ⊗ represents an AND operation and ⊕ an OR operation. The over bar is
a logical negation and is defined as follows: For any component a(i) of a natural number
vector a

ā = 0 if a(i) > 0 ā = 1 if a(i) ≤ 0

Each of the matrices are explained as follows:
• Fv determines which relevant job should be completed before condition x is satis-

fied. When vc = 1, a job is said to be complete.

• Fr determines which relevant resources should be present before condition x is
satisfied. When rc = 1, a resource is said to be currently available.

2

• Fu determines which relevant input signal should be present before condition x is
satisfied. When u = 1, an input signal is said to be present.

• FD determines which relevant dispatch signal should be present before condition x

is satisfied. When uD = 1, a dispatch signal is said to be present. This matrix is
used to determine the priority of the operations when resources are shared.

2.2 Job Start Equation

The start of a job is indicated by the following equation:

v̄s = Sv ⊗ x̄ ⊕ U ⊗ v̄c

→ v̄si
= Sv(i, j) ⊗ x̄j ⊕ U(i, j) ⊗ v̄cj

vsi
6= vcj

(2.2)

where Sv is a rectangular job start matrix and U is any user-defined matrix of n x
m dimensions (n can equal m). n will assume the number of elements in the v̄s column
vector. Job i starts when vsi

= 1. Equation (2.2) can be read as follows: Job i will
start iff the relevant conditions (determined by Sv) are satisfied and the relevant job(s)
is/are complete. This general representation can be used for a concurrent and dependent
operation.

For a sequential operation

v̄s = Sv ⊗ x̄ ⊕ I ⊗

[

0
v̄c

]

(2.3)

where I is an n x n identity matrix with n assuming the number of elements in the v̄s

column vector. It is worth noting that the presence of the v̄c element in the latter part
of the equation serves as an added validity check since the status of v̄c is already present
in x̄.

By decomposing a complex task into a series of elemental sequences, task primitives,
used to represent each subtask, can be assigned to the job start vector vs.

2.3 Resource Release Equation

The equation indicating the release of a resource is:

r̄s = Sr ⊗ x̄ ⊕ U ⊗ r̄c

→ r̄si
= Sr(i, j) ⊗ x̄j ⊕ U(i, j) ⊗ r̄cj

(2.4)

where Sr is a rectangular resource release matrix and U is any user-defined matrix
of n x m dimensions (n can equal m). n will assume the number of elements in the
r̄s column vector. Resource i is released when rsi

= 1. Equation (2.4) can be read as
follows: Resource i can only be released iff the relevant conditions (determined by Sr)
are satisfied and the relevant user-defined resource(s) is/are idle.

For a sequential operation

r̄s = Sr ⊗ x̄ ⊕ I ⊗ r̄c (2.5)

3

where I is an n x n identity matrix with n assuming the number of elements in the r̄s

column vector. It is worth noting that the presence of the r̄c element in the latter part
of the equation serves as an added validity check since the status of r̄c is already present
in x̄.

2.4 Process Output Equation

Sy determines the set of conditions that need to be satisfied before a product is
outputted:

ȳ = Sy ⊗ x̄ → ȳi = Sy(i, j) ⊗ x̄j (2.6)

A theoretical insight to the improved matrix-based supervisory controller is discussed
in Koh et al. (2005c). Figure 1 depicts the matrix model. The S matrices determine
which set of conditions must be satisfied to release the resources required by the starting
of a job. Once a job is complete, the F matrices is used to obtain the next set of
conditions, based on the system’s current state, which will be used by the S matrices.

The matrix-based supervisory controller allows an effective and simple online con-
trol by applying a set of discrete event control signals. Together with the Petri net
marking transition equation (Murata, 1989), the matrix formulation provides a complete
dynamical description that can be used for analysis and computer simulation (Koh et al.,
2005b).

3 Behavioural Control Case in a Nutshell

Task planning begins with the decomposition of a complex task into a sequential series of
elemental subtasks/jobs/primitives. From the point of view of clarity of a task description
that is to be executed by a system, it is useful to group the steps of the commanded
evolution of the control subsystem state into sequences which are termed as primitive
behaviours (Zielinski, 2005). Once a decomposed cognitive plan of a task is available,
Equation (2.2) is used where vs would represent the primitives.

Figure 1. Depiction of the Matrix-based
Discrete Event Controller.

Figure 2. Evolution of the system state dur-
ing the execution of an instruction/job.

4

3.1 Behaviour of an Agent

A behaviour can be defined as a sequence of total states

qbi
j = qbj = {ci+1

j , ci+2
j , ..., ci+ns

j } (3.1)

where ns is the number of steps in a behaviour and q denotes a numeric identifier of
this reaction, i denotes the current instant and the next considered instant is denoted
by i + 1. Each sequence of states ci+1

j , ci+2
j , ..., ci+ns

j is generated by one of the functions
mfcj

, i.e., the function defining the primitive behaviour. nf partial functions are defined
as

yci+1
j = mfcj

(xci
j) m = 1, ..., nf (3.2)

whereby the control subsystem uses

xci
j = {ci

cj
, xci

ej
, xci

Vj
, xci

Tj
} (3.3)

to produce

yci+1
j = {ci+1

cj
, yci+1

ej
, yci+1

Vj
, yci+1

Tj
} (3.4)

and hence the transition functions

ci+1
cj

= fccj
(ci

cj
, xci

ej
, xci

Vj
, xci

Tj
)

yci+1
ej

= fcej
(ci

cj
, xci

ej
, xci

Vj
, xci

Tj
)

yci+1
Vj

= fcVj
(ci

cj
, xci

ej
, xci

Vj
, xci

Tj
)

yci+1
Tj

= fcTj
(ci

cj
, xci

ej
, xci

Vj
, xci

Tj
)

(3.5)

cj is the state of the control subsystem of an agent
ej is the state of the effector of the agent
Vj is the bundle of virtual sensor readings and
Tj is the information from/to the other agents

The state of an agent is thus defined as

sj = {cj , ej , Vj , Tj} (3.6)

Each program instruction causes a certain change in the state of a system. If we were
to associate with an instruction a state-transition pair: initial state and terminal state,
a finite number of discrete event states can be defined using the mapping sem as

sem : II 7→ [S → S∗] (3.7)

where ii is an instruction and II the set of instructions, ii ε II .

This formal approach to the behavioural aspect of a robot programming framework
was developed by Zielinski (2005)(see Zielinski, 1995 for more details).

In the case of a purely reactive system, the choice of the function mfcj
is based on

testing predicates qpcj
, q = 1, .., np, which take as arguments only the components of

xci
Vj

. In pseudo-code, it can be expressed as

if qpcj
(xci

Vj
) then yci+1

j := mfcj
(xci

j) (3.8)

5

Pseudo-code (3.8) represents a single-step behaviour, i.e., ns = 1 (refer to Equation (3.1)
for the definition of ns). For the case of a multi-step behaviour, the pseudo-code is
expressed as

if qpcj
(xci

j) then qbj(xci
j) (3.9)

The control program is composed of an endless loop containing a sequence of instructions
of form (3.9). Each iteration of the loop contains several control steps i. The required
computations, i.e., computation of yci+ε

j , ε = 1, .., ns, and the execution of behaviours,

i.e., transmissions ej 7→ xci
ej

, Vj 7→ xci
Vj

, cTj
7→ xci

Tj
, are bundled together within

qbcj
(xci

j), q = 1, .., np.

4 Sensor Utilization

If notation (3.7) is assumed, the execution of an instruction begins in an initial state, ends
in a terminal state and traverses a sequence of intermediate states. Robots are generally
controlled by digital computers so the execution of each instruction is subdivided into
steps. Each step results in a change of the system state from one intermediate step to
the next.

In each intermediate (or current) state, the state of a system can be measured or
monitored by sensors. However, the future intermediate states can only be influenced,
i.e., controlled. An initial state can be treated as a current intermediate state at the
beginning of an instruction execution. A terminal state is the current intermediate state
in which the execution of the instruction terminates. As the initial and terminal states
are special cases of current intermediate states, both of them can only be monitored (see
Figure 2).

The monitoring of the system state is performed by receptors. Raw data obtained
from them cannot be utilized directly to monitor or control a system. It has to be
transformed into a useful form by data aggregation. In consequence, a virtual sensor
reading, V , is obtained.

5 Matrix Model as the Supervisory Controller

Consider a simple task (see Figure 3) where an end-effector moves to two different coor-
dinates (jobs vs1

and vs2
) in cartesian space. With reference to Equation (2.3),

[

v̄s1

v̄s2

]

=

[

1 0 0
0 1 0

]

⊗

x̄1

x̄2

x̄3

 ⊕

[

1 0
0 1

]

⊗

[

0
v̄c1

]

(5.1)

v̄s1
= x̄1 → vs1

= x1

v̄s2
= x̄2 ⊕ v̄c1

→ vs2
= x2 ⊗ vc1

which is read as follows: Job 1 can start iff condition x1 is satisfied; Job 2 can start iff
condition x2 is satisfied and job 1 is complete.

In concordance with Figure 2, a Move instruction can be depicted as shown in Fig-
ure 4. With the initial and terminal states (monitored), and by employing the formal

6

x1

Start Move1
Complete

 Move2
Complete

x2

x3

End

 x1
satisfied?

Yes
Move1

 x2
satisfied? Move2

 Move1
Complete?

Yes

Yes

Figure 3. Petri Net representation of a
simple move task. Circles/ellipses rep-
resent the places and rectangles are the
transitions.

Figure 4. Petri Net representation of a
general move instruction.

framework discussed above, the current status of a job or an action can be determined
since the aggregated virtual sensor readings, V , are available.

When certain conditions are satisfied and a job can be executed, the supervisor sends
a command to the control level (see Figure 5). Once a job is complete, the transition-
function specified controller will pass a token, through transmission buffers, T , to the
higher level supervisory controller signifying completion of a particular action. Therefore,
the supervisory controller sees only the tokens providing transparency of the lower level.

Condition, x, quantifies the current state of the system in terms of the availability of
resources and the completion of jobs via sensor utilization. Since the state of the system
changes with time, x is thus dynamic. Depending on the virtual sensor readings, any
one of the vector of conditions can be satisfied which in turn will trigger the start of a
job or the release of a resource.

By manipulating the matrix entities in Equation (5.1), the sequence of the jobs and its
dependents can be altered without the need to re-structure a program for the execution
of a separate task. Viewing each job as a task primitive, the decision to opt for a
completely different task is possible simply by choosing the required primitive from a
predefined library after task decomposition.

Figure 5. Matrix-based Supervisory Controller with the Transition-Function Specified
Controllers. T is the transmission buffer.

6 Conclusion

Robotic tasks in general require a great deal of robustness since the system might en-
counter some unforeseen problem preventing the task from completion. Information
regarding the current and terminal state of a primitive behaviour is essential to the su-

7

pervisory controller for the execution of a task. By employing the transition-function
based approach at the lower level, this necessity is realized.

This framework adopts a transition function-based formalism which introduces rigor
into the design and implementation of a single or multi-agent system. By decomposing a
large system into modular components, the design and implementation solely by provid-
ing the relevant code for the specified functions would suffice for an operational system.
Through their public interfaces, these components provide only the data that is neces-
sary for the computation of the control of an agent which is utilized by the transition
functions resident in the control subsystem to compute the next state of this subsystem.

Bibliography

S. Boghan, F. L. Lewis, Z. Kovacic, A. Grel, and M. Stajdohar. An implementation of
the matrix-based supervisory controller of flexible manufacturing systems. In IEEE

Trans. On Control Systems Technology, volume 10 of 5, pages 709–716, September
2002.

J-Y. Fourquet, V. Padois, P. Chiron, and A. Mauratille. Reactive behavior and dy-
namic sequencing for nonholonomic mobile manipulators. In IEEE Int. Conference

on Computational Intelligence, Robotics and Autonomous Systems, 13-16 December
2005.

N. W. Koh, M. H. Ang Jr, and S. Y. Lim. Implementation of a matrix-based discrete
event controller for robotic tasks. In IEEE Asian Conf. for Industrial Automation

and Robotics, 11-13 May 2005a.
N. W. Koh, M. H. Ang Jr, and S. Y. Lim. Robotic tasks employing an improved matrix-

based discrete event controller. In Int. Symp. on Collaborative Research in Applied

Science, 7-9 October 2005b.
N. W. Koh, M. H. Ang Jr, and S. Y. Lim. A theoretical insight to the improved

matrix-based supervisory controller. In IEEE Int. Conf. on Computational Intelli-

gence, Robotics and Autonomous Systems, 13-16 December 2005c.
Jr J. Mireles and F. L. Lewis. Intelligent material handling: Development and imple-

mentation of a matrix-based discrete-event controller. In IEEE Trans. on Industrial

Electronics, volume 48 of 6, pages 1087–1097, December 2001.
Jr O. Morandin and Edilson R.R. Kato. Virtual petri nets as a modular modeling method

for planning and control tasks of fms. In Int. J. Computer Integrated Manufacturing,
volume 18, pages 100–106. Federal University of Sao Carlos, Taylor and Francis Group,
March-May 2005.

T. Murata. Petri nets: Properties, analysis and applications. In Proceedings of IEEE,
volume 77, pages 542–580, April 1989.

D. A. Tacconi and F. L. Lewis. A new matrix model for discrete event systems: Applica-
tion to simulation. In IEEE Control Systems, volume 17 of 5, pages 62–71, October
1997.

C. Zielinski. Robot programming methods. DSc thesis, Politechnika Warszawska, 1995.
C. Zielinski. Formal approach to the design of robot programming frameworks: The

behavioural control case. In Bulletin of the Polish Academy of Sciences, volume 53,
pages 1–11, 2005.

8

