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Abstract. The dynamic model of redundantly actuated mobile robots with pow-
ered caster wheels is derived based on vehicle dynamics. The contact stability
problem of wheeled mobile robots is introduced and stable contact condition that
characterizes the bounds of contact stability is derived. Sliding mode observer
is proposed to estimate the robot velocity using wheel angular velocity and joint
torque information. Actuation redundancy of the robot is utilized to satisfy the
stable contact condition in trajectory tracking applications.

1 Introduction

More and more important applications of wheeled mobile robots (WMRs) e.g. planetary
exploration and mobile manipulation, require accurate dynamic models of WMRs in or-
der to achieve high control performance. Most of the previous literature only consider
the linkage dynamics of the rigid bodies on the robot and ignore the dynamic effects
of wheel-ground interaction by assuming that the wheels are under pure rolling without
slipping motion. However, theory of vehicle dynamics (Bekker, 1956; Wong, 2001), a well
established discipline in automobiles dealing with dynamic properties of rolling motion,
has revealed that different nonlinear dynamic effects and disturbances will be generated
in different wheel-ground interaction conditions. Therefore, this paper discusses the dy-
namic modelling of WMRs taking into account the wheel-ground interaction. Specifically,
dynamic effects caused by the phenomenon of slip is mainly analyzed.

Many WMRs with Powered Caster Wheels (PCWs, also known as offset steerable
wheels) have been developed (Wada and Mori, 1996; Yi and Kim, 2002; Li et al., 2005)
and even commercialized e.g. the Nomadic XR4000 robot (Holmberg and Khatib, 2000).
One important benefit of using PCW is that WMRs with PCWs can generate omnidi-
rectional mobility. However, due to the coupling effects between the rolling and offset
steering of the wheel, slip phenomenon is more significant in both longitudinal and lat-
eral directions than other type of wheels. Moreover, most of the WMRs with PCWs use
redundant actuators to achieve high payload but cause internal forces between wheels
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due to the over-constraints in their kinematics. This further magnifies the occurrence of
slip phenomenon. These problems are also encountered by us in controlling our omni-
directional mobile robot with 4 PCWs as shown in Figure 1. The robot is redundantly
actuated as totally 8 actuators on 4 wheels are used to control the robot.

This paper is an extension of the work (Li et al., 2006). In (Li et al., 2006), dynamic
modelling of WMRs with PCWs is improved by considering the effect of wheel-ground
interaction. In this paper, we further explore the effects of slip ratio, which is one of
the main factors of wheel-ground interaction, on the vehicle dynamics. Moreover, we
extend the non-slip conditions derived in (Li et al., 2006) to stable contact condition by
considering WMRs locomotion as a multifingered grasping task. Without introducing
extra sensors, we apply sliding mode observer to estimate the robot velocity by using the
wheel angular velocity and joint torque information. Simulation results are presented to
demonstrate the effectiveness of the proposed methods.

Figure 1. Omnidirectional mobile robot with 4 powered caster wheels.

This paper is organized as follows. Section 2 derives the dynamic model of mobile
robots with powered caster wheels using vehicle dynamics. Section 3 introduces the
contact stability problem for wheeled mobile robots and derives the stable contact con-
dition to characterize the bounds of contact stability. Simulation results of controlling
the robot using the vehicle dynamics model and sliding mode observer are demonstrated
in Section 4 followed by the conclusion in Section 5.

2 Dynamics Analysis of WMRs with Powered Caster Wheels

2.1 Vehicle Dynamics

Frame assignments and variable definitions of a WMR with n PCWs is shown in
Figure 2. The equations of motion of the overall system can be derived using Operational
Space Framework (Khatib, 1987) as

ΛP̈ + Φ = GFc (2.1)

2



B

O

Fyi

Fxi

δi

ωi

wheel 1

wheel i

wheel n

θ

x̂wi
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Figure 2. Diagram of a mobile robot
with n powered caster wheels.
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Figure 3. Force equilibrium of a pow-
ered caster wheel.

where Λ is the inertial matrix, P = [px, py, θ]T is the operational position and orientation
vector of the robot and P̈ is the second derivative of P , Φ is the Coriolis and centrifugal
force vector and Fc = [Fx1, Fy1, · · · , Fxn, Fyn]T is the vector of contact forces. G is the
transformation matrix that maps the sum of contact forces into generalized operational
forces/torques. Gravitational force is not considered as we assume the robot operates on
level ground.

2.2 Wheel Dynamics

Applying the theory of vehicle dynamics (Wong, 2001), the motion and force system
of a PCW can be demonstrated with Figure 3. Besides the “normal force” Fz that the
ground acts on the robot, the wheel is subjected to longitudinal “tractive force” Fx and
“rolling resistance moment” My due to the rolling motion. The wheel is also subjected to
“lateral force” Fy and “aligning torque” Mz due to the steering motion. The equations
of motion of a PCW are given as

Irω̇ = Tr −My − Fxr (2.2)

Isδ̇ = Ts −Mz − Fyb (2.3)

where Ir and Is are the inertia tensors of the wheel w.r.t. its rolling and steering axis
respectively; ω and δ are the rolling and steering speeds of the wheel respectively; Tr

and Ts are the torques of the rolling and steering actuators respectively; r is the radius
of the wheel and b is the offset length of the wheel.

Note that the effects of My and Mz on the wheel dynamics are usually much smaller
than that of the contact forces Fx and Fy, so we will limit our discussion on the contact
forces in this paper. Also note that when contact forces Fc are used to relate the vehicle
dynamics model (2.1) to the wheel dynamics model (2.2 and 2.3), inertia tensors Ir and
Is should include not only the wheel inertia but also the inertia of the vehicle chassis.
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Figure 4. Longitudinal and lateral fric-
tion coefficients vary with slip ratio.
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rolling wheel.

2.3 Relation of Slip Ratio and Contact Force

Contact forces Fx and Fy are usually described in the form of frictional force i.e.

Fx = sgn(ω)µxFzx̂w (2.4)

Fy = −sgn(δ)µyFz ŷw (2.5)

where x̂w and ŷw are the unit vectors of the wheel frame basis; µx and µy are defined as
longitudinal and lateral friction coefficients which depend mainly on ground conditions
and wheel-ground relative motion. The quantity “slip ratio”, which characterizes the
wheel-ground relative motion, is defined as

λ =
ωr − vx

max{ωr, vx} × 100% (2.6)

where vx is the actual longitudinal velocity of the wheel w.r.t. the ground.
Variations of µx and µy with λ as shown in Figure 4 are important characteristic

curves (Wong, 2001) in vehicle dynamics. In the µx(λ) curve, µx increases with λ until
it reaches its peak value µxp which corresponds to slip ratio λp. Further increase of slip
ratio beyond λp results in rapid decrease of µx and the wheel slides or spins on the ground
unstably. In the µy(λ) curve, µy decreases rapidly with increase of λ.

3 Contact Stability of WMRs

WMRs locomotion can be considered as a task where multiple interconnected wheels
grasp the ground. This is similar to multifingered grasping tasks where an object is
grasped by a multifingered robotic hand. By such an observation, we can consider the
“contact stability” problem (Nakamura, 1991) for WMRs as in multifingered grasping
tasks. We define contact stability of WMRs locomotion as the ability of the mobile
robot to maintain stable rolling contact with the ground when the robot is subjected to
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disturbing forces. The problem of “contact stability” is especially important for WMRs
because the rolling contact between the wheels and the ground is more sensitive to
disturbing forces than static contact which is usually the case for multifingered grasping
tasks.

3.1 Stable Contact Condition

It is intuitive to specify conditions that characterize the contact stability of WMRs
in terms of contact forces. As shown in Figure 4, maximum longitudinal force Fxm

is reached when slip ratio is λp, and maximum lateral force Fym is reached when slip
ratio is zero. Evaluating all possible values of slip ratio, an ellipse with Fxm and Fym

as the major and minor axes can be obtained. Moreover, evaluating the variation of
these ellipses with the normal force Fz, an ellipsoid cone, where a point within the cone
corresponds to a stable contact state, can be obtained. We call this “contact ellipsoid
cone” as shown in Figure 5. Therefore, a condition characterizing the contact stability
is that all contact forces need to be within their contact ellipsoid cones.

Let fd = [fdx, fdy]T be the unexpected external disturbing force which is bounded by
f∗d , i.e. ‖ fd ‖≤ f∗d . Thus, a stable contact condition can be derived from the concept of
contact ellipsoid cone as

(Fxi + f∗dx)2

F 2
xm(Fzi)

+
(Fyi + f∗dy)2

F 2
ym(Fzi)

≤ 1 (3.1)

Stable contact condition described by Equation 3.1 is a extension of the non-slip
conditions derived in the work (Li et al., 2006).

3.2 Contact Force Distribution

In order to satisfy the stable contact condition 3.1, contact force distribution scheme
based on the actuation redundancy of the robot can be utilized. A general solution of
the vector of contact forces Fc can be derived from Equation 2.1 as

Fc = G†(ΛP̈ + Φ) + (I2n×2n −G†G)fo (3.2)

where I2n×2n is the identity matrix of order 2n, G† = GT (GGT )−1 is the pseudo-inverse
of matrix G and fo ∈ R2n is an arbitrary vector.

In Equation 3.2, the first term in the right hand side corresponds to the contact
force components that generate the resultant operational motion of the robot while the
second term corresponds to the nullspace of matrix G that generates no effect on the
resultant operational motion of the robot. Vector fo, which is projected onto the nullspace
of matrix G, is determined in a way that the final contact forces Fc computed from
Equation 3.2 satisfy the stable contact condition 3.1.

4 Sliding Mode Observer

4.1 Observer Design

The evaluation of slip ratio requires information of wheel angular velocity and vehicle
actual velocity. In usual cases, sensors are only available to measure wheel angular
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velocities and actuator torques. So the vehicle actual velocity needs to be estimated
with observers. In a similar application, Unsal and Kachroo (1999) have compared the
performances of different nonlinear observers and Sliding Mode Observers was found to
provide more satisfactory performance than that of Extended Kalman Filter. The main
benefits of sliding mode observers are also well known for their robustness to parametric
uncertainty and external disturbances (Slotine and Li, 1991). Therefore, we will adopt
sliding mode observer in this paper to estimate the actual velocity of the vehicle.

We first reformulate the system in state space form. We choose state variables as the
wheel angular velocity ω and actual velocity of the wheel vx

x =
[

x1

x2

]
=

[
ω
vx

]
(4.1)

We can rewrite Equation 2.1,2.2, 2.4 and 2.6 as

ẋ1 = f1 + gu
ẋ2 = f2

y = Cx
(4.2)

where
f1 = −My/Ir − µx(x1, x2)Fzr/Ir

f2 = −Φ/Λ + Gµx(x1, x2)Fz/Λ
g = 1/Ir

u = Ts

C = [1, 0]

(4.3)

Now we can define sliding mode observer as follows

˙̂x1 = f̂1 + ĝu − h1ỹ − k1sgn(ỹ)
˙̂x2 = f̂2 − h2ỹ − k2sgn(ỹ)

(4.4)

where x̂, f̂ and ĝ are estimations of x, f and g respectively. Measurement error ỹ ≡
C(x̂− x), observed from the structure of the observer, is chosen as the sliding variable.

Readers are referred to (Slotine et al., 1989) for the details of the observer derivation
and its analysis as well as techniques to choose the gains h1, h2, k1 and k2 so that the
estimated states finally match their actual values.

4.2 Application: Simulation Results

We simulated the control diagram of Figure 6 in Matlab. This diagram demonstrate
a new control scheme that incorporates the vehicle dynamics model, stable contact con-
dition and sliding mode observer as discussed in this paper.

In the simulation, we commanded the system to track a simple straight line trajectory
so that the coupling effects between the longitudinal and lateral dynamics (which are not
discussed in this paper) are not generated. In order to generate slip phenomenon and
other real effects in the simulation, we introduce random disturbing force with range of
(−0.5Fc, 0.5Fc) to the system.
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The straight line desired trajectory for the simulation implies that no steering action
is involved and only the µx(λ) relation is required for the computation of slip ratio in
the simulation. For convenience, we adopted following simple model which is proposed
in (Peng and Tomizuka, 1990)

µx =
2µxpλpλ

λ2
p + λ2

(4.5)

Table 1 shows the parameters and gains of the observer used in the simulation. mr,
ms and mc are the mass of the wheel disc, steering link and vehicle chassis respectively.

Table 1. simulation parameters

r 0.055 (m) b 0.020(m) λp 16(%) µxp 0.98
mr 0.65(kg) ms 2(kg) mc 116(kg) Fz 310.5(N)
h1 2 h2 10 k1 2 k2 10
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Figure 6. Simulation diagram with sliding mode observer.

Velocity tracking error and estimation error of robot velocity is shown in Figure 7. The
tracking error is mainly caused by modelling error and disturbances. Estimation error is
relatively small but suffers from chattering. The discussion of chattering elimination is
out of the scope of this paper.

Figure 8 shows the actual slip ratio and the estimated slip ratio. It can be noticed
that although the slip estimation is effective, the slip ratio is always underestimated by
the proposed sliding mode observer.

5 Conclusion

This paper analyzes the vehicle dynamics of wheeled mobile robots with powered caster
wheels. Condition that describes the limits of contact stability in terms of contact forces,
is derived. Force distribution scheme is proposed to satisfy the stable contact condition.
Sliding mode observer is proposed to estimate the system states and its effectiveness is
demonstrated by simulation. Future work is to work on the problem of slip based traction
control. We also plan to implement the proposed methods on the real robot.
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Figure 7. Velocity tracking error and
estimation error of robot velocity.
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Figure 8. Actual slip ratio and esti-
mated slip ratio.
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