National University of Singapore
 Faculty of Engineering

Drill Problem Set 3: ME4245/EE4304: Robotics Term 1, 1996/1997

1. At an orientation of

$$
R=\left(\begin{array}{ccc}
-0.5 & -0.433 & 0.75 \\
0.866 & -0.25 & 0.433 \\
0 & 0.866 & 0.5
\end{array}\right),
$$

a rigid body is rotating at the Euler angle rates of

$$
\dot{\alpha}=\dot{\beta}=\dot{\gamma}=1^{\circ} / \mathrm{sec} .
$$

Determine the angular velocity of the rigid body. The Euler angles α, β, and γ are defined as $R=\operatorname{Rot}(z, \alpha) \operatorname{Rot}(y, \beta) \operatorname{Rot}(z, \gamma)$. (Hint: You may need to first solve for the Euler angles corresponding to this orientation.)

Two Possible Answers:

$$
\omega=\left(\begin{array}{c}
0.25 \\
1.3 \\
1.5
\end{array}\right) \mathrm{deg} / \mathrm{sec} \quad \text { or } \quad \omega=\left(\begin{array}{c}
1.25 \\
-0.433 \\
1.5
\end{array}\right) \mathrm{deg} / \mathrm{sec}
$$

2 Fig. 2 shows a connecting (bent) rod (BJ) rigidly connecting the rotational joint J to the cuboid (ABCDEFGO). Let
$1>$ Frame U be fixed and serve as the universe frame of reference.
$2>$ Frame H be translating with respect to Frame U.
$3>$ Frame H is attached rigidly to the rotational joint J .
$3>$ Axis \mathbf{k} be fixed onto Frame H.
4> Frame M be fixed rigidly onto the cuboid.
$5>$ The cuboid (ABCDEFGO), bent connecting rod (BJ), and joint J be all connected as one rigid assembly.
$6>$ Joint J be a rotational joint that rotates the cuboid-connecting rod rigid assembly about axis \mathbf{k}. This assembly is rotating about axis \mathbf{k}.
At a certain instant of time, the origin of Frame H (joint J) is translating at a velocity of ${ }^{U} u_{H}=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)^{T} \mathrm{~m} / \mathrm{sec}$, and the cuboid-connecting rod assembly is rotating about axis \mathbf{k} at an angular velocity of $10 \mathrm{rad} / \mathrm{sec}$. At this same instant of time the assembly and frames are at the configuration indicated in Fig. 1.
At that same instant of time, determine:
i. The angular velocity of the cuboid-connecting rod assembly with respect to Frame U.
ii. The translational velocity of point C (on the cuboid) with respect to Frame U.

Fig. 2
Ans: $u=\left(\begin{array}{c}53.32 \\ 7 \\ -5.66\end{array}\right) m / \mathrm{sec} \quad \omega=\left(\begin{array}{c}0 \\ 8.66 \\ 5\end{array}\right) \mathrm{rad} / \mathrm{sec}$
3. Fig. 3 shows a 4 -axis robot with all rotational joints. The first joint rotates about a vertical axis while the next three joints rotate about a horizontal axis parallel to the xy plane of Frame U. Frame E is attached to the robot end-effector. A six axis forcetorque sensor provides 3 force and 3 torque readings along and about the x, y, and z axes of the sensor frame S. Frame S is coincident to the fixed frame of reference U. If the robot end-effector is carrying a payload of 20 kg when it is at a configuration indicated by

$$
{ }^{U} T_{E}=\left(\begin{array}{cc}
{ }^{U} R_{E} & { }^{U} p_{E} \\
0 & 1
\end{array}\right)=\left(\begin{array}{cccc}
0.0 & -1.0 & 0 & 10 \\
0.866 & 0 & 0.5 & 5 \\
-0.5 & 0 & -0.866 & 4 \\
0 & 0 & 0 & 1
\end{array}\right),
$$

Determine the six readings of the six-axis force-torque sensor. Assume that the robot is weightless less. The gravitational force is pointing downward along the negative z axis direction of Frame U. Assume all the links are of length 1 m , determine the joint forces/torques required.

Figure 3
Ans: $F=\left(\begin{array}{c}0 \\ 0 \\ -196\end{array}\right) N \quad T=\left(\begin{array}{c}-1029 \\ 1960 \\ 0\end{array}\right)$ N.m
4. There are three moving frames A, B, and C . At a certain time instant, they are at:

$$
{ }^{A} T_{B}=\left(\begin{array}{cccc}
0.866 & -0.5 & 0 & 10 \\
0.5 & 0.866 & 0 & 0 \\
0 & 0 & 1 & 5 \\
0 & 0 & 0 & 1
\end{array}\right), \quad{ }^{B} T_{C}=\left(\begin{array}{cccc}
-1 & 0 & 0 & 3 \\
0 & 0 & -1 & 4 \\
0 & -1 & 0 & 5 \\
0 & 0 & 0 & 1
\end{array}\right) ;
$$

and are moving with the following generalized velocity vectors (the first three components represent the translational velocity while the last three components represent the angular velocity):

$$
{ }^{A} V_{B}=\left(\begin{array}{c}
0.0 \\
2.0 \\
-3.0 \\
1.414 \\
1.414 \\
0.0
\end{array}\right) \quad ; \quad{ }^{B} V_{C}=\left(\begin{array}{c}
1.0 \\
4.0 \\
-5.0 \\
0.5 \\
1.0 \\
2.0
\end{array}\right)
$$

Find the generalized velocity ${ }^{A} V_{C}$ of Frame C as seen from Frame A.
Ans: ${ }^{A} V_{C}=\left(\begin{array}{c}5.936 \\ -1.106 \\ -1.826 \\ 1.347 \\ 2.53 \\ 2\end{array}\right)$

