CHAPTER 2

Robot Kinematics of Position

Learning Objectives

- Given a robot, derive a kinematic (analytical and geometric) model of the robot
 - Assign frames (why?)
 - Derive equations relating relative position and orientation of frames (forward and inverse equations)
 - So we know the relative position and orientation of any link with respect to any other link (including the "world", base or ref)

Robotic Manipulator

Chain of rigid bodies connected by joints

Robot Joints

Two Basic Types:

Degrees-of-Freedom

In robotics,

DOF = number of independently driven joints

As DOF positioning accuracy computational complexity cost flexibility power transmission is more difficult

3D World Space:

m parameters6 independent parameters

To completely specify: $m \ge 6$

Joint Space:

n DOF

Operational/Task Space:

 $m_k < m$ and $m_k < 6$: subset of end-effector parameters to accomplish the task

Robot Kinematic Modeling

- Relative position and orientation of all links
- Assign frames to each link
- How many parameters are needed, in general, to describe relative position and orientation of 2 bodies?
 - 6?
 - Can we make it less?

Denavit Hartenberg Representation

- Link moves with respect to an adjacent (previous) link
- Assign frames to each link (including first [non-moving] link)
- Two rules for assigning frames to each link
 - Z axis is the axis of motion (Link i moves around or along Z_{i-1})
 - X axis is the common normal of its z axis (Z_i) and z axis of previous link (Z_{i-1})

Step 1: Number joints and links

- N joints, N moving links + 1 fixed link (base)
 - Link O to Link N
 - Joint 1 to Joint N
- Joint i connects Links i and i-1
 - no joint at the end of the final link (endeffector)
- Each joint provides only 1 degree-offreedom
 - Rotation, or
 - Translation

Step 2: Assign Coordinate Frames to Each Link

Assign a Cartesian coordinate frame $(O_i; x_i, y_i, z_i)$ to each link (link i), as follows:

- the z_i axis is directed along the axis of motion of joint (i + 1), that is, link (i + 1) rotates about or translates along z_i ;
- the x_i axis lies along the common normal from the z_{i-1} axis to the z_i axis.
 - if z_{i-1} is parallel to z_i ,
 - then x_i is specified arbitrarily, subject only to x_i being perpendicular to z_i (Cartesian Coordinate Frame)
- the y_i axis completes the right-handed coordinate system

Step 2: First and Last Links

- · Link O (Frame O) fixed base of robot
 - Z_0 axis has meaning link 1 joint axis 1^{st} axis of motion
 - X_0 and Y_0 arbitrarily specified to have some physical meaning (e.g, front, back)
- Link N (Frame N) end-effector (or "hand") last link
 - Z_N axis arbitrarily specified to have some physical meaning (e.g., pointing direction)
 - X_N axis specified following Denavit-Hartenberg rule (common normal between Z and previous Z)
 - Y_N axis completes the cartesian frame (right hand rule)

the z_i axis is directed along the axis of motion of joint (i + 1), that is, link (i + 1) rotates about or translates along z_i ;

the x_i axis lies along the common normal from the z_{i-1} axis to the z_i axis

if z_{i-1} is parallel to z_i , then x_i is specified arbitrarily, subject only to x_i being perpendicular to z_i

Step 3: Define Joint Coordinates (Joint Variables)

- · 91
- If joint i is rotational (link i rotating with respect to link i-1)
 - q_i is the angular displacement with respect to link i-1
- If joint i is translational (link i translating with respect to link i-1)
 - q_i is the linear displacement with respect to link i-1

The N-dimensional space defined by the joint coordinates $(q_1,...,q_N)$ is called the configuration space of the N DOF mechanism.

Step 4: Identify the Link Kinematic Parameters

In general, four elementary transformations are required to relate the i-th coordinate frame to the (i-1)-th coordinate frame:

- Rotate an angle of θ_i (in the right-handed sense) about the z_{i-1} axis, so that the x_{i-1} axis is parallel to the x_i axis.
- Translate a distance of r_i along the positive direction of the z_{i-1} axis, to align the x_{i-1} axis with the x_i axis.

Step 4: Identify the Link Kinematic Parameters

- Translate a distance of d_i along the positive direction of the $x_{i-1} = x_i$ axis, to coalesce the origins O_{i-1} and O_i .
- Rotate an angle of α_i (in the right-handed sense) about the $x_{i-1} = x_i$ axis, to coalesce the two coordinate systems.

The *i*-th coordinate frame is therefore characterized by the four D-H kinematic link parameters θ_i , r_i , d_i and α_i .

The 4 Elementary Motions

Rotate an angle of θi (in the right-handed sense) about the zi-1 axis, so that the xi-1 axis is parallel to the xi axis.

Translate a distance of ri along the positive direction of the zi-1 axis, to align the xi-1 axis with the xi axis.

Translate a distance of di along the positive direction of the xi-1 = xi axis, to coalesce the origins Oi-1 and Oi.

Rotate an angle of αi (in the right-handed sense) about the xi-1 = xi axis, to coalesce the two coordinate systems.

Step 4: Link Kinematic Parameters: θi , ri, di, αi

If joint *i* is rotational, then $q_i = \theta_i$, and α_i , d_i and r_i are constant parameters which depend upon the geometric properties and configuration of link *i*. (Step 3)

If joint *i* is translational, then $q_i = r_i$, and d_i , α_i and θ_i are constant parameters which depend upon the configuration of link *i*. (Step 3)

For both rotational and translational joints, r_i and θ_i are the distance and angle between links (i-1) and i; d_i and α_i are the length and twist of link i.

Step 5: Define Link Transformation Matrices

The position and orientation of the i-th coordinate frame can be expressed in the (i-1)-th coordinate frame by the following homogeneous transformation matrix:

$$^{i-1}T_i = A_i = Rot(z, \theta) Trans(0, 0, r_i) Trans(d_i, 0, 0) Rot(x, \alpha)$$

$$A_{i}(q_{i}) = {}^{i-1}T_{i} = \begin{pmatrix} \cos\theta_{i} & -\cos\alpha_{i}\sin\theta_{i} & \sin\alpha_{i}\sin\theta_{i} & d_{i}\cos\theta_{i} \\ \sin\theta_{i} & \cos\alpha_{i}\cos\theta_{i} & -\sin\alpha_{i}\cos\theta_{i} & d_{i}\sin\theta_{i} \\ 0 & \sin\alpha_{i} & \cos\alpha_{i} & r_{i} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

© Marcelo H. Ang Jr, 28 Aug 2017

Step 6: Compute the Forward Transformation Matrix

The position and orientation of the end-effector coordinate frame is expressed in the base coordinate frame by the forward transformation matrix:

$${}^{0}T_{N}(q_{1}, q_{2}, ..., q_{N}) = {}^{0}T_{N} = A_{1}A_{2}...A_{N} = \begin{pmatrix} n_{x} & s_{x} & a_{x} & p_{x} \\ n_{y} & s_{y} & a_{y} & p_{y} \\ n_{z} & s_{z} & a_{z} & p_{z} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
Position of any frame (link) with respect to any other frame (link) can be computed: ${}^{j}T_{i}$ $i, j = 1....N$

Robot Kinematic Modeling

EXAMPLE 1: The Puma Robot

Frames 0 to 1

Frames 1 to 2

Lin

Frames 2 to 3

Frames 3 to 4, to 5, to 6

Robot Kinematic Modeling

EXAMPLE 2: The Stanford Arm

Link Coordinate Systems:

$$r_2 = 16.2cm$$

$$r_6 = 24.7cm$$

© Marcelo H. Ang Jr, Aug:

28

Forward Kinematic Problem

Forward Kinematic Problem

- 1. Assign Cartesian Coordinate frames to each link (including the base ϕ & end-effector N)
- 2. Identify the joint variables and link kinematic parameters
- 3. Define the link transformation matrices. $^{i-1}T_i = A_i$
- 4. Compute the forward transformation $\begin{pmatrix} n_x & o_x & a_x & p_x \end{pmatrix}$ ${}^{0}T_{N}(q_{1}, q_{2},..., q_{N}) = A_{1}A_{2}A_{3}...A_{N} = \begin{bmatrix} n_{y} & o_{y} & a_{y} & p_{y} \\ n_{z} & o_{z} & a_{z} & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Inverse Kinematic Problem

Given: Position & Orientation of END-EFFECTOR

Find: joint coordinates

$$^{0}T_{N} \longrightarrow q_{1}, q_{2}, q_{3}, \dots, q_{N}$$

12 equations in N unknowns

Need to solve at most six independent equations in N unknowns.

Inverse Kinematic Problem

ISSUES

- Existence of solutions
 - Workspace
 - Dextrous Workspace
 - Less than 6 joints
 - Joint limits (practical)
- Multiple solutions
 - Criteria
 Solvability closed form numerical Geometric
 - number of solutions

= 16
$$\underline{d_i}$$
, $\underline{r_i} \neq 0$ for six points

Solution To Inverse Kinematics

$${}^{0}T_{N} = {}^{0}T_{1}{}^{1}T_{2}{}^{2}T_{3}...{}^{N-1}T_{N} = A_{1}A_{2}A_{3}...A_{N}$$

Given:
$${}^{0}T_{N} = \begin{bmatrix} n_{x} & o_{x} & a_{x} & p_{x} \\ n_{y} & o_{y} & a_{y} & p_{y} \\ n_{z} & o_{z} & a_{z} & p_{z} \\ \phi & \phi & \phi & 1 \end{bmatrix}$$

Given:
$${}^{0}T_{N} = \begin{bmatrix} n_{x} & o_{x} & a_{x} & p_{x} \\ n_{y} & o_{y} & a_{y} & p_{y} \\ n_{z} & o_{z} & a_{z} & p_{z} \\ \phi & \phi & \phi & 1 \end{bmatrix} \qquad Ai = \begin{bmatrix} c\theta_{i} & -c\alpha_{i}s\theta_{i} & s\alpha_{i}s\theta_{i} & d_{i}c\theta_{i} \\ s\theta_{i} & c\alpha_{i}c\theta_{i} & -s\alpha_{i}c\theta_{i} & d_{i}s\theta_{i} \\ \phi & s\alpha_{i} & c\alpha_{i} & r_{i} \\ \phi & \phi & \phi & 1 \end{bmatrix}$$

Find:
$$q = q_1, q_2, q_3, ..., q_N$$

(joint coordinates)

Solution To Inverse Kinematics

$$\begin{bmatrix} n_{x} & o_{x} & a_{x} & p_{x} \\ n_{y} & o_{y} & a_{y} & p_{y} \\ n_{z} & o_{z} & a_{z} & p_{z} \\ \phi & \phi & \phi & 1 \end{bmatrix} = A_{1}A_{2}A_{3}...A_{N}$$

N unknowns

LHS(i,j) = RHS(i,j)

column

row
$$j = 1, 2, 3, 4$$
 $i = 1, 2, 3$

Solution To Inverse Kinematics Problem

General Approach: Isolate one joint variable at a time

$$A_1^{-1} {}^{0}T_N = A_2 A_3 ... A_N = {}^{1}T_N$$
function of q_1 function of $q_2, ..., q_N$

- Look for constant elements in ${}^{1}T_{N}$
- Equate LHS(i,j) = RHS(i,j)
- Solve for q₁

Solution To Inverse Kinematics Problem

$$A_2^{-1}A_1^{-10}T_N = A_3...A_N = {}^2T_N$$
function of $q_3, ..., q_N$
function of q_1, q_2
only one unknown q_2 since q_1 has been solved for

- Look for constant elements of ²T_N
- Equate LHS(i,j) = RHS(i,j)
- Solve for q₂
- Maybe can find equation involving q₁ only

Note:

- There is no algorithmic approach that is 100% effective
- Geometric intuition is required

Analytic Solution To Inverse Kinematics

There are Two Classes of Robot Geometries for which closed-form inverse kinematic solutions are guaranteed. They are:

- 1. Robots with any 3 joints TRANSLATIONAL
- 2. Robots with any 3 rotational joint axes co-intersecting at a common point

These are DECOUPLED ROBOT GEOMETRIES

• can reduce system to a lower order subsystem (i.e. 3rd-order) for which closed form solutions are guaranteed

Case 1:
$$\sin\theta = a$$
 $\theta = a$ $\theta = ATAN2(a, b)$ unique $\cos\theta = b$ $\theta = ATAN2(a, b)$ unique

Case 2:
$$\sin\theta = a$$
 $a \in [-1,1]$ $\theta = ATAN2(a, \pm \frac{1}{1 - a^2})$ $\cos\theta = \pm \frac{1}{1 - a^2}$ 2 solutions $\frac{1}{1 - a^2}$

$$\cos\theta = b \qquad b \in [-1,1]$$

$$\sin\theta = \pm \sqrt{1 - b^2}$$

→ degeneracy of order 2

"boundary" singularity₃₉

Case 3:
$$a\cos\theta + b\sin\theta = 0 \rightarrow \theta = ATAN2(a, -b)$$
 or ATAN2(-a, b) 2 solutions, 180° apart Singularity when $a = b = 0$

→ infinite order degeneracy

Case 4:
$$a\cos\theta + b\sin\theta = c$$
 a, b, $c \neq 0$ 2 solutions $\theta = ATAN2(b, a) + ATAN2(\pm \sqrt{a^2 + b^2 - c^2}, c)$

 ≥ 0 For solution to exist

$$a^2 + b^2 + c^2 < 0 \rightarrow \text{outside workspace}$$

 $a^2 + b^2 + c^2 = 0 \rightarrow 1 \text{ solution (singularity)}$
degeneracy of order 2

Case 5:
$$\sin\theta \sin\phi = a$$

 $\cos\theta \sin\phi = b$

Note that once ϕ is known, θ is unique

$$\theta = ATAN2(a, b)$$
 if $sin\phi$ is \oplus positive $\theta = ATAN2(-a, -b)$ if $sin\phi$ is \ominus negative

If $\cos \phi = c \rightarrow \phi = ATAN2(\pm \sqrt{a^2 + b^2}, c)$ (2 solutions for ϕ) Then 2 solutions:

$$\theta = \text{ATAN2}(a, b) \qquad \theta = \text{ATAN2}(-a, -b)$$

$$\phi = \text{ATAN2}(\sqrt{a^2 + b^2}, c) \qquad \phi = \text{ATAN2}(-\sqrt{a^2 + b^2})$$
Singularity: $a = b = 0 \quad |c| = 1$

$$\theta = \text{undefined} \quad \phi = 1 \text{ solution}$$

Case 6:
$$a\cos\theta - b\sin\theta = c$$
 (1)
 $a\sin\theta + b\cos\theta = d$ (2)

Then
$$\theta = ATAN2(ad - bc, ac + bd)$$

1 solution

Note that for (1) & (2) to be satisfied, or at (1) & (2), we have

$$a^2 + b^2 = c^2 + d^2$$

"Finding a <u>subset of joints</u> primarily responsible for the completion of a <u>subset of the manipulator task</u>"

Given a Total Task: Involves the identification of:

- decoupled task (subsets of tasks)
- decoupled robot subsystem responsible for the decoupled task

Decoupled Robot Geometry – refers to a manipulator Geometry for which decoupling is guaranteed

Decoupled Robot Geometries: (6-axes)

1. Any Three (3) Translational Joints

- Pieper, 1968
- 2. Any Three Co-Intersecting Rotational Axes
- 3. Any 2 Transl. Joints Normal to a Rot. Joint
- Ang, 1992

- 4. Transl. Joint Normal to 2 Parallel Joints
- 5. Any 3 Rot, Joints Parallel

V.D. Tourassis and M.H. Ang Jr., "Task Decoupling in Robot Manipulators," Journal of Intelligent and Robotic Systems 14:283-302, 1995. (Technical Report in 1992).

Robots with Spherical Wrists is a popular decoupled robot geometry

3 wrist axes co-intersecting at

a common point

For robots that do not have decoupled geometries, a closed Form solution may not exist, → one has to resort to numerical and iterative procedures.

Numerical Solutions

- m equations in n unknowns (usually $m \le n$)
- start with an initial estimate for the n unknowns
- compute the error caused by this inaccurate estimate

 $^{D}T_{N} = (T_{D})^{-1}T_{N} = position \& orientation of end-effector$ frame with respect to origin of target frame \rightarrow indication of error

$$r_x \; r_y \; r_z \; \; r_\varphi \; r_\theta \; r_\phi$$

· modify estimate to reduce error

Numerical Solutions

Three important requirements for the numerical algorithm are:

- i. a priori conditions for convergence
- ii. insensitivity to initial estimates
- iii. provision for multiple solutions
- The most common methods are based on the Newton-Raphson approach.
 - usually good if initial estimate is close to correct solution (practical?)

Ref: A.A.Goldenberg, B. Benhabib, & R.G.Fenton, "A Complete Generalized Solution to the Inverse Kinematics of Robots" IEEE Journal of Rob. & Auto. 1(1): March 1985, pp. 14-20.