
© Marcelo H. Ang Jr., 4 Sept 2017
1

CHAPTER 3

Rigid Body Motion and
Robot Kinematics of Velocity

Relative Velocities between
Rigid Bodies

© Marcelo H. Ang Jr., 4 Sept 2017
2

1. Understand and Relate time derivatives of
position and orientation representations with
translational and angular velocities.

2. Transform velocities in different spaces
3. Relate joint velocities with end-effector

velocities
4. Understand robot singularities (limitations of

robot motion)
5. Use velocity relationships to command motion

of robots (resolved rate motion control)

Learning Objectives

© Marcelo H. Ang Jr., 4 Sept 2017
3

Translational Velocities
AuB  3x1 = translational velocity of frame B

(i.e., origin of frame B) relative of
frame A

 t
(t)- t) (t

0 t
lim

dt
d





 B

A
B

A

B
A

B
A pp

pu

“frame of differentiation” is A (how fast is B moving
with respect to A)

Velocity, like any vector may be expressed in another
frame, say W

W AW
B A Bu u

A
R

Does not depend on
origins of Frames A and
WIf missing, A = W

© Marcelo H. Ang Jr., 4 Sept 2017
4

Rotational Velocities
AB

{B}

{A}

At a certain instant, frame B has an
orientation ARB and its rotational motion
may be represented by the rotational
(angular) velocity vector
AB  3x1 unit vector along AB

= instantaneous = AkB
axis of rotation

magnitude of AB
= speed of rotation

AB is related to
 t

(t)- t (t
 0 t

lim

dt
d





 B

A
B

A

B
A

B
A R)R

RR
•

© Marcelo H. Ang Jr., 4 Sept 2017
5

Angular velocity Time Derivative
of Rotation Matrix

sinmag x 




X

Direction = along plane
normal to both  and x

x x 
X = vector
rotating about 

X can be one of the Cartesian
axes, in a body that is rotating

© Marcelo H. Ang Jr., 4 Sept 2017
6

Time derivative of rotation matrix

ˆ
ˆ
ˆ

x x x
y y y
z z z

 
 
 

  
  
  







z y

z

y

ˆ cross product operator

0
0

0
x

x



 
 
 



 
 

 
  

A skew symmetric
matrix

3 x 3 matrix version of 3 x 1 vector
Cross product equivalent

© Marcelo H. Ang Jr., 4 Sept 2017
7

Skew Symmetric Matrix as a Cross
Product Operator

z y x

z x y

y x z

 0 -
ˆLet 0 - and

- 0

  
    

  

   
       
     

Then
p =  x p
where p  3x1 vector

̂
Allows consistent
treatment of cross-
product as a matrix
vector product

© Marcelo H. Ang Jr., 4 Sept 2017
8

   ˆ

ˆ ˆT

x y z x y z

R R RR



 



  

  

 

Combining the three equations:
Time derivatives of
Unit vectors

Time derivative
of rotation
matrix

ˆ
ˆ
ˆ

x x x
y y y
z z z

 
 
 

  
  
  







z y x

z x y

y x z

 0 -
ˆLet 0 - and

- 0

  
    

  

   
       
     

© Marcelo H. Ang Jr., 4 Sept 2017
9

Angular Velocity Vector

• 3 x 1 vector
– Magnitude = speed

of rotation
– Direction = axis of

rotation

x

y

z

k
k
k

 
 
   
 
 



© Marcelo H. Ang Jr., 4 Sept 2017
10

Orientation Error

• 3 x 1 representation like position error
• Is there a meaning to “x, y, z”?
• One interpretation:

– Roll, Pitch, Yaw
• Another interpreation =  Rotation Matrix

–  x x x

y y y

z z z

n o a
n o a
n o a

 
 
 
 
 

3 x 3
Can it be reduced to 3 x 1?

© Marcelo H. Ang Jr., 4 Sept 2017
11

Orientation Error
• Angular velocity – measure of instantaneous 3 x 1

orientation error
• Allows the relationship between

R  

   ˆ ˆR R x y z x y z      

R R

 

 


 

© Marcelo H. Ang Jr., 4 Sept 2017
12

Angular Velocites and
Time Derivates of Roll, Pitch, Yaw

AB

ARB = Rot (z, ) Rot (y, ) Rot (x, )

, ,    

R P Yx 

© Marcelo H. Ang Jr., 4 Sept 2017
13

Roll Pitch Yaw Rates &
Angular Velocities

RPY RPYE x  

ARB = Rot (z, ) Rot (y, ) Rot (x, )
0 0 1

 0 Rot (z,) 1 θ Rot (z,) Rot (y, θ) 0
1 0 0

    
     
            
     
     

  

0 -sin cos cosθ
 0 cos sin cosθ θ

1 0 -sin

 
  

 

  
     
  

   







ERPY

1but may not existRPYE 

Mathematical singularities

© Marcelo H. Ang Jr., 4 Sept 2017
14

Roll Pitch Yaw Ratio &
Angular Velocities

R P Y

cos s in sin sin 1
cosθ cosθ

x -s in co s 0
co s sin 0
cosθ cosθ

   

  
 

 
 
 

  
 
 
 



If cos = 0, matrix does not exist
Math. Singularity

 xr not always possible
Not all possible angular matrix can be represented

This is a problem with 3 parameter representations for
orientation

•

© Marcelo H. Ang Jr., 4 Sept 2017
15

Rotational Velocities

As with any vector, the rotational velocity vector
may be expressed in another frame C:

C AC
B A B

A A
B B B

 R

the equivalent matrix product representation is:
ˆ ˆ ˆC C C T C A

A A A CR R R R

 

  



 

A
B

Verify yourself!

3 x 3 times 3 x 1 vector

3x3 equivalent
of 3 x 1 vector

3x3 equivalent
of 3 x 1 vector

© Marcelo H. Ang Jr., 4 Sept 2017
16

Homogeneous
Transformation Matrix

A A A
A B B B

B

ˆ R U
T

 0 0
 

  
 

•

Time derivative of 4 x 4
homogeneous
transformation matrix

A
B  Angular velocity

Translational
velocity

AB

{B}

{A}

A
BU

© Marcelo H. Ang Jr., 4 Sept 2017
17

Simultaneous Rotational &
Translational Velocities

Given: Frames A, B & C

{A}

{B}

{C}

{B} & {C} in motion
with respect to {A}

Find: Relationships between velocities
ATC = ATB

BTC
Differentiate with
respect to time

© Marcelo H. Ang Jr., 4 Sept 2017
18

© Marcelo H. Ang Jr., 4 Sept 2017
19

© Marcelo H. Ang Jr., 4 Sept 2017
20

Summary: Simultaneous
Rotational & Translational

Velocities

 
 
 

ˆ

A A A B A A A
C B B C B C B

A B A A A
B B C B C B

A B A A B
B B C B B C

A A A B
C B B C

u u R u P P

u R u P P

u R u R P

R







  

   

    

   

 

© Marcelo H. Ang Jr., 4 Sept 2017
21

Computation Of
End-Effector Velocity

(6x1)
N

N
N

u
v f (q, q)


 

  
 



joint position
joint velocities

© Marcelo H. Ang Jr., 4 Sept 2017
22

Computation Of
End-Effector Velocity

Let us examine the contribution of the ith joint motion to
end-effector velocity. We set all other joint velocities  :
qi  0 q1 = q2 = … = qi-1 = qi+1 = …qN = 
so motion is occurring with respect to zi-1 axis
For joint i rotational

i = zi-1 qi
ui = i x Ri-1

i-1pN = zi-1 qi x (pN – pi-1)
= zi-1 x (pN – pi-1) qi

Note that oi-1 has no translational velocity

origin of frame i-1 which contains zi-1
since joint is rotational

••••

•

•

•
•

•

© Marcelo H. Ang Jr., 4 Sept 2017
23

Computation Of
End-Effector Velocity

N

i
N i 1

N N
N

i
i 1

u
u

v








 
         
 
 





For a translational joint i,
i = 0
ui = zi-1 qi

The total velocity of the end-effector during coordinated
motion is the superposition of all the elementary velocities
that represent single joint motion:

•

© Marcelo H. Ang Jr., 4 Sept 2017
24

Computation Of
End-Effector Velocity























N

2

1

N321

q

q
q

) J ... J J J (Nv
6x1

6xN J(q)

Column Ji represents motion contribution of joint i

J(q) = Jacobian matrix
Cartesian  joint space

•

•

•

© Marcelo H. Ang Jr., 4 Sept 2017
25

Computation Of
End-Effector Velocity

For a translational joint i











0
z

 1-i
iJ

For a rotational joint i








 


1-i

1-iN1-i

z
) p - p (z

 iJ

© Marcelo H. Ang Jr., 4 Sept 2017
26

© Marcelo H. Ang Jr., 4 Sept 2017
27

Jacobian Transformations

A BA
N NBA

N A A B
N B N

u uR 0
v

 0 R 

    
             

J BvN

• Velocities expressed in different frames

AvN  BvN

For ARB and ApB constants

N = End Effector
B = may be a link coord

frame that is held
instantaneously constant

© Marcelo H. Ang Jr., 4 Sept 2017
28

Jacobian Transformations
• Diff pts on End-Effector

For BRN and BpN constants
B & N are attached to a rigid body moving
with respect to A:

{A}
{B}

{N}

N =

B =

Two Frames
Attached to
End-Effector

© Marcelo H. Ang Jr., 4 Sept 2017
29

Jacobian Transformations

AuN = AuB + ABx (ApN – ApB)

AN = AB

A AA A
N BA N B

N A A
N B

u uI -(p - p)
v

0 I 

    
            

another J

© Marcelo H. Ang Jr., 4 Sept 2017
30

Robot Kinematics of Velocity

• 0
R(J)

N(J)

R(J) = Range Space
of J

= or column
space of J

q  n

Joint Space
x  m

End-Effector Space

N(J) = Null space
of J

q produces no
motion x

© Marcelo H. Ang Jr., 4 Sept 2017
31

Inverse Kinematics of Velocity

General solution exists if & only if Rank J0 = min(m0, n)

First: Convert x to x0  Rmo(velocity, basic kinematic
model)

x0 = J0 c (0vN = J0 q)

Rmo Rn m0  6

• •

© Marcelo H. Ang Jr., 4 Sept 2017
32

Inverse Kinematics of Velocity

Case 1: m0 = n  6
J#(q) = J-1 (possible problem with singularity,

J-1 may not exist)

Case 2: m0 > n, m0  6 (not interesting/useful case,
task shall be  n)

over-determined system: more eqns than unknowns.
J# = (JT J)-1 JT = left pseudo inverse

= exists only if Rank J = n
Sol’n minimizes || Jq - x0 ||2

© Marcelo H. Ang Jr., 4 Sept 2017
33

Inverse Kinematics of Velocity

Case 3: m0 < n, m0  6 (Redundant Robots)
underdetermined system = less eqns than unknowns
J# = JT (J JT)-1 = right pseudo inverse

= exists only if Rank J = m0
Sol’n minimizes || q ||2

© Marcelo H. Ang Jr., 4 Sept 2017
34

Manipulator Singularities

• Joint configuration (set of joint positions)
where the Jacobian is not full-rank

• Determinant of JJT = 0, or Det(JTJ) = 0
• There are no joint motions to achieve the

end-effector motion when the robot is at a
singular configuration

© Marcelo H. Ang Jr., 4 Sept 2017
35

Determining Manipulator
Singularities

• J is m x n in general, with n  m
– Number of joints (n) must at least equal the

number of task degrees of freedom (m)
– Can have more joints needed to accomplish the

task (Redundant robots)
• Determinant (J JT) is equal zero at

singularities; or
• There is no subset of joints (m joints) that

can do the m-DOF task.

© Marcelo H. Ang Jr., 4 Sept 2017
36

Resolved Motion Rate Control

– Kinematic Control without the need for solving the
inverse Kinematics of Position

– Need Joint level control which is available in robot
controllers

– Command joint motion such that desired e-e motion
is achieved

q x

© Marcelo H. Ang Jr., 4 Sept 2017
37

Resolved Motion Rate Control
1) Given a Trajectory x(t)  Rm in task space

initial
position

final position
i

f

2) Divide Trajectory into small segments according to
sample time on reference Trajectory update rate

3) At xk, compute J(qk)

© Marcelo H. Ang Jr., 4 Sept 2017
38

Resolved Motion Rate Control

4) Compute xk = xk+1 – xk (position and orientation error)

5) Convert orientation error into 3 x 1 vector (d)

6) Compute q = J#(qk)  x0, k

7) Command q to robot controller
(Robot moves from qk to qk+1) (q = qk+1 – qk)

8) Go to step 3 until xk reaches xf

