CHAPTER 3

Rigid Body Motion and
Robot Kinematics of Velocity

Il

Relative Velocities between
Rigid Bodies

© Marcelo H. Ang Jr., 4 Sept 2017

Learning Objectives

1. Understand and Relate time derivatives of
position and orientation representations with
translational and angular velocities.

Transform velocities 1n different spaces
3. Relate joint velocities with end-effector
velocities

4. Understand robot singularities (limitations of
robot motion)

5. Use velocity relationships to command motion
of robots (resolved rate motion control)

© Marcelo H. Ang Jr., 4 Sept 2017

Translational Velocities

Aug € R3X! = translational velocity of frame B
(1.e., origin of frame B) relative of

frame A
ru =9 lim “py(t+At)- *pg(t)
"0 PP A0 At
S “frame of differentiation” 1s A (how fast 1s B moving
with respect to A)
Velocity, like any vector may be expressed in another
frame, say W W Wim A Does not depend on

Ug= Iy Ug origins of Frames A and

If missing, A=W «— A
mlssmg W

© Marcelo H. Ang Jr., 4 Sept 2017

Rotational Velocities

s> At a certain instant, frame B has an
orientation ARy and its rotational motion
may be represented by the rotational

(angular) velocity vector
Apg € R unit vector along 2wy {B}

= instantaneous = Akg

ax1s of rotation
magnitude of Awg N
= speed of rotation
. lim AR, (t+A1)- *Ry(t)

<™ Awyg is related to EtARB =R, = A 30 v

A(OB

4
© Marcelo H. Ang Jr., 4 Sept 2017

Angular velocity (= Time Derivative
of Rotation Matrix

) X can be one of the Cartesian

<> axes, 1n a body that 1s rotating

\ .
\ mag :‘a)HX‘smé’
@/ X

Direction = along plane
normal to both ® and x

X = vector

rotating about ® X = () X X

© Marcelo H. Ang Jr., 4 Sept 2017

Time derivative of rotation matrix

y » D= duct operator
X — X X = X ® = Cross pro D
Q) Q))

0 - a)y\
y=wxy=q@y |o 0 o
o, o, 0)

A skew symmetric
matrix

7=wWX1=wl /

3 x 3 matrix version of 3 x 1 vector
Cross product equivalent

© Marcelo H. Ang Jr., 4 Sept 2017

Skew Symmetric Matrix as a Cross
Product Operator

0 -0, o, o,
Let o = | o, 0 -0, |ando = |o,
-0, 0, 0 o,

Then .
Allows consistent

Wp-w0XxXp treatment of cross-
where p € R3*! vector :
P product as a matrix

vector product

© Marcelo H. Ang Jr., 4 Sept 2017

X = @wX X=X

Combining the three equations:

Time derivatives of y = () X y — C?)y

Unit iect<\ I =wWX1=wl
(x vy 2)=a(x y z)
R=dR < RR' =0

Time derivative "0 -] |
. z y x
of rotation .
. o = @, 0 -~y and @ = @
matrix ’
-0, o, 0 @,

© Marcelo H. Ang Jr., 4 Sept 2017

Angular Velocity Vector

e 3 x 1 vector
(k A — Magnitude = speed
X)
. of rotation
Q) = ky 6 — Direction = axis of
rotation

\kz} [, ‘
=\ /&ié{e\
| b

© Marcelo H. Ang Jr., 4 Sept 2017

Orientation Error

* 3 x I representation like position error
* Is there a meaning to “Ax, Ay, Az”?

* One interpretation:
— ARoll, APitch, AYaw

* Another interpreation = A Rotation Matrix

n Qo a
_A{moyayJ 3 x 3

n o a .
Can 1t be reducedto 3 x 1?

© Marcelo H. Ang Jr., 4 Sept 2017

Orientation Error

* Angular velocity — measure of instantaneous 3 x 1
orientation error

* Allows the relationship between

AR <:>ACD'”¢’ AR = [
2N ¥\ JA% AR — J‘R

R=dR—>(x y 2)=a(x y z)
N

A\O\\‘fY /Cj Wt b%
S

Ad)l = At‘Y

\Uﬂs B A‘I’«) ZS% Y

11

© Marcelo H. Ang Jr., 4 Sept 2017

Angular Velocites and
Time Derivates of Roll, Pitch, Yaw

ARz =Rot (z, ¢) Rot (y, 0) Rot (x, @)
Ampg) ¢,9,¢

XRPY

12
© Marcelo H. Ang Jr., 4 Sept 2017

Roll Pitch Yaw Rates &

Angular Velocities
ARz =Rot (z, ¢) Rot (y, 0) Rot (x, @)

) (0) 1)
w=|0|¢ + Rot(z@)|1]06 + Rot(z¢)Rot(y,0)|0]| ¢

Ny Y Y

(0 -sing cos¢ cosO) /¢.\
w = |0 COS sin¢g coso 8 _ '

7 ¢ | @ = Egpy Xgpy
X 0 -sinf) &
— _
~

but E,, ' may not exist

Egrpy Mathematical singularities .
© Marcelo H. Ang Jr., 4 Sept 2017

Roll Pitch Yaw Ratio &
Angular Velocities

(cos¢@ sin@ sin g sin 6
cost cost
X ppy -sin ¢ COS ¢ 0
COS @ sin @ 0
. cos0 cost
— g _

If cosO = 0, matrix does not exist
— Math. Singularity
® — X, not always possible
Not all possible angular matrix can be represented
This 1s a problem with 3 parameter representations for
orientation 14

© Marcelo H. Ang Jr., 4 Sept 2017

Rotational Velocities

As with any vector, the rotational velocity vector @

may be expressed in another frame C:

CQ)B — CRA AQ)B 3x3 times 3 x 1 vector

the equivalent matrix product representation 1s:

C%")B:CRA a)BCRT CRAAQ;)BARC

3x3 equivalent 3x3 equivalent
of 3 x 1 vector of 3 x 1 vector

Verity yourself! 15

© Marcelo H. Ang Jr., 4 Sept 2017

Homogeneous

A
®p . .
Transformation Matrix

Translational
velocity

B
] = G
P AR

Time derivative of 4 x 4
homo geneous A Angular Velocity
transformation matrix 0%3

16
© Marcelo H. Ang Jr., 4 Sept 2017

Simultaneous Rotational &
Translational Velocities

Given: Frames A, B & C

{B} & {C} in motion

with respect to {A}
&

Find: Relationships between velocities
e =Ty "Tc . . .
Differentiate with
respect to time 7

© Marcelo H. Ang Jr., 4 Sept 2017

\/W/ 18

A \
© Marcelo H. Ang Jr., 4 Sept 2017 ﬂ C

b Wy B A Q
A('\)(' ol kvs LJ(' KF\ + 8
Ivl

(m Ak 1S W\

© Marcelo H. Ang Jr., 4 Sept 2017

19

Summary: Simultaneous
Rotational & Translational
Velocities

"Ue = "Ug + "Ry PU + " (P, — APy)
B Ap B A A A
= Uy + "Ry PUg + "o x(P, — *P;)
= Uy + "Ry ®Ug + "a ("R, °F;)

A A Ap B

© Marcelo H. Ang Jr., 4 Sept 2017

20

oM

Computation Of

End-Eftector Velocity

(6x1) Vn = (Z)Nj = 1(q,9)

t
L joint position

joint velocities

Computation Of
End-Eftector Velocity

Let us examine the contribution of the 1th joint motion to
end-effector velocity. We set all other joint velocities ¢ :

q; =0 4=~ =G = Qi = - .qn= ¢
so motion 1S occurring with respect to z, , axis
For joint 1 rotational
®; = Z;y G
u; = ;X Ry "'py =2, §; X (Py— Pt)
=Z 1 X (Px— Pia) 4;
Note that o, ; has no translational velocity

7

origin of frame 1-1 which contains z, ,
since joint 1s rotational

© Marcelo H. Ang Jr., 4 Sept 2017

22

Computation Of
End-Eftector Velocity

For a translational joint 1,

®; =0

u; = 74 q
The total velocity of the end-effector during coordinated
motion 1s the superposition of all the elementary velocities
that represent single joint motion:

uN 1=1

© Marcelo H. Ang Jr., 4 Sept 2017

N
T Zui
N

1=1

Q).

1

23

Computation Of
End-Eftector Velocity

:)
6x1 (C“l
4 d,
vio=(J 1, 1, .. T)
\ 4
Y ([J
6xNJ(q) \dn/

Column J. represents motion contribution of joint 1

J(q) = Jacobian matrix
Cartesian <> joint space

© Marcelo H. Ang Jr., 4 Sept 2017

Computation Of
End-Eftector Velocity

For a translational joint 1

J __Zi-l_
Y10

For a rotational joint 1

Zi-l X(Py - Di)

Z;,

J. =

1

© Marcelo H. Ang Jr., 4 Sept 2017

© Marcelo H. Ang Jr., 4 Sept 2017

26

Jacobian Transformations

* Velocities expressed in different frames

N = End Effector
Avy © Bvy B = may be a link coord
frame that 1s held
instantaneously constant

For ARy and Apg constants

27
© Marcelo H. Ang Jr., 4 Sept 2017

Jacobian Transformations

 Diff pts on End-Effector

For BRy and Bpy constants
B & N are attached to a rigid body moving
with respect to A:

_) Two Frames
19 N

>~ Attached to
— | End-Effector
(A} B=_

28
© Marcelo H. Ang Jr., 4 Sept 2017

Jacobian Transformations

another J

29
© Marcelo H. Ang Jr., 4 Sept 2017

Robot Kinematics of Velocity

N(J) = Null space R(J) = Range Space
of J of J
0q — produces no = or column
motion 0x space of J

oq € R" Oox € Rm
Joint Space End-Effector Spac%

© Marcelo H. Ang Jr., 4 Sept 2017

Inverse Kinematics of Velocity

First: Convert 0x to 0x, € R™o(velocity, basic kinematic

model)
0xy = Jy ¢ (""%W=Jdyq)
/)
RmO Rn mo S 6

General solution exists 1f & only 1f Rank J, = min(my, n)

31
© Marcelo H. Ang Jr., 4 Sept 2017

Inverse Kinematics of Velocity

Case I: my=n <6
J*(q) = J1 (possible problem with singularity,
J-1 may not exist)

Case 2: my>n, m,<6 (notinteresting/useful case,
task shall be < n)

over-determined system: more eqns than unknowns.

J# = (JT J)1 JT = left pseudo inverse
= exists only if Rank J =n
Sol’n minimizes || Joq - 0x, ||,

© Marcelo H. Ang Jr., 4 Sept 2017

32

Inverse Kinematics of Velocity

Case 3: my;<n, m,<6 (Redundant Robots)
underdetermined system = less eqns than unknowns
J# = JT (J JT)! = right pseudo inverse
= exists only 1f Rank J = m,
Sol’n minimizes || 8q ||,

33
© Marcelo H. Ang Jr., 4 Sept 2017

Manipulator Singularities

 Joint configuration (set of joint positions)
where the Jacobian 1s not full-rank

e Determinant of JJT =0, or Det(J'J) =0

* There are no joint motions to achieve the
end-effector motion when the robot is at a
singular configuration

© Marcelo H. Ang Jr., 4 Sept 2017

34

Determining Manipulator
Singularities

* J1is m x n 1n general, with n > m

— Number of joints (n) must at least equal the
number of task degrees of freedom (m)

— Can have more joints needed to accomplish the
task (Redundant robots)
e Determinant (J J') is equal zero at
singularities; or
* There 1s no subset of joints (m joints) that
can do the m-DOF task.

© Marcelo H. Ang Jr., 4 Sept 2017

35

Resolved Motion Rate Control

— Kinematic Control without the need for solving the
inverse Kinematics of Position

— Need Joint level control which 1s available in robot
controllers
0q OX
— Command joint motion such that desired e-e¢ motion
1s achieved

© Marcelo H. Ang Jr., 4 Sept 2017

36

Resolved Motion Rate Control

1) Given a Trajectory x(t) € R™ 1n task space

f
1

o final position
position

2) Divide Trajectory into small segments according to
sample time on reference Trajectory update rate

3) Atx,, compute J(q,)

© Marcelo H. Ang Jr., 4 Sept 2017

37

Resolved Motion Rate Control

4) Compute Ax, = X,,; — X, (position and orientation error)
5) Convert orientation error into 3 x 1 vector (dD)
6) Compute Aq = J*(q,) A X |

7) Command 0q to robot controller
(Robot moves from g, t0 q.;) (89 = qj; — G)

8) Go to step 3 until x, reaches x;

38
© Marcelo H. Ang Jr., 4 Sept 2017

