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CHAPTER 3

Rigid Body Motion and 
Robot Kinematics of Velocity

Relative Velocities between
Rigid Bodies
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1. Understand and Relate time derivatives of 
position and orientation representations with 
translational and angular velocities.

2. Transform velocities in different spaces
3. Relate joint velocities with end-effector

velocities
4. Understand robot singularities  (limitations of 

robot motion)
5. Use velocity relationships to command motion 

of robots (resolved rate motion control)

Learning Objectives
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Translational Velocities
AuB  3x1 = translational velocity of frame B 

(i.e., origin of frame B) relative of 
frame A 
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“frame of differentiation” is A (how fast is B moving
with respect to A)

Velocity, like any vector may be expressed in another
frame, say W
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Does not depend on 
origins of Frames A and 
WIf missing, A = W
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Rotational Velocities
AB

{B}

{A}

At a certain instant, frame B has an 
orientation ARB and its rotational motion 
may be represented by the rotational 
(angular) velocity vector
AB  3x1 unit vector along AB

= instantaneous   = AkB
axis of rotation

magnitude of AB
= speed of rotation

AB is related to 
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Angular velocity    Time Derivative 
of Rotation Matrix

sinmag x 




X

Direction = along plane 
normal to both  and x

x x 
X = vector 
rotating about 

X can be one of the Cartesian 
axes, in a body that is rotating
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Time derivative of rotation matrix
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A skew symmetric 
matrix

3 x 3 matrix version of 3 x 1 vector
Cross product equivalent
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Skew Symmetric Matrix as a Cross 
Product Operator

z y x

z x y

y x z

 0       -      
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Then 
p =  x p
where p  3x1 vector

̂
Allows consistent 
treatment of cross-
product as a matrix 
vector product
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Combining the three equations:
Time derivatives of
Unit vectors

Time derivative 
of rotation 
matrix
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Angular Velocity Vector

• 3 x 1 vector
– Magnitude = speed 

of rotation
– Direction = axis of 

rotation

x

y

z

k
k
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 
 
   
 
 


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Orientation Error

• 3 x 1 representation like position error
• Is there a meaning to “x, y, z”?
• One interpretation:

– Roll, Pitch, Yaw
• Another interpreation =  Rotation Matrix

–  x x x

y y y

z z z

n o a
n o a
n o a

 
 
 
 
 

3 x 3 
Can it be reduced to 3 x 1?
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Orientation Error
• Angular velocity – measure of instantaneous 3 x 1 

orientation error
• Allows the relationship between

R  

   ˆ ˆR R x y z x y z      

R R

 

 


 
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Angular Velocites and 
Time Derivates of Roll, Pitch, Yaw

AB

ARB = Rot ( z,  ) Rot ( y,  ) Rot ( x, )

, ,    

R P Yx 
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Roll Pitch Yaw Rates & 
Angular Velocities

RPY RPYE x  

ARB = Rot ( z,  ) Rot ( y,  ) Rot ( x, )
0 0 1

   0      Rot ( z,  ) 1  θ    Rot ( z,  ) Rot ( y, θ ) 0   
1 0 0

    
     
            
     
     

  

0     -sin      cos  cosθ
  0      cos      sin  cosθ  θ

1         0           -sin

 
  

 

  
     
  

   







ERPY

1but  may not existRPYE 

Mathematical singularities
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Roll Pitch Yaw Ratio & 
Angular Velocities

R P Y

cos  s in sin sin             1
cosθ cosθ

x     -s in            co s          0  
co s sin                      0
cosθ cosθ

   

  
 

 
 
 

  
 
 
 



If cos = 0, matrix does not exist
Math. Singularity

 xr not always possible
Not all possible angular matrix can be represented

This is a problem with 3 parameter representations for 
orientation

•
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Rotational Velocities

As with any vector, the rotational velocity vector
may be expressed in another frame C:

C AC
B A B

A A
B B B

  R  

the equivalent matrix product representation is:
ˆ ˆ ˆC C C T C A

A A A CR R R R

 

  



 

A
B

Verify yourself!

3 x 3   times 3 x 1 vector

3x3 equivalent 
of 3 x 1 vector

3x3 equivalent 
of 3 x 1 vector
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Homogeneous 
Transformation Matrix

A A A
A B B B

B

ˆ    R       U
T   

            0                 0
 

  
 

•

Time derivative of 4 x 4 
homogeneous 
transformation matrix

A
B   Angular velocity

Translational
velocity

AB

{B}

{A}

A
BU
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Simultaneous Rotational & 
Translational Velocities

Given: Frames A, B & C

{A}

{B}

{C}

{B} & {C} in motion 
with respect to {A}

Find: Relationships between velocities
ATC = ATB

BTC
Differentiate with 
respect to time



© Marcelo H. Ang Jr., 4 Sept 2017
18



© Marcelo H. Ang Jr., 4 Sept 2017
19



© Marcelo H. Ang Jr., 4 Sept 2017
20

Summary: Simultaneous 
Rotational & Translational 

Velocities
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 
 

ˆ
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C B B C B C B

A B A A A
B B C B C B

A B A A B
B B C B B C

A A A B
C B B C

u u R u P P
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   
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 
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Computation Of 
End-Effector Velocity

(6x1)
N

N
N

u
v     f ( q, q )


 

  
 



joint position
joint velocities
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Computation Of 
End-Effector Velocity

Let us examine the contribution of the ith joint motion to 
end-effector velocity.  We set all other joint velocities  :
qi  0           q1 = q2 = … = qi-1 = qi+1 = …qN = 
so motion is occurring with respect to zi-1 axis
For joint i rotational

i = zi-1 qi
ui = i x Ri-1

i-1pN = zi-1 qi x ( pN – pi-1 )
= zi-1 x ( pN – pi-1 ) qi

Note that oi-1 has no translational velocity

origin of frame i-1 which contains zi-1
since joint is rotational

••••

•

•

•
•

•
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Computation Of 
End-Effector Velocity

N

i
N i 1

N N
N

i
i 1

u
u

v     








 
         
 
 





For a translational joint i,
i = 0
ui = zi-1 qi

The total velocity of the end-effector during coordinated
motion is the superposition of all the elementary velocities
that represent single joint motion:

•
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Computation Of 
End-Effector Velocity























N

2

1

N321

q

q
q

 )  J   ...   J   J   J  (  Nv
6x1

6xN J(q)

Column Ji represents motion contribution of joint i

J(q) = Jacobian matrix
Cartesian   joint space  

•

•

•
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Computation Of 
End-Effector Velocity

For a translational joint i 











0
z

  1-i
iJ

For a rotational joint i








 


1-i

1-iN1-i

z
) p - p (  z

  iJ
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Jacobian Transformations

A BA
N NBA

N A A B
N B N

u uR      0
v      

   0     R 

    
             

J BvN

• Velocities expressed in different frames

AvN  BvN

For ARB and ApB constants

N = End Effector
B = may be a link coord

frame that is held 
instantaneously constant



© Marcelo H. Ang Jr., 4 Sept 2017
28

Jacobian Transformations
• Diff pts on End-Effector

For BRN and BpN constants
B & N are attached to a rigid body moving 
with respect to A:

{A}
{B}

{N}

N = 

B = 

Two Frames
Attached to 
End-Effector
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Jacobian Transformations

AuN = AuB + ABx ( ApN – ApB)

AN = AB

A AA A
N BA N B

N A A
N B

u uI      -( p  - p  )  
v      

0                   I 

    
            

another J
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Robot Kinematics of Velocity

• 0
R(J)

N(J)

R(J) = Range Space
of J

= or column
space of J

q  n

Joint Space
x  m

End-Effector Space

N(J) = Null space
of J

q produces no 
motion x
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Inverse Kinematics of Velocity

General solution exists if & only if Rank J0 = min( m0, n )

First: Convert x to x0  Rmo( velocity, basic kinematic
model)

x0 = J0 c ( 0vN = J0 q )

Rmo Rn m0  6

• •
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Inverse Kinematics of Velocity

Case 1:  m0 = n       6           
J#(q) = J-1 (possible problem with singularity,

J-1 may not exist)

Case 2:  m0 > n,   m0  6   (not interesting/useful case,
task shall be  n)

over-determined system:  more eqns than unknowns.
J# = (JT J)-1 JT = left pseudo inverse

= exists only if Rank J = n
Sol’n minimizes || Jq - x0 ||2
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Inverse Kinematics of Velocity

Case 3:  m0 < n,   m0  6   (Redundant Robots)
underdetermined system = less eqns than unknowns
J# = JT (J JT)-1 = right pseudo inverse

= exists only if Rank J = m0
Sol’n minimizes || q ||2
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Manipulator Singularities

• Joint configuration (set of joint positions) 
where the Jacobian is not full-rank

• Determinant of JJT = 0, or Det(JTJ) = 0
• There are no joint motions to achieve the 

end-effector motion when the robot is at a 
singular configuration



© Marcelo H. Ang Jr., 4 Sept 2017
35

Determining Manipulator 
Singularities

• J is m x n in general, with n  m
– Number of joints (n) must at least equal the 

number of task degrees of freedom (m) 
– Can have more joints needed to accomplish the 

task (Redundant robots)
• Determinant (J JT ) is equal zero at 

singularities; or
• There is no subset of joints (m joints) that 

can do the m-DOF task.
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Resolved Motion Rate Control

– Kinematic Control without the need for solving the
inverse Kinematics of Position

– Need Joint level control which is available in robot
controllers

– Command joint motion such that desired e-e motion
is achieved 

q x
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Resolved Motion Rate Control
1) Given a Trajectory x(t)  Rm in task space

initial 
position

final position
i

f

2) Divide Trajectory into small segments according to
sample time on reference Trajectory update rate

3) At xk, compute J(qk)
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Resolved Motion Rate Control

4) Compute xk = xk+1 – xk (position and orientation error)

5) Convert orientation error into 3 x 1 vector (d)

6) Compute q = J#(qk)  x0, k

7) Command q to robot controller
(Robot moves from qk to qk+1)   (q = qk+1 – qk)

8) Go to step 3 until xk reaches xf


