CHAPTER 3

Rigid Body Motion and
Robot Kinematics of Velocity

Il

Relative Velocities between
Rigid Bodies
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Learning Objectives

1. Understand and Relate time derivatives of
position and orientation representations with
translational and angular velocities.

Transform velocities 1n different spaces
3. Relate joint velocities with end-effector
velocities

4. Understand robot singularities (limitations of
robot motion)

5. Use velocity relationships to command motion
of robots (resolved rate motion control)
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Translational Velocities

Aug € R3X! = translational velocity of frame B
(1.e., origin of frame B) relative of

frame A
ru =9 lim “py(t+At)- *pg(t)
"0 PP A0 At
S “frame of differentiation” 1s A (how fast 1s B moving
with respect to A)
Velocity, like any vector may be expressed in another
frame, say W W Wim A Does not depend on

Ug= Iy Ug origins of Frames A and

If missing, A=W «— A
mlssmg W
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Rotational Velocities

s> At a certain instant, frame B has an
orientation ARy and its rotational motion
may be represented by the rotational

(angular) velocity vector
Apg € R unit vector along 2wy {B}

= instantaneous = Akg

ax1s of rotation
magnitude of Awg N
= speed of rotation
. lim AR, (t+A1)- *Ry(t)

<™ Awyg is related to EtARB =R, = A 30 v

A(OB

4
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Angular velocity (= Time Derivative
of Rotation Matrix

) X can be one of the Cartesian

<> axes, 1n a body that 1s rotating

\ .
\ mag :‘a)HX‘smé’
@/ X

Direction = along plane
normal to both ® and x

X = vector

rotating about ® X = () X X
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Time derivative of rotation matrix

y » D= duct operator
X — X X = X ® = Cross pro D
Q) Q) )

0 - a)y\
y=wxy=q@y |o 0 o
o, o, 0 )

A skew symmetric
matrix

7=wWX1=wl /

3 x 3 matrix version of 3 x 1 vector
Cross product equivalent
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Skew Symmetric Matrix as a Cross
Product Operator

0 -0, o, o,
Let o = | o, 0 -0, |ando = |o,
-0, 0, 0 o,

Then .
Allows consistent

Wp-w0XxXp treatment of cross-
where p € R3*! vector :
P product as a matrix

vector product
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X = @wX X=X

Combining the three equations:

Time derivatives of y = () X y — C?)y

Unit iect<\ I =wWX1=wl
(x vy 2)=a(x y z)
R=dR < RR' =0

Time derivative "0 - ] |
. z y x
of rotation .
. o = @, 0 -~y and @ = @
matrix ’
-0, o, 0 @,
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Angular Velocity Vector

e 3 x 1 vector
( k A — Magnitude = speed
X )
. of rotation
Q) = ky 6 — Direction = axis of
rotation

\kz} [, ‘
=\ /&ié{e\
| b
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Orientation Error

* 3 x I representation like position error
* Is there a meaning to “Ax, Ay, Az”?

* One interpretation:
— ARoll, APitch, AYaw

* Another interpreation = A Rotation Matrix

n Qo a
_A{moyayJ 3 x 3

n o a .
Can 1t be reducedto 3 x 1?
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Orientation Error

* Angular velocity — measure of instantaneous 3 x 1
orientation error

* Allows the relationship between

AR <:>ACD'”¢’ AR = [
2N ¥\ JA% AR — J‘R

R=dR—>(x y 2)=a(x y z)
N

A\O\\‘fY /Cj Wt b%
S

Ad)l = At‘Y

\Uﬂs B A‘I’«) ZS% Y

11
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Angular Velocites and
Time Derivates of Roll, Pitch, Yaw

ARz =Rot (z, ¢) Rot (y, 0) Rot ( x, @)
Ampg ) ¢,9,¢

XRPY
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Roll Pitch Yaw Rates &

Angular Velocities
ARz =Rot (z, ¢) Rot (y, 0) Rot (x, @)

) (0) 1)
w=|0|¢ + Rot(z@)|1]06 + Rot(z¢)Rot(y,0)|0]| ¢

Ny Y Y

(0 -sing cos¢ cosO) /¢.\
w = |0 COS sin¢g coso 8 _ '

7 ¢ | @ = Egpy Xgpy
X 0 -sinf ) &
— _
~

but E,, ' may not exist

Egrpy Mathematical singularities .
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Roll Pitch Yaw Ratio &
Angular Velocities

(cos¢@ sin@ sin g sin 6
cost cost
X ppy -sin ¢ COS ¢ 0
COS @ sin @ 0
. cos0 cost
— g _

If cosO = 0, matrix does not exist
— Math. Singularity
® — X, not always possible
Not all possible angular matrix can be represented
This 1s a problem with 3 parameter representations for
orientation 14
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Rotational Velocities

As with any vector, the rotational velocity vector @

may be expressed in another frame C:

CQ)B — CRA AQ)B 3x3 times 3 x 1 vector

the equivalent matrix product representation 1s:

C%")B:CRA a)BCRT CRAAQ;)BARC

3x3 equivalent 3x3 equivalent
of 3 x 1 vector of 3 x 1 vector

Verity yourself! 15
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Homogeneous

A
®p . .
Transformation Matrix

Translational
velocity

B
] = G
P AR

Time derivative of 4 x 4
homo geneous A Angular Velocity
transformation matrix 0%3

16
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Simultaneous Rotational &
Translational Velocities

Given: Frames A, B & C

{B} & {C} in motion

with respect to {A}
&

Find: Relationships between velocities
e =Ty "Tc . . .
Differentiate with
respect to time 7
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b Wy B A Q
A('\)(' ol kvs LJ(' KF\ + 8
Ivl

(m Ak 1S W\

© Marcelo H. Ang Jr., 4 Sept 2017

19



Summary: Simultaneous
Rotational & Translational
Velocities

"Ue = "Ug + "Ry PU + " (P, — APy )
B Ap B A A A
= Uy + "Ry PUg + "o x( P, — *P; )
= Uy + "Ry ®Ug + "a ("R, °F; )

A A Ap B
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oM

Computation Of

End-Eftector Velocity

(6x1) Vn = (Z)Nj = 1(q,9)

t
L joint position

joint velocities




Computation Of
End-Eftector Velocity

Let us examine the contribution of the 1th joint motion to
end-effector velocity. We set all other joint velocities ¢ :

q; =0 4=~ =G = Qi = - .qn= ¢
so motion 1S occurring with respect to z, , axis
For joint 1 rotational
®; = Z;y G
u; = ;X Ry "'py =2, §; X (Py— Pt )
=Z 1 X (Px— Pia ) 4;
Note that o, ; has no translational velocity

7

origin of frame 1-1 which contains z, ,
since joint 1s rotational
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Computation Of
End-Eftector Velocity

For a translational joint 1,

®; =0

u; = 74 q
The total velocity of the end-effector during coordinated
motion 1s the superposition of all the elementary velocities
that represent single joint motion:

uN 1=1
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Computation Of
End-Eftector Velocity

: )
6x1 (C“l
4 d,
vio=(J 1, 1, .. T)
\ 4
Y ([ J
6xNJ(q)  \dn/

Column J. represents motion contribution of joint 1

J(q) = Jacobian matrix
Cartesian <> joint space
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Computation Of
End-Eftector Velocity

For a translational joint 1

J __Zi-l_
Y10

For a rotational joint 1

_Zi-l X(Py - Di )_

Z;,

J. =

1
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Jacobian Transformations

* Velocities expressed in different frames

N = End Effector
Avy © Bvy B = may be a link coord
frame that 1s held
instantaneously constant

For ARy and Apg constants

27
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Jacobian Transformations

 Diff pts on End-Effector

For BRy and Bpy constants
B & N are attached to a rigid body moving
with respect to A:

_ ) Two Frames
19 N

>~ Attached to
— | End-Effector
(A} B=_

28
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Jacobian Transformations

another J

29
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Robot Kinematics of Velocity

N(J) = Null space R(J) = Range Space
of J of J
0q — produces no = or column
motion 0x space of J

oq € R" Oox € Rm
Joint Space End-Effector Spac%
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Inverse Kinematics of Velocity

First: Convert 0x to 0x, € R™o( velocity, basic kinematic

model)
0xy = Jy ¢ (""%W=Jdyq)
/ )
RmO Rn mo S 6

General solution exists 1f & only 1f Rank J, = min( my, n )

31
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Inverse Kinematics of Velocity

Case I: my=n <6
J*(q) = J1 (possible problem with singularity,
J-1 may not exist)

Case 2: my>n, m,<6 (notinteresting/useful case,
task shall be < n)

over-determined system: more eqns than unknowns.

J# = (JT J)1 JT = left pseudo inverse
= exists only if Rank J =n
Sol’n minimizes || Joq - 0x, ||,
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Inverse Kinematics of Velocity

Case 3: my;<n, m,<6 (Redundant Robots)
underdetermined system = less eqns than unknowns
J# = JT (J JT)! = right pseudo inverse
= exists only 1f Rank J = m,
Sol’n minimizes || 8q ||,

33
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Manipulator Singularities

 Joint configuration (set of joint positions)
where the Jacobian 1s not full-rank

e Determinant of JJT =0, or Det(J'J) =0

* There are no joint motions to achieve the
end-effector motion when the robot is at a
singular configuration
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Determining Manipulator
Singularities

* J1is m x n 1n general, with n > m

— Number of joints (n) must at least equal the
number of task degrees of freedom (m)

— Can have more joints needed to accomplish the
task (Redundant robots)
e Determinant (J J') is equal zero at
singularities; or
* There 1s no subset of joints (m joints) that
can do the m-DOF task.
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Resolved Motion Rate Control

— Kinematic Control without the need for solving the
inverse Kinematics of Position

— Need Joint level control which 1s available in robot
controllers
0q OX
— Command joint motion such that desired e-e¢ motion
1s achieved
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Resolved Motion Rate Control

1) Given a Trajectory x(t) € R™ 1n task space

f
1

o final position
position

2) Divide Trajectory into small segments according to
sample time on reference Trajectory update rate

3) Atx,, compute J(q,)
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Resolved Motion Rate Control

4) Compute Ax, = X,,; — X, (position and orientation error)
5) Convert orientation error into 3 x 1 vector (dD)
6) Compute Aq = J*(q,) A X |

7) Command 0q to robot controller
(Robot moves from g, t0 q.;) (89 = qj; — G)

8) Go to step 3 until x, reaches x;

38
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