SOLUTIONS - Drill Problem Set 2

1. We observe that the first three joint axes always intersect at the common point $O_0 = O_1 = O_2$. A closed-form inverse kinematic solution is therefore guaranteed. We use the decoupling principle to arrive at the solution. Since the location of the co-intersection point $O_0 = O_1 = O_2$ as seen from the end-effector frame of reference (frame 6) does not change with motion of the first three joints, the position of $O_0 = O_1 = O_2$ expressed in the end-effector frame (frame 6), ${}^6\mathbf{p}_0 = {}^6\mathbf{p}_1 = {}^6\mathbf{p}_2$, is a function of the last three joint coordinates (joints 4, 5, and 6) only. This position ${}^6\mathbf{p}_0$ is directly obtained from the task description ${}^0\mathbf{T}_6$ using:

$${}^{6}\mathbf{p}_{0} = -{}^{0}\mathbf{R}_{6}^{T} {}^{0}\mathbf{p}_{6}, \tag{1}$$

i.e., ${}^{6}\mathbf{p}_{0}$ is the last column of the inverse of ${}^{0}\mathbf{T}_{6}$. We express ${}^{6}\mathbf{p}_{0}$ in terms of the last three joint coordinates by taking the fourth column of ${}^{6}\mathbf{T}_{2} = \mathbf{A}_{6}^{-1}\mathbf{A}_{5}^{-1}\mathbf{A}_{4}^{-1}\mathbf{A}_{3}^{-1}$:

$${}^{6}\mathbf{p}_{0} = {}^{6}\mathbf{p}_{2} = \begin{pmatrix} p_{x}^{*} \\ p_{y}^{*} \\ p_{z}^{*} \end{pmatrix} = \begin{pmatrix} -c_{6}(L_{1}c_{45} + L_{2}c_{5}) \\ s_{6}(L_{1}c_{45} + L_{2}c_{5}) \\ L_{1}s_{45} + L_{2}s_{5} - L_{3} \end{pmatrix}$$
(2)

The docoupled system consists of the decoupled task (Equation (2)) and decoupled set of joint coordinates 4, 5 and 6 (Equation (1)).

The nonlinear system (2) represents a low-order system of three equations in three unknowns $(\theta_4, \theta_5, \theta_6)$, for which a closed-form solution is guaranteed:

$$\theta_4 = ATAN2 \left(\frac{I_4 \sqrt{4L_1^2 L_2^2 - (p_x^{*2} + p_y^{*2} + (p_z^{*} + L_3)^2 - L_1^2 - L_2^2)^2}}{p_x^{*2} + p_y^{*2} + (p_z^{*} + L_3)^2 - L_1^2 - L_2^2} \right)$$
(3)

where $4L_1^2L_2^2 - (p_x^{*2} + p_y^{*2} + (p_z^* + L_3)^2 - L_1^2 - L_2^2)^2$ must be ≥ 0 ; otherwise, the end-effector position is unreachable.

$$\theta_6 = ATAN2 \left(\frac{I_6 p_y^*}{-I_6 p_x^*} \right) \tag{4}$$

$$\theta_5 = ATAN2 \left(\frac{(L_1c_4 + L_2)(p_z^* + L_3) - L_1s_4(-p_x^*c_6 + p_y^*s_6)}{(L_1c_4 + L_2)(-p_x^*c_6 + p_y^*s_6) + L_1s_4(p_z^* + L_3)} \right)$$
 (5)

where $I_4 = \pm 1$ in (3) and $I_6 = \pm 1$ in (4). Having solved for $(\theta_4, \theta_5, \theta_6)$, we now compute

$$^{3}\mathbf{T}_{6} = \mathbf{A}_{4}\mathbf{A}_{5}\mathbf{A}_{6}.\tag{6}$$

The orientation of frame 3 in frame 0 is then computed from the task description:

$${}^{0}\mathbf{T}_{3} = {}^{0}\mathbf{T}_{6} {}^{3}\mathbf{T}_{6}^{-1}. \tag{7}$$

 ${}^{0}\mathbf{T}_{3}$ is a function of the first three joint coordinates only. Having solved for $(\theta_{4}, \theta_{5}, \theta_{6})$ to satisfy the end-effector position, we know solve for $(\theta_{1}, \theta_{2}, \theta_{3})$ to satisfy the end-effector orientation by taking the rotation matrix part of ${}^{0}\mathbf{T}_{3} = \mathbf{A}_{1}\mathbf{A}_{2}\mathbf{A}_{3}$ only:

$${}^{0}\mathbf{R}_{3} = \begin{pmatrix} N_{x} & O_{x} & A_{x} \\ N_{y} & O_{y} & A_{y} \\ N_{z} & O_{z} & A_{z} \end{pmatrix} = \begin{pmatrix} c_{1}c_{2}c_{3} + s_{1}s_{3} & -c_{1}c_{2}s_{3} + s_{1}c_{3} & -c_{1}s_{2} \\ s_{1}c_{2}c_{3} - c_{1}s_{3} & -s_{1}c_{2}s_{3} - c_{1}c_{3} & -s_{1}s_{2} \\ -s_{2}c_{3} & s_{2}s_{3} & -c_{2} \end{pmatrix}$$
(8)

From the A_z elements we have

$$\theta_2 = ATAN2 \left(\frac{I_2 \sqrt{1 - A_z^2}}{-A_z} \right), \tag{9}$$

where $I_2 = \pm 1$. From the A_x , A_y , N_z , and O_z elements of (8), and for $A_z^2 \neq 1$, we have:

$$\theta_1 = ATAN2 \left(\frac{-I_2 A_y}{-I_2 A_x} \right), \tag{10}$$

$$\theta_3 = ATAN2 \left(\frac{I_2 O_z}{-I_2 N_z} \right). \tag{11}$$

In general, there are eight inverse kinematic solutions corresponding to $I_4 = \pm 1$, $I_6 = \pm 1$, and $I_2 = \pm 1$.

If $A_z = \pm 1$, θ_1 and θ_3 describe the same rotation and cannot be computed separately; one degree-of-freedom is lost.

$$A_z = -1 \longleftrightarrow \begin{cases} \theta_2 = 0^{\circ} \\ \theta_1 - \theta_3 = ATAN2 \left(\frac{O_x}{N_x} \right) \end{cases}$$
 (12)

$$A_z = 1 \longleftrightarrow \begin{cases} \theta_2 = 180^{\circ} \\ \theta_1 + \theta_3 = ATAN2 \left(\frac{O_x}{-N_x} \right) \end{cases}$$
 (13)

Thus when $A_z = \pm 1$, there are an infinite number of solutions.