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SOLUTIONS - Drill Problem Set 2

1. We observe that the �rst three joint axes always intersect at the common point O0 =

O1 = O2. A closed-form inverse kinematic solution is therefore guaranteed. We use the

decoupling principle to arrive at the solution. Since the location of the co-intersection

point O0 = O1 = O2 as seen from the end-e�ector frame of reference (frame 6) does not

change with motion of the �rst three joints, the position of O0 = O1 = O2 expressed

in the end-e�ector frame (frame 6), 6p0 = 6p1 = 6p2, is a function of the last three

joint coordinates (joints 4, 5, and 6) only. This position 6p0 is directly obtained from

the task description 0T6 using:
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i.e., 6p0 is the last column of the inverse of 0T6. We express 6p0 in terms of the last

three joint coordinates by taking the fourth column of 6T2 = A�1
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The docoupled system consists of the decoupled task (Equation (2)) and decoupled

set of joint coordinates 4, 5 and 6 (Equation (1)).

The nonlinear system (2) represents a low-order system of three equations in three

unknowns (�4; �5; �6), for which a closed-form solution is guaranteed:
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where 4L2
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)2 must be � 0; otherwise, the

end-e�ector position is unreachable.
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where I4 = �1 in (3) and I6 = �1 in (4). Having solved for (�4; �5; �6), we now

compute
3T6 = A4A5A6: (6)

The orientation of frame 3 in frame 0 is then computed from the the task description:

0T3 =
0T6

3T�1

6
: (7)
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0T3 is a function of the �rst three joint coordinates only. Having solved for (�4; �5; �6)

to satisfy the end-e�ector position, we know solve for (�1; �2; �3) to satisfy the end-

e�ector orientation by taking the rotation matrix part of 0T3 = A1A2A3 only:
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From the Az elements we have
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where I2 = �1. From the Ax, Ay, Nz, and Oz elements of (8), and for A2

z 6= 1, we

have:
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In general, there are eight inverse kinematic solutions corresponding to I4 = �1,

I6 = �1, and I2 = �1.

If Az = �1, �1 and �3 describe the same rotation and cannot be computed separately;

one degree-of-freedom is lost.
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Thus when Az = �1, there are an in�nite number of solutions.

2


