National University of Singapore Faculty of Engineering

Drill Problem Set 2: ME4245/EE4304: Robotics Term 1, 1997/1998

- 1. Figure 1 shows the schematic diagram of the Intelledex Robot Model 605T. This robot is a six-axis manipulator consisting of all rotational joints with axes 0, 1, and 2 always co-intersecting at a common point. (Axis 5 intersects at the same co-intersection point only at the configuration shown in Fig. 1.)
- a. Assign coordinate frames to each link according to the Denavit-Hartenberg convention *and* the following rules:
 - The base frame (frame 0) should be as indicated in the figure. Its origin should coincide with the co-intersection point of axes 0, 1, and 2.
 - The end-effector frame should be as shown in the figure.
 - To the maximum extent possible, make r_i and d_i be equal to zero
- b. Identify the kinematic parameters of the robot by filling in the table in Figure 2.
- c. If at the configuration shown in Figure 1, axis 1 has a joint motion range of \pm 115°, determine the joint motion range in terms of q_2 (joint variable for 2nd joint, assigned according to the Denavit-Hartenberg convention, item a above.).
- d. What are the values of the six joint coordinates for the robot at the configuration shown in Figure 1?
- e. Identify the decoupled subsystem, if any, i.e., determine the subset of the task and the subset of joint coordinates responsible for the task.
- f. Derive the complete inverse kinematic solution for the intelledex robot.

Link	θ	r	d	α
1				
2				
3				
4				
5				
6				

Figure 1

- **2.** Figure 2 shows a 3-joint robot with one translational joint. It is a cylindrical robot whose first two joints are analogous to polar coordinates when viewed from above. The last joint provides "roll" for the hand.
 - a) Assign a coordinate frame to each link according to the Denavit-Hartenberg convention (given in class).
 - b) Identify and tabulate the Denavit-Hartenberg parameters.
 - c) Compute ${}^{0}T_{3}$.
 - d) Describe the three degrees-of-freedom of the robot in Cartesian space.
 - e) Derive the complete inverse kinematic equations for the robot.

Figure 2

3. Coordinate frame *N* is attached to an end-effector as shown in Figure 3. It is desired to design an *N*-joint robot that can provide the following position and orientation of the end-effector:

$${}^{0}T_{N} = \begin{pmatrix} n_{x} & o_{x} & 0 & p_{x} \\ n_{y} & o_{y} & 0 & p_{y} \\ 0 & 0 & -1 & p_{z} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

where n_x , n_y , o_x , o_y , p_x , p_y , and p_z are functions of the robot joint coordinates.

- a) What is the minimum number of degrees-of-freedom required of the robot? (That is, what is the minimum number of joints?)
- b) Suggest a robot structure/configuration that can satisfy the task ${}^{0}T_{N}$. That is, identify the number and type of joints, draw the base frame 0 and provide a schematic diagram of the robot including the end-effector and its frame N.

