National University of Singapore Faculty of Engineering Ouiz 1 **TM4245** 12 Feb 1999, 19:00-20:00 - 1. Frames A and B are attached to the cuboid as shown in Fig. 1. Determine the relative position and orientation of the two frames, i.e., determine ${}^{B}T_{A}$. (15 marks) - 2. Complete the frame assignments for Frame 1 in Fig. 2 according to the Denavit Hartenberg convention given in class. Frame 0 is also show in Fig. 2. (15 marks) - 3. Identify the four kinematic parameters (according to the Denavit Hartenberg convention) that relate Frames 0 and 1 in Fig. 3. (15 marks) Fig. 3 - 4. Frames A and B are rigidly attached to a cuboid as shown in Figure 1 with BT_A known. Let Frames U and V be fixed to the world with VT_U known. The cuboid is initially at a given UT_A . The cuboid undergoes the following motion in the indicated sequence: - a. rotation about X_U by 30 degrees - b. rotation about Z_U by 40 degrees - c. rotation about Y_A by 50 degrees - d. rotation about Z_B by 60 degrees - e. rotation about X_V by 70 degrees Find the new position and orientation of Frame A in U, i.e., find UT_A. (25 marks) 5. Figure 4 shows a 3-DOF robot with the second joint translational and the first and third joint rotational. The positive direction of the second joint variable q₂ represents the distance from A to B. The positive direction of the first joint variable q_1 is measured from the positive X_0 axis in a counterclockwise direction. The 2nd link AB is fixed at 90 degrees with respect to the first moving link. The third link BE rotates with joint whose positive direction q_3 counterclockwise measured from AB. Frame E is attached to the end-effector as shown. Determine the position and orientation of the end-effector, ⁰T_E as a function of the three joint coordinates q₁, **(30 marks)** q_2 , and q_3 . Fig. 4